
Accelerated Subdivision for Clustering Roots of
Polynomials given by Evaluation Oracles
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Abstract. In our quest for the design, the analysis and the implemen-
tation of a subdivision algorithm for finding the complex roots of uni-
variate polynomials given by oracles for their evaluation, we present sub-
algorithms allowing substantial acceleration of subdivision for complex
roots clustering for such polynomials. We rely on Cauchy sums which
approximate power sums of the roots in a fixed complex disc and can
be computed in a small number of evaluations –polylogarithmic in the
degree. We describe root exclusion, root counting, root radius approxi-
mation and a procedure for contracting a disc towards the cluster of root
it contains, called ε-compression. To demonstrate the efficiency of our al-
gorithms, we combine them in a prototype root clustering algorithm. For
computing clusters of roots of polynomials that can be evaluated fast,
our implementation competes advantageously with user’s choice for root
finding, MPsolve.

Keywords: Polynomial Root Finding, Subdivision Algorithms, Oracle
Polynomials

1 Introduction

We consider the

ε-Complex Root Clustering Problem (ε-CRC)
Given: a polynomial p ∈ C[z] of degree d, ε > 0
Output: ` ≤ d couples (∆1,m1), . . . , (∆`,m`) satisfying:

- the ∆j ’s are pairwise disjoint discs of radii ≤ ε,
- for any 1 ≤ j ≤ `, ∆j and 3∆j contain mj > 0 roots of p,
- each complex root of p is in a ∆j for some j.

Here and hereafter root(s) stands for root(s) of p and are counted with multi-
plicities, 3∆j for the factor 3 concentric dilation of ∆j , and p is a Black box
polynomial: its coefficients are not known, but we are given evaluation oracles,
that is, procedures for the evaluation of p, its derivative p′ and hence the ra-
tio p′/p at a point c ∈ C with a fixed precision. Such a black box polynomial
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can come from an experimental process or can be defined by a procedure, for
example Mandelbrot’s polynomials, defined inductively as

Man1(z) = z, Mank(z) = zMank−1(z)2 + 1.

Mank(z) has degree d = 2k − 1 and d non-zero coefficients but can be evaluated
fast, i.e. in O(k) arithmetic operations. Any polynomial given by its coefficients
can be handled as a black box polynomial, and the evaluation subroutines for p, p′

and p′/p are fast if p is sparse or Mandelbrot-like. One can solve root-finding
problems and in particular the ε-CRC problem for black box polynomials by
first retrieving the coefficients by means of evaluation-interpolation, e.g., with
FFT and inverse FFT, and then by applying the algorithms of [2,4,10,12,18].
Evaluation-interpolation, however, decompresses the representation of a polyno-
mial, which can blow up its input length, in particular, can destroy sparsity. We
do not require knowledge of the coefficients of an input polynomial, but instead
use evaluation oracles.

Functional root-finding iterations such as Newton’s, Weierstrass’s (aka Durand-
Kerner’s) and Ehrlich’s iterations – implemented in MPsolve [4] – can be applied
to approximate the roots of black box polynomials. Applying such iterations,
however, requires initial points, which the known algorithms and in particular
MPsolve obtain by computing root radii, and for that it needs the coefficients of
the input polynomial.

Subdivision algorithms Let i stand for
√
−1, c ∈ C, c = a+ ib and r, w ∈ R,

r and w positive. We call box a square complex interval of the form B(c, w) :=
[a− w

2 , a+ w
2 ] + i[b− w

2 , b+ w
2 ] and disc D(c, r) the set {x ∈ C | |x− c| ≤ r}. The

containing disc D(B(c, w)) of a box B(c, w) is D(c, (3/4)w). For a δ > 0 and a
box or a disc S, δS denotes factor δ concentric dilation of S.

We consider algorithms based on iterative subdivision of an initial box B0 (see
[2,3,11]) and adopt the framework of [2,3] which relies on two basic subroutines:
an Exclusion Test (ET) – deciding that a small inflation of a disc contains no
root – and a Root Counter (RC) – counting the number of roots in a small
inflation of a disc. A box B of the subdivision tree is tested for root exclusion
or inclusion by applying the ET and RC to D(B), which can fail and return
−1 when D(B) has some roots near its boundary circle. In [2], ET and RC are
based on the Pellet’s theorem, requiring the knowlege of the coefficients of p
and shifting the center of considered disc into the origin (Taylor’s shifts); then
Dandelin-Lobachevsky-Gräffe iterations, aka root-squaring iterations, enable the
following properties for boxes B and discs ∆:

(p1) if 2B contains no root, ET applied to D(B) returns 0,

(p2) if ∆ and 4∆ contain m roots, RC applied to 2∆ returns m.

(p1) and (p2) bound the depth of the subdivision tree. To achieve quadratic
convergence to clusters of roots, [2] uses a complex version of the Quadratic
Interval Refinement iterations of J. Abbott [1], aka QIR Abbott iterations, de-
scribed in details in Algo. 7 of [3] and, like [11], based on extension of Newton’s
iterations to multiple roots due to Schröder. [7] presents an implementation of
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[2] in the C library Ccluster3, which slightly outperforms MPsolve for initial
boxes containing only few roots.

In [6] we applied an ET based on Cauchy sums approximation. It satisfies
(p1) and instead of coefficients of p involves O(log2 d) evaluations of p′/p with
precision O(d) for a disc with radius in O(1); although the output of this ET is
only certified if no roots lie on or near the boundary of the input discs, in our
extensive experiments it was correct when we dropped this condition.

1.1 Our contributions

The ultimate goal of our work is to design an algorithm for solving the ε-CRC
problem for black box polynomials which would run faster in practice than the
known solvers, have low and possibly near optimal Boolean complexity. We do
not achieve this yet in this paper but rather account for the advances along this
path by presenting several sub-routines for root clustering. We implemented and
assembled them in an experimental ε-CRC algorithm which outperforms the
user’s choice software for complex root finding, MPsolve, for input polynomials
that can be evaluated fast.

Cauchy ET and RC We describe and analyze a new RC based on Cauchy sum
computations and satisfying property (p2) which only require the knowledge of
evaluation oracles. For input disc of radius in O(1), it requires evaluation of p′/p
at O(log2 d) points with precision O(d) and is based on our ET presented in [6];
the support for its correctness is only heuristic.

