Skip to main content

Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model of Atomic Nuclei

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2022)

Abstract

We developed a symbolic–numeric algorithm involving a set of effective symbolic and numerical procedures for calculations of low lying energy spectra and eigenfunctions of atomic nuclei. The eigenfunctions are expanded over the orthonormal noncanonical \(U(5) {\supset } O(5) {\supset } O(3)\) basis in Geometric Collective Model. We give implementation of the algorithm and procedures in Wolfram Mathematica. We present benchmark calculations of energy spectrum, quadrupole moment and the reduced upwards transition probability B(E2) for the nucleus \(^{186}\)Os.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972). https://dlmf.nist.gov/33.22#vii

  2. Bohr, A.: The coupling of nuclear surface oscillations to the motion of individual nucleons. Mat. Fys. Medd. Dan. Vid. Selsk. 26(14) (1952)

    Google Scholar 

  3. Bohr, A., Mottelson, B.: Collective and individual-particle aspects of nuclear structure. Mat. Fys. Medd. Dan. Vid. Selsk. 27(16) (1953)

    Google Scholar 

  4. Bohr, A., Mottelson, B.R.: Nuclear Structure, vol. 2. W A Bejamin Inc., New York; Amsterdam (1970)

    MATH  Google Scholar 

  5. Chacón, E., Moshinsky, M., Sharp, R.T.: \(U(5)\supset O(5)\supset O(3)\) and the exact solution for the problem of quadrupole vibrations of the nucleus. J. Math. Phys. 17, 668–676 (1976)

    Article  MathSciNet  Google Scholar 

  6. Chacón, E., Moshinsky, M.: Group theory of the collective model of the nucleus. J. Math. Phys. 18, 870–880 (1977)

    Article  Google Scholar 

  7. Deveikis, A., et al.: Symbolic-numeric algorithm for computing orthonormal basis of \(\text{ O(5) }\times \text{ SU(1,1) }\) group. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 206–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_12

    Chapter  Google Scholar 

  8. Eisenberg, J.M., Greiner, W.: Nuclear Theory, vol. 1, 3rd edn. North-Holland, Amsterdam (1987)

    Google Scholar 

  9. Ermamatov, M.J., Hess, P.O.: Microscopically derived potential energy surfaces from mostly structural considerations. Ann. Phys. 37, 125–158 (2016)

    Article  Google Scholar 

  10. Gusev, A.A., Chuluunbaatar, G., Chuluunbaatar, O., Vinitsky, S.I., Blinkov, Yu.A., Hess, P.O.: Interpolation Hermite Polynomials in Parallelepipeds and FEM Applications Extended Abstract in CASC-2022 and in Mathematics in Computer Science (2022)

    Google Scholar 

  11. Hess, P.O.: A gradient formula for the group \( U(2l + l)\). J. Phys. G: Nucl. Phys. 4(3), L59–L63 (1978)

    Article  Google Scholar 

  12. Hess, P.O., Ermamatov, M.: In search of a broader microscopic underpinning of the potential energy surface in heavy deformed nuclei. J. Phys. Conf. Ser. 876, 012012 (2017)

    Google Scholar 

  13. Hess, P.O.: The power of the geometrical model of the nucleus. In: Hess, P.O., St\(\ddot{o}\)cker H. (eds.) Walter Greiner Memorial Volume, pp. 183–197. World Scientific, Singapore (2018). https://www.worldscientific.com/worldscibooks/10.1142/10828

  14. Hess, P.O., Seiwert, M., Maruhn, J., Greiner, W.: General Collective Model and its Application to \(_{92}^{238}\)U. Z. Phys. A 296, 147–163 (1980)

    Google Scholar 

  15. Hess, P.O., Maruhn, J., Greiner, W.: The general collective model applied to the chains of Pt, Os and W isotopes. J. Phys. G Nucl. Phys. 7, 737–769 (1981)

    Google Scholar 

  16. L\(\ddot{o}\)wdin, P.O.: Studies in perturbation theory. X. Lower bounds to energy eigenvalues in perturbation-theory ground state. Phys. Rev. A 139, 357–360 (1965)

    Google Scholar 

  17. Moshinsky, M., Smirnov, Y.F.: The Harmonic Oscillator in Modern Physics. HAP, Netherlands (1996)

    Google Scholar 

  18. Próchniak, L., Zajac, K.K., Pomorski, K., et al.: Collective quadrupole excitations in the \(50 < Z\), \(N < 82\) nuclei with the general Bohr Hamiltonian. Nucl. Phys. A 648, 181–202 (1999)