Disc compression For a set S, let us write Z (S, p) for the set of roots in S and
# (S, p) for the cardinality of Z (S, p); two discs ∆ and ∆′ are said equivalent if
Z (∆, p) = Z (∆′, p). We introduce a new sub-problem of ε-CRC:

ε-Compression into Rigid Disc (ε-CRD)
Given: a polynomial p ∈ C[z] of degree d, ε > 0, 0 < γ < 1,

a disc ∆ s.t. Z (∆, p) 6= ∅ and 4∆ is equivalent to ∆.
Output: a disc ∆′ ⊆ ∆ of radius r′ s.t. ∆′ is equivalent to ∆ and:

- either r′ ≤ ε,
- or # (∆, p) ≥ 2 and ∆′ is at least γ-rigid, that is

max
α,α′∈Z(∆′,p)

|α− α′|
2r′

≥ γ.

The ε-CRD problem can be solved with subdivision and QIR Abbott iteration,
but this may require, for an initial disk of radius r, up to O(log(r/max(ε′, ε))
calls to the ET in the subdivision if the radius of convergence of the cluster in
∆ for Schröder’s iteration is in O(ε′).

We present and analyze an algorithm solving the ε-CRD problem for γ = 1/8
based on Cauchy sums approximation and on an algorithm solving the following

3 https://github.com/rimbach/Ccluster

https://github.com/rimbach/Ccluster
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CauchyQIR CauchyComp MPsolve

d log10(ε−1) t n tN t n tC t

Mignotte polynomials, a = 16

1024 5 1.68 30850 0.44 0.96 16106 0.27 1.04
1024 10 2.08 30850 0.58 1.07 16106 0.37 1.30
1024 50 2.17 30850 0.71 2.70 16105 1.96 4.84
2048 5 3.84 62220 0.90 2.13 32148 0.51 4.08
2048 10 4.02 62220 1.03 2.36 32148 0.70 5.09
2048 50 4.51 62220 1.25 5.62 32147 3.78 17.1

Mandelbrot polynomials

1023 5 10.4 30877 0.86 6.23 18701 0.41 27.2
1023 10 10.1 30920 0.91 6.45 18750 0.59 30.0
1023 50 10.3 30920 1.06 8.64 18713 2.71 45.7
2047 5 24.3 62511 1.95 15.2 39296 1.39 229.
2047 10 26.4 62952 2.31 15.5 39358 1.71 246.
2047 50 26.1 62952 2.64 20.4 39255 6.22 380.

Table 1. Runs of CauchyQIR, CauchyComp and MPsolve on Mignotte and Mandelbrot
polynomials.

root radius problem: for a given c ∈ C, a given non-negative integer m ≤ d and
a ν > 1, find r such that rm(c, p) ≤ r ≤ νrm(c, p) where rm(c, p) is the smallest
radius of a disc centered in c and containing exactly m roots of p. Our compres-
sion algorithm requires only O(log log(r/ε)) calls to our RC, but a number of
evaluations and arithmetic operations increasing linearly with log(1/ε).

Experimental results We implemented our algorithms4 within Ccluster and
assembled them in two algorithms named CauchyQIR and CauchyComp for solving
the ε-CRC problem for black box polynomials. Both implement the subdivision
process of [2] with our heuristically correct ET and RC, and

– CauchyQIR uses QIR Abbott iterations of [3] (with Pellet’s test replaced by
our RC)

– CauchyComp uses our compression algorithm instead of QIR Abbott itera-
tions.

We compare runs of CauchyQIR and CauchyComp to emphasize the practical
improvements allowed by using compression in subdivision algorithms for root
finding. We also compare running times of CauchyComp and MPsolve to demon-
strate that subdivision root finding can outperform solvers based on functional
iterations for polynomials that can be evaluated fast. MPsolve does not cluster
roots of a polynomial, but approximate each root up to a given error ε. Below
we used the latest version5 of MPsolve and call it with: mpsolve -as -Ga -j1

-oN where N stands for max(1, dlog10(1/ε)e).
All the timings given below have to be understood as sequential running

times on a Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz machine with Linux.
We present in table 1 results obtained for Mandelbrot and Mignotte polynomials

4 they are not publicly realeased yet
5 3.2.1 available here: https://numpi.dm.unipi.it/software/mpsolve

https://numpi.dm.unipi.it/software/mpsolve
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of increasing degree d for decreasing error ε. The Mignotte polynomial of degree
d and parameter a is defined as

Migd,a(z) = zd − 2(2
a
2−1z − 1)2.

In table 1, we account for the running time t for the three above-mentionned
solvers. For CauchyQIR (resp. CauchyComp), we also give the number n of exclu-
sion tests in the subdivision process, and the time tN (resp. tC) spent in QIR
Abbott iterations (resp. compression). Mignotte polynomials have two roots with
mutual distance close to the theoretical separation bound; with the ε used in
table 1, those roots are not separated.

1.2 Related Work

The subdivision root-finders of Weyl 1924, Henrici 1974, Renegar 1987, [3,11],
rely on ET, RC and root radii sub-algorithms and heavily use the coefficients of
p. Design and analysis of subdivision root-finders for a black box p have been
continuing since 2018 in [15] (now over 150 pages), followed by [5,6,9,13,14] and
this paper. This relies on the novel idea and techniques of compression of a disc
and on novel ET, RC and root radii sub-algorithms. A basic tool of Cauchy
sum computation was used in [19] for polynomial deflation, but in a large body
of our results only Thm. 5 is from [19]; we deduced it in [5,15] from a new
more general theorem of independent interest. Alternative derivation and anal-
ysis of subdivision in [15] (yielding a little stronger results but presently not
included) relies on Schröder’s iterations, extended from [11]. The algorithms are
analyzed in [9,13,14,15], under the model for black box polynomial root-finding
of [8]. [5,6] complement this study with some estimates for computational pre-
cision and Boolean complexity. We plan to complete them using much more
space (cf. 46 pages in each of [19] and [3]).6 Meanwhile we borrowed from [3]
Pellet’s RC (involving coefficients), Abbott’s QIR and the general subdivision
algorithm with connected components of boxes extended from [11,17]. With our
novel sub-algorithms, however, we significantly outperform MPsolve for polyno-
mials that can be evaluated fast; all previous subdivision root-finders have never
come close to such level. MPsolve relies on Ehrlich’s (aka Aberth’s) iterations,
whose Boolean complexity is proved to be unbounded because iterations diverge
for worst case inputs [16], but divergence never occurs in decades of extensive
application of these iterations.

1.3 Structure of the paper

In Sec. 2, we describe power sums and their approximation with Cauchy sums. In
Sec. 3, we present and analyze our Cauchy ET and RC. Sec. 4 is devoted to root

6 In [19, Sec. 2], called “The result“, we read: “The method is involved and many
details still need to be worked out. In this report also many proofs will be omitted.
A full account of the new results shall be given in a monograph“ which has actually
never appeared. [3] deduced a posteriori estimates, depending on root separation
and Mahler’s measure, that is, on the roots themselves, not known a priori.
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radii algorithms and Sec. 5 to the presentation of our algorithm solving the ε-
CRD problem. We describe the experimental solvers CauchyQIR and CauchyComp

in Sec. 6, numeric results in Sec. 7 and conclude in Sec. 8. We introduce additional
definitions and properties in the rest of this section.

1.4 Definitions and two evaluations bounds

Troughout this paper, log is the binary logarithm and for a positive real number
a, let loga = max(1, log a).

Annuli, intervals For c ∈ C and positives r ≤ r′ ∈ R, the annulus A (c, r, r′)
is the set {z ∈ C | r′ ≤ |z − c| ≤ r′}.

Let R be the set {[a − w
2 , a + w

2 ] | a,w ∈ R, w ≥ 0} of real intervals. For
a = [a − w

2 , a + w
2 ] ∈ R the center c ( a), the width w ( a) and the radius

r ( a) of a are respectively a, w and w/2.
Let C be the set { a+ i b| a, b ∈ R} of complex intervals. If c ∈ C,

then w ( c) (resp. r ( c)) is max(w ( a) ,w ( b)) (resp w ( c) /2). The center
c ( c) of c is c ( a) + ic ( b).

Isolation and rigidity of a disc are defined as follows [11,15].

Definition 1 (Isolation) Let θ > 1. The disc ∆ = D(c, r) has isolation θ for a
polynomial p or equivalently is at least θ-isolated if Z

(
1
θ∆, p

)
= Z (θ∆, p), that

is Z (A (c, r/θ, rθ) , p) = ∅.

Definition 2 (Rigidity) For a disc ∆ = D(c, r), define

γ(∆) = max
α,α′∈Z(∆,p)

|α− α′|
2r

and remark that γ(∆) ≤ 1. We say that ∆ has rigidity γ or equivalently is at
least γ-rigid if γ(∆) ≥ γ.

Oracle Numbers and Oracle Polynomials Our algorithms deal with num-
bers that can be approximated arbitrarily closely by a Turing machine. We call
such approximation automata oracle numbers and formalize them through in-
terval arithmetic.

For a ∈ C we call oracle for a a function Oa : N→ C such that a ∈ Oa (L)
and r (Oa (L)) ≤ 2−L for any L ∈ N. In particular, one has |c (Oa (L))−a| ≤ 2−L.
Let OC be the set of oracle numbers which can be computed with a Tur-
ing machine. For a polynomial p ∈ C[z], we call evaluation oracle for p a
function Ip : (OC,N) → C, such that if Oa is an oracle for a and L ∈
N, then p(a) ∈ Ip (Oa, L) and r (Ip (Oa, L)) ≤ 2−L. In particular, one has
|c (Ip (Oa, L))− p(a)| ≤ 2−L.

Consider evaluation oracles Ip and Ip′ for p and p′. If p is given by d′ ≤ d+1
oracles for its coefficients, one can easily construct Ip and Ip′ by using, for
instance, Horner’s rule. However for procedural polynomials (e.g. Mandelbrot),
fast evaluation oracles Ip and Ip′ are built from procedural definitions.
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To simplify notations, we let Ip (a, L) stand for Ip (Oa, L). In the rest of
the paper, P (resp. P ′) is an evaluation oracle for p (resp. p′); P (a, L) (resp.
P ′ (a, L)) will stand for Ip (Oa, L) (resp. Ip′ (Oa, L)).

Two evaluation bounds The Lemma below is proved in A.1 and provides
estimates for values of |p| and |p′/p| on the boundary of isolated discs.

Lemma 3 Let D(c, r) be at least θ-isolated, z ∈ C, |z| = 1 and g be a positive
integer. Let lcf (p) be the leading coefficient of p. Then

|p(c+ rzg)| ≥ |lcf (p) |r
d(θ − 1)d

θd
and

∣∣∣∣p′(c+ rzg)

p(c+ rzg)

∣∣∣∣ ≤ dθ

r(θ − 1)
.

2 Power Sums and Cauchy Sums

Definition 4 (Power sums of the roots in a disc) The h-th power sum of
(the roots of) p in the disc D(c, r) is the complex number

sh (p, c, r) =
∑

α∈Z(∆,p)

# (α, p)αh (1)

where # (α, p) stands for the multiplicity of α as a root of p.

The power sums sh (p, c, r) are equal to Cauchy’s integrals over the boundary
circle ∂D(c, r); by following [19] they can be approximated by Cauchy sums
obtained by means of the discretization of the integrals: let q ≥ 1 be an integer
and ζ be a primitive q-th root of unity. When p(c+ rζg) 6= 0 for g = 0, . . . , q−1,
and in particular when D(c, r) is at least θ-isolated with θ > 1, define the Cauchy
sum s̃h

q (p, c, r) as

s̃h
q (p, c, r) =

r

q

q−1∑
g=0

ζg(h+1) p
′(c+ rζg)

p(c+ rζg)
. (2)

For conciseness of notations, we write sh for sh (p, 0, 1) and s̃h
q for s̃h

q (p, 0, 1).
The following theorem, proved in [6,19], allows us to approximate power sums
by Cauchy sums in D(0, 1).

Theorem 5 For θ > 1 and integers h, q s.t. 0 ≤ h < q let the unit disc D(0, 1)
be at least θ-isolated and contain m roots of p. Then

|s̃hq − sh| ≤
mθ−h + (d−m)θh

θq − 1
. (3)

Fix e > 0. If q ≥ dlogθ(
d

e
)e+ h+ 1 then |s̃hq − sh| ≤ e. (4)

Remark that s0 (p, c, r) is the number of roots of p inD(c, r) and s1 (p, c, r) /m
is their center of gravity when m = # (D(c, r), p).

Next we extend Thm. 5 to the approximation of 0-th and 1-st power sums
by Cauchy sums in any disc, and define and analyze our basic algorithm for the
computation of these power sums.
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2.1 Approximation of the power sums

Let ∆ = D(c, r) and define p∆(z) as p(c+rz) so that α is a root of p∆ in D(0, 1)
if and only if c+ rα is a root of p in ∆. Following Newton’s identities, one has:

s0 (p, c, r) = s0 (p∆, 0, 1) , (5)

s1 (p, c, r) = cs0 (p∆, 0, 1) + rs1 (p∆, 0, 1) . (6)

Next since p′∆(z) = rp′(c+ rz), one has

s̃h
q (p, c, r) =

1

q

q−1∑
g=0

ζg(h+1) p
′
∆(ζg)

p∆(ζg)
= s̃h

q (p∆, 0, 1)

and can easily prove:

Corollary 6 (of thm. 5) Let ∆ = D(c, r) be at least θ-isolated. Let q > 1,
s∗0 = s̃0

q (p, c, r) and s∗1 = s̃1
q (p, c, r). Let e > 0. One has

|s∗0 − s0 (p, c, r) | ≤ d

θq − 1
. (7)