    Article  Google Scholar 

  19. Próchniak, L., Rohoziński, S.G.: Quadrupole collective states within the Bohr collective Hamiltonian. J. Phys. G: Nucl. Part. Phys. 36, 123101 (2009)

    Article  Google Scholar 

  20. Troltenier, D., Maruhn, J.A., Hess, P.O.: Numerical application of the geometric collective model. In: Langanke, K., Maruhn, J.A., Konin, S.E. (eds.) Computational Nuclear Physics, vol. 1, pp. 116–139. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-642-76356-4_6

    Chapter  Google Scholar 

  21. Troltenier, D.: The generalized collective model; Das generalisierte Kollektivmodell. Ph.D. thesis, University of Francfurt, p. 55 (1992)

    Google Scholar 

  22. Troltenier, D., Draayer, J.P., Babu, B.R.S., Hamilton, J.H., Ramayya, A.V., Oberacker, V.E.: The \(^{108,110,112}\)Ru isotopes in the generalized collective model. Nucl. Phys. A 601, 56–68 (1996)

    Article  Google Scholar 

  23. Troltenier, D., Maruhn, J.A., Greiner, W., Hess, P.O.: A general numerical solution of collective quadrupole surface motion applied to microscopically calculated potential energy surfaces. Z. Phys. A Hadrons Nuclei 343, 25–34 (1992)

    Google Scholar 

  24. Varshalovitch, D.A., Moskalev, A.N., Hersonsky, V.K.: Quantum Theory of Angular Momentum. Nauka, Leningrad (1975); World Scientific, Singapore (1988)

    Google Scholar 

  25. Wolfram Research Inc: Mathematica, Version 13.0.0, Champaign, IL (2022). https://www.wolfram.com/mathematica/

  26. Yannouleas, C., Pacheco, J.M.: An algebraic program for the states associated with the \( U(5) {\supset } O(5){\supset } O(3)\) chain of groups. Comput. Phys. Commun. 52, 85–92 (1988)

    Article  MathSciNet  Google Scholar 

  27. Yannouleas, C., Pacheco, J.M.: Algebraic manipulation of the states associated with the \( U(5) {\supset } O(5){\supset } O(3)\) chain of groups: orthonormalization and matrix elements. Comput. Phys. Commun. 54, 315–328 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

The work was partially supported by the RUDN University Strategic Academic Leadership Program, the Bogoliubov–Infeld program, and grant of Plenipotentiary of the Republic of Kazakhstan in JINR. AD is grateful to Prof. A. Góźdź for hospitality during visits in Institute of Physics, Maria Curie-Skłodowska University (UMCS). POH acknowledges financial support from DGAPA-UNAM (IN100421).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Gusev .

Editor information

Editors and Affiliations

Appendices

A Appendix. Sets of Input Parameters for Atomic Nuclei

To denote approximately a range of applicability of the GCM code and to make it more friendly for users, we will accompany it by the sets of input files with the values of sets of parameters for atomic nuclei given in the papers  [9, 12, 20].

For example, we present some of them in Tables 11, 12, 13, 14, 15, and 16. In Table 11 the macroscopic potential parameters are given. The value of \(C_2\) is increased as we approach to double closed shell. Even the potential depends more on the quadratic term over \(\beta \), it is not completely quadratic even if one approaches very close the double closed shell. Because of the great similarity, the authors only depict the PES of the \(^{298}\)114 and \(^{304}\)120 in Figs. 29 and 30 in Ref. [9]. The PES is perfectly spherical, thus, the spectrum will be that of a five-dimensional oscillator: The energy scales as \(\hbar \sqrt{C_{2}/B_{2}}\). The first excited state is a \(2^+\) state at the energy \(\hbar \sqrt{C_{2}/B_{2}}\) and at twice this energy, there are three degenerate states with spin and parity \(0^+\), \(2^+\) and \(4^+\). The first 3+ state is three times the energy of the first \(2^+\) state. For completeness, in Fig. 31 in Ref. [9], the authors depict the spectrum of the \(^{298}\)114 nucleus as predicted by the GCM [9].

Table 16. The values of the phenomenological potential parameters for \(^{184}\)W are determined by fitting [12].

The only parameter, which cannot be deduced is the collective mass \(B_2\) of the geometrical model [8]. This parameter has to be adjusted to, e.g., a particular state in the ground state band. Also assuming for neighboring nuclei the same value of \(B_2\) is in general far more accurate than using the Cranking Model. For the case of nuclei in the island of stability, one will use a generic value, i.e., results will scale with \(B_2\) (as it is pointed out in page 128 in Ref. [9]).