If q ≥ dlogθ(1 +
d

e
)e then |s∗0 − s0 (p, c, r) | ≤ e. (8)

Let ∆ contain m roots.

|mc+ rs∗1 − s1 (p, c, r) | ≤ rdθ

θq − 1
. (9)

If q ≥ dlogθ(1 +
rθd

e
)e then |mc+ rs∗1 − s1 (p, c, r) | ≤ e. (10)

2.2 Computation of Cauchy sums

Next we suppose that D(c, r) and q are such that p(c+ rζg) 6= 0 ∀0 ≤ g < q, so
that s̃h

q (p, c, r) is well defined. We approximate Cauchy sums with evaluation
oracles P, P ′ by choosing a sufficiently large L and computing the complex
interval:

s̃h
q (p, c, r, L) =

r

q

q−1∑
g=0

Oζg(h+1)(L)
P ′ (c+ rζg, L)

P (c+ rζg, L)
. (11)

s̃h
q (p, c, r, L) is well defined for L > max0≤g<q (− log2(p(c+ rζg))) and con-

tains s̃h
q (p, c, r). The following result specifies L for which we obtain that

r ( s̃h
q (p, c, r, L)) ≤ e for an e > 0. It is proved in A.2.

Lemma 7 For strictly positive integer d, reals r and e and θ > 1, let

L (d, r, e, θ) := max

(
(d+ 1) log

θ

er(θ − 1)
+ log(26rd), 1

)
∈ O

(
d

(
log

1

re
+ log

θ

θ − 1

))
.

If L ≥ L (d, r, e, θ) then r ( s̃h
q (p, c, r, L)) ≤ e.

In the sequel let L (d, r) stand for L (d, r, 1/4, 2).
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2.3 Approximating the power sums s0, s1, . . . , sh

Our Algo. 1 computes, for a given integer h, approximations to power sums
s0, s1, . . . , sh (of p∆ in D(0, 1)) up to an error e, based on eqs. (2) and (4).

Algorithm 1 ApproxShs(P,P ′, ∆, θ, h, e)
Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. ∆ = D(c, r),

θ ∈ R, θ > 1, h ∈ N, h ≥ 0, e ∈ R, e > 0.
Ensure: a flag success ∈ {true, false}, a vector [ s0, . . . , sh].
1: e′ ← e/4, q ← dlogθ(4d/e)e+ h+ 1

2: `← rd(θ−1)d

θd
, `′ ← dθ

r(θ−1)

3: L← 1
4: [ s0, . . . , sh]← [C, . . . ,C]
5: while ∃i ∈ {0, . . . , h} s.t. w ( si) ≥ e do
6: L← 2L
7: for g = 0, . . . , q − 1 do
8: Compute intervals P (c+ rζg, L) and P ′ (c+ rζg, L)

9: if ∃g ∈ {0, . . . , q − 1} s.t. |P (c+ rζg, L) | < ` or
∣∣∣P′(c+rζg,L)
P(c+rζg,L)

∣∣∣ > `′ then

10: return false, [ s0, . . . , sh]

11: if ∃g ∈ {0, . . . , q − 1} s.t. `
2
∈ |P (c+ rζg, L) | or 2`′ ∈

∣∣∣P′(c+rζg,L)
P(c+rζg,L)

∣∣∣ then
12: continue
13: for i = 0, . . . , h do
14: s∗i ← s̃i

q (p, c, r, L) //as in eq.(11)
15: si ← s∗i + [−e′, e′] + i[−e′, e′]
16: return true, [ s0, . . . , sh]

Algo. 1 satisfies the following proposition proved in A.3.

Proposition 8 Algo. 1 terminates for an L ≤ L (d, r, e/4, θ).
Let ApproxShs(P,P ′, ∆, θ, h, e) return (success, [ s0, . . . , sh]). Let ∆ = D(c, r)
and p∆(z) = p(c+ rz). If θ > 1, one has:

(a) If A(c, r/θ, rθ) contains no root of p, then success = true and for all i ∈
{0, . . . , h}, w ( si) < e and si contains si (p∆, 0, 1).

(b) If e ≤ 1 and D(c, rθ) contains no root of p then success = true and for all
i ∈ {0, . . . , h}, si contains the unique integer 0.

(c) If e ≤ 1 and A(c, r/θ, rθ) contains no root of p, s0 contains the unique
integer s0 (p, c, r) = # (∆, p).

(d) If success = false, then A(c, r/θ, rθ) and D(c, rθ) contain (at least) a root
of p.

(e) If success = true and ∃i ∈ {0, . . . , h}, s.t. si does not contain 0 then
A(c, r/θ, rθ) and D(c, rθ) contains (at least) a root of p.

3 Exclusion Test and Root Counters

In this section we define and analyse our base tools for disc exclusion and root
counting. We recall in subsec. 3.1 and subsec. 3.2 the RC and the ET presented



10 R. Imbach and V. Pan

in [6]. In subsec. 3.3, we propose a heuristic certification of root counting in
which the assumed isolation for a disc ∆ is heuristically verified by applying
sufficiently many ETs on the contour of ∆.

For d ≥ 1, r > 0 and θ > 1, define

C (d, r, e, θ) := log(L (d, r, e, θ)) logθ(d/e) (12)

and C (d, r) = C (d, r, 1/4, 2).

3.1 Root Counting with known isolation

For a disc ∆ which is at least θ-isolated for θ > 1, algo. 2 computes the number
m of roots in ∆ as the unique integer in the interval of width < 1 obtained by
approximating 0-th cauchy sum of p∆ in the unit disc within error < 1/2.

Algorithm 2 CauchyRC1(P,P ′, ∆, θ)
Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. ∆ = D(c, r),

θ ∈ R, θ > 1.
Ensure: An integer m ∈ {−1, 0, . . . , d}.
1: (success, [ s0])← ApproxShs(P,P ′,∆, θ, 0, 1)
2: if success = false or s0 contains no integer then
3: return −1

4: return the unique integer in s0

Proposition 9 Let ∆ = D(c, r). CauchyRC1(P,P ′, ∆, θ) requires evaluation
of P and P ′ at O(C (d, r, 1, θ)) points and O(C (d, r, 1, θ)) arithmetic operations,
all with precision less than L (d, r, 1/4, θ). Let m be the output of the latter call.
(a) If A (c, r/θ, rθ) contains no roots of p then m = # (∆, p).
(b) If m 6= 0 then p has a root in the disc θ∆.

Prop. 9 is a direct consequence of Prop. 8: in each execution of the while loop
in ApproxShs(P,P ′, ∆, θ, 0, 1), P and P ′ are evaluated at O(logθ d/e) points
and the while loop executes an O(log(L (d, r, 1, θ))) number of times.

3.2 Cauchy Exclusion Test

We follow [6] and increase the chances for obtaining a correct result for the
exclusion of a disc with unknown isolation by approximating the first three
power sums of p∆ in D(0, 1) in Algo. 3. One has:

Proposition 10 Let ∆ = D(c, r). CauchyET(P,P ′, ∆) requires evaluation of
P and P ′ at O(C (d, r)) points and O(C (d, r)) arithmetic operations, all with
precision less than L (d, r). Let m be the output of the latter call.
(a) If D(c, 4r/3) contains no roots of p then m = 0. Let B be a box so that 2B

contains no root and suppose ∆ = D(B); then m = 0.
(b) If m 6= 0 then p has a root in the disc (4/3)∆.
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Algorithm 3 CauchyET(P,P ′, ∆)

Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. ∆ = D(c, r).
Ensure: An integer m ∈ {−1, 0}.
1: (success, [ s0, s1, s2])← ApproxShs(P,P ′,∆, 4/3, 2, 1)
2: if success = false or 0 /∈ s0 or 0 /∈ s1 or 0 /∈ s2 then
3: return −1

4: return 0

3.3 Cauchy Root Counter

We begin with a lemma proved in A.4 and illustrated in Fig. 1.

Lemma 11 Let c ∈ C and ρ−, ρ+ ∈ R. Define µ = ρ++ρ−
2 , ρ = ρ+−ρ−

2 , w = µ
ρ ,

v = d2πwe and cj = c + µej
2πi
v for j = 0, . . . , v − 1. Then the re-union of the

discs D(cj , (5/4)ρ) covers the annulus A (c, ρ−, ρ+).

c1

cv−1

c0ρ−

c

ρ =
ρ+−ρ−

2

ρ+ µ =
ρ++ρ−

2

5
4
ρ

2π
v

Fig. 1. Illustration for Lem. 11. In red, the inner and outer circles of the annulus
covered by the v discs D(cj , (5/4)ρ).

For a disc D(c, r) and a given a > 1, we follow Lem. 11 and cover the annulus

A (c, r/a, ra) with v discs of radius r 5(a−1/a)4∗2 centered at v equally spaced points
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of the boundary circle of D(c, r a+1/a
2 ). Define

f−(a, θ) =
1

2
(a(1− 5

4
θ) +

1

a
(1 +

5

4
θ)) (13)

and

f+(a, θ) =
1

2
(a(1 +

5

4
θ) +

1

a
(1− 5

4
θ)), (14)

then the annulus A (c, rf−(a, θ), rf+(a, θ)) covers the θ-inflation of those v discs.

Algo. 4 counts the number of roots of p in a disc and satisfies:

Algorithm 4 CauchyRC2(P,P ′, ∆, a)

Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. ∆ = D(c, r).
a ∈ R, a > 1.

Ensure: An integer m ∈ {−1, 0, . . . , d}.
Verify that ∆ is at least a-isolated with CauchyET

1: ρ− ← 1
a
r, ρ+ = ar.

2: ρ← ρ+−ρ−
2

, µ← ρ++ρ−
2

, w ← µ
ρ

, v ← d2πwe, ζ ← exp( 2πi
v

)
3: for i = 0, . . . , v − 1 do
4: ci ← c+ µζi

5: if CauchyET(P,P ′, D(ci,
5
4
ρ)) returns −1 then

6: return −1 // A
(
c, rf−(a, 4

3
), rf+(a, 4

3
)
)
contains a root

∆ is at least a-isolated according to CauchyET
7: return CauchyRC1(P,P ′,∆, a)

Proposition 12 The call CauchyRC2(P,P ′, ∆, a) amounts to d2π a
2+1
a2−1e calls

to CauchyET and one call to CauchyRC1.

Let ∆ = D(c, r) and A be the annulus A
(
c, rf−(a, 43 ), rf+(a, 43 )

)
. Let m be

the output of the latter call.

(a) If A contains no root then m ≥ 0 and ∆ contains m roots.

(b) If m 6= 0, then A contains a root.

We state the following corollary.

Corollary 13 (of Prop. 12) Let θ = 4/3 and a = 11/10. Remark that

f−(a, θ) =
93

110
> 2−1/4 and f+(a, θ) =

64

55
.

The call CauchyRC2(P,P ′, ∆, a) amounts to d2π a
2+1
a2−1e = 67 calls to CauchyET,

for discs of radius 21
176r ∈ O(r) and one call to CauchyRC1 for ∆. This re-

quires evaluation of P and P ′ at O(C (d, r)) points, and O(C (d, r)) arithmetic
operations, all with precision less than L (d, r).
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4 Root radii algorithms

4.1 Approximation of the largest root radius

For a monic p of degree d and bit-size τ = log ‖p‖1, we describe a naive approach
to the approximation of the largest modulus rd of a root of p. Recall Cauchy’s
bound for such a polynomial: rd ≤ 1 + 2τ . The procedure below finds an r so
that rd < r and either r = 1 or r/2 < rd when p is given by the evaluation
oracles P,P ′.
1: r ← 1, m← −1
2: while m ≤ d do
3: m← CauchyRC2(P,P ′, D(0, r), 4/3)
4: if m < d then
5: r ← 2r

As a consequence of Prop. 12 each execution of the while loop terminates and
the procedure terminates after no more than O(τ) execution of the while loop.
It requires evaluation of P and P ′ at O(τC (d, r)) points and O(τC (d, r)) arith-
metic operations all with precision less than L (d, r). Its correctness is implied by
correctness of the results of CauchyRC2 which is in turn implied by correctness
of the results of CauchyET.

4.2 Approximation of the (d + 1 − m)-th root radius

For a c ∈ C and an integer m ≥ 1, we call (d + 1 − m)-th root radius from c
and write it rm(c, p) the smallest radius of a disc centered in c and containing
exactly m roots of p.

Algo. 5 approximates rm(c, p) within the relative error ν. It is based on the
RC CauchyRC2 and reduces the width of an initial interval [l, u] containing
rm(c, p) with a double exponential sieve.

Its correctness for given input parameters is implied by correctness of the
results of CauchyRC2 which is in turn implied by correctness of the results of
CauchyET. Algo. 5 satisfies the proposition below, proved in A.5.

Proposition 14 The call RootRadius(P,P ′, D(c, r),m, ν, ε) terminates after
O(log log(r/ε)) iterations of the while loop. Let ∆ = D(c, r) and r′ be the output
of the latter call.

(a) If ∆ contains at least a root of p then so does D(c, 2r′).
(b) If ∆ contains m roots of p and CauchyRC2 returns a correct result each

time it is called in Algo. 5, then either r′ = ε and rm(c, p) ≤ ε, or rm(c, p) ≤
r′ ≤ νrm(c, p).

5 A compression algorithm

We begin with a geometric lemma illustrated in Fig. 2.
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Algorithm 5 RootRadius(P,P ′, ∆,m, ν, ε)
Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. A disc

∆ = D(c, r), an integer m ≥ 1, ν ∈ R, ν > 1, and ε ∈ R such that 0 < ε ≤ r/2
Ensure: r′ > 0
1: choose a s.t. ν−

1
4 < f−(a, 4

3
) < f+(a, 4

3
) < 2 // when ν = 2 take a = 11/10

2: l← 0, u← r
Find a lower bound to rd+1−m(c, p)

3: m′ ← CauchyRC2(P,P ′, D(c, ε), a)
4: if m′ = m then
5: return ε
6: else
7: l← f−(a, 4

3
)ε

Apply double exponential sieve to get l ≤ rd+1−m ≤ u ≤ νl
8: while l < u/ν do

9: t← (lu)
1
2

10: m′ ← CauchyRC2(P,P ′, D(c, t), a)
11: if m′ = m then
12: u← t
13: else
14: l← f−(a, 4

3
)t

15: return u

Lemma 15 Let c ∈ C and r, ε, θ ∈ R satisfying 0 < ε ≤ r/2 and θ ≥ 2. Let
c′ ∈ D(c, r+εθ ) and u = max

(
|c− c′|+ r

θ , r
)
.Then

D
(
c,
r

θ

)
⊆ D (c′, u) ⊆ D

(
c,

7

4
r

)
⊂ D(c, rθ).

The following lemma is a direct consequence of Lem. 15 because s1 (p, c, r) /m
is the center of gravity of the roots of p in D(c, r).

Lemma 16 Let D(c, r) be at least θ ≥ 2-isolated and contain m roots. Let s∗1
approximate s1(p, c, r) such that |s∗1 − s1(p, c, r)| ≤ mε

θ and ε ≤ r
2 . Then for

c′ =
s∗1
m and u = max

(
|c− c′|+ r

θ , r
)
, the disc D(c′, u) contains the same roots

of p as D(c, r).

Algo. 6 solves the ε-CRD problem for γ = 1/8. It satisfies the proposition
below proved in A.6.

Proposition 17 The call Compression(P,P ′, ∆, ε) where ∆ = D(c, r) re-
quires evaluation of P and P ′ at O

(
C (d, ε) loglog rε

)
points and the same number

of arithmetic operations, all with precision less than L (d, ε/4). Let m,D(c′, r′)
be the output of the latter call.

(a) If ∆ is at least 2-isolated and Z (∆, p) 6= ∅, and if the call to RootRadius
returns a correct result, then D(c′, r′) is equivalent to ∆, contains m roots
of p and satisfies: either r′ ≤ ε, or D(c′, r′) is at least 1/8-rigid.

(b) If m′ > 0 then D(c′, 2r′) contains at least a root of p.
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rθ

r

r/θ
c

c′
u

r+ε
θ

Fig. 2. Illustration for Lem. 15 with θ = 2 and ε = r/4. c′ is on the boundary circle of
D(c, (r + ε)/2), and u := |c− c′|+ r/θ.

Algorithm 6 Compression(P,P ′, ∆, ε)
Require: P, P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. A disc

∆ = D(c, r), and a strictly positive ε ∈ R.
Ensure: An integer m and a disc D(c′, r′).
1: θ ← 2, ε′ ← ε/2θ
2: (success, [ s0, s1])← ApproxShs(P,P ′,∆, θ, 1,min(ε′, 1))
3: if not success or s0 does not contain an integer > 0 then
4: return −1, ∅
5: m← the unique integer in s0
6: if r/2 < ε then
7: return m, D(c, r/2)

8: c′ ← c ( s1) /m // |c′ − s1(p, c, r)/m| < ε/4θ
9: if m = 1 then

10: m← CauchyRC1(P,P ′, D(c′, 2ε′), 2)
11: return m, D(c′, 2ε′)

12: u← max
(
|c− c′|+ r

θ
, r
)

13: r′ ← RootRadius(P,P ′, D(c′, u), 4
3
,m, θ, ε/2)

14: return m, D(c′, r′)

6 Two Cauchy Root Finders

In order to demonstrate the efficiency of the algorithms presented in this paper,
we describe here two experimental subdivision algorithms, named CauchyQIR

and CauchyComp, solving the ε-CRC problem for oracle polynomials based on
our Cauchy ET and RCs. Both algorithms can fail –in the case where CauchyET
excludes a box of the subdivision tree containing a root – but account for such a
failure. Both algorithm adapt the subdivision process described in [2]. CauchyQIR
uses QIR Abbott iterations to ensure fast convergence towards clusters of roots.
CauchyComp uses ε-compression presented in Sec. 5. In both solvers, the main
subdivision loop is followed by a post-processing step to check that the output
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is a solution of the ε-CRC problem. The main subdivision loop does not involve
coefficients of input polynomials but use evaluation oracles instead. However, we
use coefficients obtained by evaluation-interpolation in the post-processing step
in the case where some output discs contain more than one root. We observe no
failure of our algorithms in all our experiments covered in Sec. 7.

6.1 Subdivision loop

Let B0 be a box containing all the roots of p. Such a box can be obtained by
applying the process described in Subsec. 4.1.

Sub-boxes, component and quadrisection For a box B(a + ib, w), let
Children1(B) be the set of the four boxes {B((a±w/4)+ i(b±w/4), w/2)}, and

Childrenn(B) :=
⋃

B′∈Childrenn−1(B)

Children1(B′).

A box B is a sub-box of B0 if B = B0 or if there exist an n ≥ 1 s.t. B ∈
Childrenn(B0). A component C is a set of connected sub-boxes of B0 of equal
widths. The component box B(C) of a component C is the smallest (square) box
subject to C ⊆ B(C) ⊆ B0 minimizing both Re(c (B(C))) and Im(c (B(C))).
We write D(C) for D(B(C)). If S is a set of components (resp. discs) and δ > 0,
write δS for the set {δD(A) (resp. A) | A ∈ S}.

Definition 18 Let Q be a set of components or discs. We say that a component
C (resp. a disk ∆) is γ-separated (or γ-sep.) from Q when γD(C) (resp. γ∆)
has empty intersection with all elements in Q.

Remark 19 Let Q be a set of components and C /∈ Q a component. If Z (C, p) =
Z ({C} ∪Q, p) and C is 4-separated from Q then 2D(C) is at least 2-isolated.

Subdivision process We describe in Algo. 7 a subdivision algorithm solv-
ing the ε-CRC problem. The components in the working queue Q are sorted
by decreasing radii of their containing discs. It is parameterized by the flag
compression indicating whether compression or QIR Abbott iterations have to
be used. In QIR Abbott iterations of Algo. 7 in [3], we replace the Graeffe Pellet
test for counting roots in a disc ∆ by CauchyRC2(P,P ′, ∆, 4/3). If a QIR Ab-
bott iteration in step 12 fails for input ∆,m, it returns ∆. Steps 20-21 prevent
C to artificially inflate when a compression or a QIR Abbott iteration step does
not decrease D(C). For a component C, Quadrisect(C) is the set of components
obtained by grouping the set of boxes⋃

B∈C
{B′ ∈ Children1(B) | CauchyET(P,P ′, D(B′)) = −1}

into components.
The while loop in steps 4-22 terminates because all our algorithms termi-

nate, and as a consequence of (a) in Prop. 9: any component will eventually be
decreased until the radius of its containing disc reaches ε/2.
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Algorithm 7 CauchyRootFinder(P,P ′, ε, compression)

Require: P and P ′ evaluation oracles for p and p′, s.t. p is monic of degree d. A
(strictly) positive ε ∈ R, a flag compression ∈ {true, false}.

Ensure: A flag success and a list R = {(∆1,m1), . . . , (∆`,m`)}
1: B0 ← box s.t. # (B, p) = d as described in Subsec. 4.1
2: Q← {B0} // Q is a queue of components
3: R← {} // R is the empty list of results
4: while Q is not empty do
5: C ← pop(Q)
6: if C is 4-separated from Q then
7: if compression then
8: m,D(c, r)← Compression(P,P ′, 2D(C), ε/2)
9: else

10: m← CauchyRC1(P,P ′, 2D(C), 2)
11: if m > 0 then
12: D(c, r)← QIR Abbott iteration for D(C),m

13: if m ≤ 0 then
14: return fail, ∅
15: if r ≤ ε/2 and D(c, 2r) is 3-sep. from 2Q and is 1-sep. from 6Q then
16: push(R, (D(c, 2r),m))
17: continue
18: else
19: C′ ← component containing D(c, r)
20: if C′ ⊂ C then
21: C ← C′

22: push(Q,Quadrisect(C))

23: success← verify R as described in 6.2
24: return success,R

6.2 Output verification

After the subdivision process described in steps 1-22 of Algo. 7, R is a set of
pairs of the form {(∆1,m1), . . . ,
(∆`,m`)} satisfying, for any 1 ≤ j ≤ `:

– ∆j is a disc of radii ≤ ε, mj is an integer ≥ 1,
– ∆j contains at least a root of p,
– for any 1 ≤ j′ ≤ ` s.t. j′ 6= j, 3∆j ∩∆j′ = ∅.

The second property follows from (b) of Prop. 10 and (b) of Prop. 17 when
compression is used. Otherwise, remark that a disk ∆ in the output of QIR
Abbott iteration in step 12 of Algo. 7 verifies CauchyRC2(P,P ′, ∆, 4/3) > 0
and apply (b) of Prop. 12. The third property follows from the if statement in
step 15 of Algo. 7. Decompose R as the disjoint union R1 ∪ R>1 where R1 is
the subset of pairs (∆i,mi) of R where mi = 1 and R>1 is the subset of pairs
(∆i,mi) of R where mi > 1, and make the following remark:
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Remark 20 If m1 + . . . + m` = d and for any (∆i,mi) ∈ R>1, ∆i contains
exactly mi roots of p, then R is a correct output for the ε-CRC problem with
input p of degree d and ε.

According to Rem. 20, checking that R is a correct output for the ε-CRC
problem for fixed input p of degree d and ε amount to check that the mi’s add
up to d and that for any ∆i ∈ R>1, ∆i contains exactly mi roots of p. For this
last task, we use evaluation-interpolation to approximate the coefficients of p
and then apply the Graeffe-Pellet test of [2].

7 Experiments

We implemented Algo. 7 in the C library Ccluster. Call CauchyComp (resp.
CauchyQIR) the implementation of Algo. 7 with compression = true (resp.
false). In the experiments we conducted so far, CauchyComp and CauchyQIR

never failed.

Test suite We experimented CauchyComp, CauchyQIR and MPsolve on Mandel-
brot and Mignotte polynomials as defined in Sec. 1 as well as Runnel and random
sparse polynomials. Let r = 2. The Runnel polynomial is defined inductively as

Run0(z) = 1, Run1(z) = z, Runk+1(z) = Runk(z)r + zRunk−1(z)r
2

It has real coefficients, a multiple root (zero), and can be evaluated fast. We
generate random sparse polynomials of degree d, bitsize τ and ` ≥ 2 non-zero
terms as follows, where pi stands for the coefficient of the monomial of degree
i in p: p0 and pd are randomly chosen in [−2τ−1, 2τ−1], then ` − 2 integers
i1, . . . , i`−1 are randomly chosen in [1, d − 1] and pi1 , . . . , pi`−1

are randomly
chosen in [−2τ−1, 2τ−1]. The other coefficients are set to 0.

Results We report in tab. 1 results of those experiments for Mandelbrot and
Mignotte polynomials with increasing degrees and increasing values of log10(ε−1).
We account for the running time t for the three above-mentionned solvers. For
CauchyQIR (resp. CauchyComp), we also give the number n of exclusion tests
in the subdivision process, and the time tN (resp. tC) spent in QIR Abbott
iterations (resp. compression).

Our compression algorithm allows smaller running times for low values of
log10(ε−1) because it compresses a component C on the cluster it contains as of
2D(C) is 2-isolated, whereas QIR Abbott iterations require the radius ∆ to be
near the radius of convergence of the cluster for Schröder’s iterations.

We report in tab. 2 the results of runs of CauchyComp and MPsolve for poly-
nomials of our test suite of increasing degree, for log10(ε−1) = 16. For random
sparse polynomials, we report averages over 10 examples. The column tV ac-
counts for the time spent in the verification of the output of CauchyComp (see
6.2); it is 0 when all the pairs (∆j ,mj) in the output verify mj = 1. It is > 0
when there is at least a pair with mj > 1.

The maximum precision L required in all our tests was 106, which makes us
believe that our analysis in Prop. 8 is very pessimistic. Our experimental solver
CauchyComp is faster than MPsolve for polynomials that can be evaluated fast.
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CauchyComp MPsolve

d t n tC tV t

Mandelbrot polynomials

255 1.31 5007 0.21 0.00 0.58
511 3.25 10679 0.64 0.00 4.13
1023 6.47 18774 0.84 0.00 31.7
2047 16.2 39358 2.35 0.00 267.

Runnels polynomials

341 2.55 4967 0.38 0.00 0.45
682 5.66 9392 0.87 0.02 3.32
1365 12.6 18030 2.00 0.05 26.2
2730 29.7 35612 4.26 0.12 236.

Mignotte polynomials, a = 16

256 0.29 4131 0.15 0.00 0.21
512 0.58 8042 0.27 0.00 0.70
1024 1.24 16105 0.55 0.02 2.99
2048 2.69 32147 1.05 0.04 11.6

10 randomSparse polynomials with 3 terms and bitsize 256

767 .902 10791. .415 0.0 .602
1024 1.35 15526. .560 0.0 1.36
1535 2.04 21244. .861 0.0 2.35
2048 2.98 30642. 1.16 0.0 4.10

10 randomSparse polynomials with 5 terms and bitsize 256

2048 4.77 29583. 1.60 0.0 4.09
3071 6.92 43003. 2.45 0.0 10.0
4096 9.82 56659. 3.38 0.0 24.0
6143 17.7 86857. 5.40 0.0 44.5

10 randomSparse polynomials with 10 terms and bitsize 256

3071 11.9 44714. 4.09 0.0 10.3
4096 17.5 58138. 5.82 0.0 17.6
6143 29.1 85451. 8.93 0.0 51.9
8192 40.6 116289. 12.4 0.0 66.5

Table 2. Runs of CauchyComp and MPsolve on polynomials of our test suite for
log10(ε−1) = 16.

8 Conclusion

We presented, analyzed and verified practical efficiency of two basic subroutines
for solving the complex root clustering problem for black box polynomials. One
is a root counter, the other one is a compression algorithm. Both algorithms are
well-known tools used in subdivision procedures for root finding.

We propose our compression algorithm not as a replacement of QIR Abbott
iterations, but rather as a complementary tool: in future work, we plan to use
compression to obtain a disc where Schröder’s/QIR Abbott iterations would
converge fast.

The subroutines presented in this paper laid down the path toward a Cauchy
Root Finder, that is, an algorithm solving the ε-CRC problem for black box
polynomials.
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A Proofs

A.1 Proof of Lem. 3

Let ∆ = D(c, r) contain d∆ roots. Suppose that the roots α1, . . . , αd of p are
indexed such that α1, . . . , αd∆ are in ∆ and αd∆+1, . . . , αd are outside ∆. Since
∆ has isolation θ, it follows that

|c+ rzg − αi| ≥ r −
r

θ
=
r(θ − 1)

θ
when i ≤ d∆, and (15)

≥ θr − r = r(θ − 1) when i ≥ d∆ + 1 (16)

Write

p(c+ rzg) = lcf (p)

d∆∏
i=1

(c+ rzg − αi)
d∏

i=d∆+1

(c+ rzg − αi)

and deduce the first inequality of Lem. 3. Then write

p′(c+ rzg)

p(c+ rzg)
=

d∆∑
i=1

1

c+ rzg − αi
+

d∑
i=d∆+1

1

c+ rzg − αi

and deduce the second inequality of Lem. 3. ut

A.2 Proof of Lem. 7

Lem. 7 is a direct consequence of the following Lemma:

Lemma 21 Let D(c, r) be a complex disc, θ > 1, e > 0 and

a = max

(
θ

r(θ − 1)
, 1

)
and ω = min

( e

26rdad+1
, 1
)
.

Let 0 ≤ h < q be integers and ζ be a primitive q-th root of unity. For 0 ≤ g ≤
q − 1, write ψg = c+ rζg and suppose that

|p(ψg)| ≥ 1

2

(
r(θ − 1)

θ

)d
and

∣∣∣∣p′(ψg)p(ψg)

∣∣∣∣ ≤ 2

(
dθ

r(θ − 1)

)
.

For 0 ≤ g ≤ q − 1 and 0 ≤ h < q write:

ζg(h+1) = ˜ζg(h+1) + δζg(h+1) ,

p(ψg) = p̃(ψg) + δp(ψg) and p′(ψg) = p̃′(ψg) + δp′(ψg).

Let

s̃∗h =
r

q

q−1∑
g=0

˜ζg(h+1)
p̃′(ψg)

p̃(ψg)
and s∗h = s̃h

q (p, c, r) .

If |δζg(h+1) | ≤ ω, |δp(ψg)| ≤ ω and |δp′(ψg)| ≤ ω for all 0 ≤ g ≤ q − 1 and
0 ≤ h < q then

|s∗h − s̃∗h| ≤ e.
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Proof of Lem 21: We depart from the inequality:∣∣∣∣xy − x+ δx
y + δy

∣∣∣∣ ≤ |xδy|+ |yδx||y|(|y| − |δy|)
≤
(∣∣∣∣xy

∣∣∣∣+ 1

)
ω

|y| − ω

≤ 2

(∣∣∣∣xy
∣∣∣∣+ 1

)
ω

|y|

valid for |δx| ≤ ω, and |δy| ≤ ω ≤ 1
2 |y|. Substitute x = p′(ψg) and y = p(ψg) to

obtain: ∣∣∣∣∣p′(ψg)p(ψg)
− p̃′(ψg)

p̃(ψg)

∣∣∣∣∣ ≤ 4(2da+ 1)adω

≤ 12dad+1ω since a ≥ 1.

Apply inequality

|xy − (x+ δx)(y + δy)| ≤ |xδy|+ |yδx|+ |δxδy|

to obtain∣∣∣∣∣ζg(h+1) p
′(ψg)

p(ψg)
− ˜ζg(h+1)

p̃′(ψg)

p̃(ψg)

∣∣∣∣∣ ≤ 12dad+1ω +

∣∣∣∣p′(ψg)p(ψg)

∣∣∣∣ω + 12dad+1ω2

≤ 12dad+1ω + 2daω + 12dad+1ω2

≤ 26dad+1ω since ω ≤ 1.

and apply inequality

|x+ y − ((x+ δx) + (y + δy))| ≤ |δx|+ |δy|

to get

|s∗h − s̃∗h| ≤ r26dad+1ω = e.

ut

A.3 Proof of Prop. 8

Suppose first that there is a g so that |p(c+rζg)| < `. The precision L is increased
by the while loop until either |P (c+ rζg, L) | < ` or `

2 ∈ |P (c+ rζg, L) |, which

holds for an L ∈ O (log 1/`) = O
(
d(log θ

θ−1 + log 1
r )
)

.

Similarly, suppose that there is a g so that
∣∣∣p′(c+rζg)p(c+rζg)

∣∣∣ > `′. The precision L is

increased by the while loop until either
∣∣∣P′(c+rζg,L)P(c+rζg,L)

∣∣∣ > `′ or 2`′ ∈
∣∣∣P′(c+rζg,L)P(c+rζg,L)

∣∣∣,
which holds for an L ∈ O (log 1/`′) = O

(
log r

d + log θ
θ−1

)
.
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Thus Algo. 1 either terminates with