B Appendix. Boundary Value Problem for GCM Model

The equation of geometric collective model (GCM) with respect to components \(\varPhi _{nK}^{L}=\varPhi _{nK}^{L}(\beta ,\gamma )\) and eigenvalue \(E_{n}^{L}\) (in MeV), \(\bar{B}_{2}=2B_{2}/\sqrt{5}\) in (\(10^{-42}\)MeV s\(^2\)) and \(C_{2}\) in (MeV) are mass and stiffness parameters, variable \(\beta \) in (fm), reads as

$$\begin{aligned}&(T(\beta ,\gamma ) {+} T^{L}_{K}(\beta ,\gamma ) {+}\hat{V}(\beta ,\gamma ){-} E_{n}^{L})\varPhi _{nK}^{L}( \beta ,\gamma )=\sum _{K'=K\pm 2 even}\!\!\!\!\!\! V_{KK'}^{L}(\beta ,\gamma )\varPhi _{vK'}^{L}(\beta ,\gamma ), \\&T( \beta ,\gamma )=\frac{\hbar ^{2}}{2\bar{B}_{2}}\left( {-}\frac{1}{\beta ^{4}} \frac{\partial }{\partial \beta }\beta ^{4}\frac{\partial }{\partial \beta }{-}\frac{1}{\beta ^{2}\sin (3\gamma )} \frac{\partial }{\partial \gamma }\sin (3\gamma )\frac{\partial }{\partial \gamma }\right) {+}\mathcal{K}(\beta ,\gamma ),\nonumber \\&T^{L}_{K}( \beta ,\gamma )= +\frac{\hbar ^2}{2\bar{B}_{2}} \left[ (L(L+1)-K^{2})\left( \frac{2 \bar{B}_{2}}{4J_{1}}+ \frac{2 \bar{B}_{2}}{4J_{2}}\right) +\frac{K^{2} 2 \bar{B}_{2}}{2J_{3}}\right] ,\nonumber \\&V^{L}_{KK'}(\bar{\beta },\gamma )={-}\frac{\hbar ^2}{2\bar{B}_{2}}\left[ \frac{2\bar{B}_{2}}{8J_{1}}{-} \frac{2\bar{B}_{2}}{8J_{2}}\right] C_{KK'}^{L},\, \; C_{KK'}^{L}=\delta _{K'K{-}2}C_{KK{-}2}^{L}{+}\delta _{K'K{+}2}C_{KK{+}2}^{L},\nonumber \\&C_{KK-2}^{L}=(1+\delta _{K2})^{1/2}[(L+K)(L-K+1)(L+K-1)(L-K+2)]^{1/2},\nonumber \\&C_{KK+2}^{L}=(1+\delta _{K0})^{1/2}[(L-K)(L+K+1)(L-K-1)(L+K+2)]^{1/2}, \nonumber \end{aligned}$$
(40)

and the moments of the inertia denoted as \({J_{k}=4\bar{B}_{(k)}\beta ^{2}\sin ^{2}(\gamma {-}\frac{2}{3}k\pi )}\), where \(k=1,2,3\) and \(\bar{B}_{(k)}= \bar{B}_{2}\) is a mass parameter, with potential function \(\hat{V}(\beta ,\gamma )\) from (3), (4) and (5), and input set of parameters from Tables 11, 12, 13, 14, 15 and 16 in Appendix A, and additional kinetic function \(\mathcal{K}(\beta ,\gamma )\) determined in  [11, 14, 17, 20, 23]. The bounded components \(\phi _{vK}^{L}\) are subjected to homogeneous Neumann or Dirichlet boundary conditions at the boundary points of interval \(\gamma =0\) and \(\gamma =\pi /3\) for zero or odd values of L (for details of boundary conditions on interval of the \(\beta \) variable see [18, 19, 23]), and orthonormalization conditions (see Eq. (15))

$$\begin{aligned} \int _{\beta =0}^{\beta _{max}}\int _0^{\pi /3} \sum _{K even}\varPhi _{n'K}^{L}(\beta ,\gamma )\varPhi _{nK}^{L}(\beta ,\gamma ) \sin (3\gamma )d\gamma \beta ^{4}d \beta = \delta _{n'n}. \end{aligned}$$
(41)

The BVP (40)–(41) will be solved by the FEM implemented in the CAS code.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deveikis, A. et al. (2022). Symbolic-Numeric Algorithm for Calculations in Geometric Collective Model of Atomic Nuclei. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2022. Lecture Notes in Computer Science, vol 13366. Springer, Cham. https://doi.org/10.1007/978-3-031-14788-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14788-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14787-6

  • Online ISBN: 978-3-031-14788-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics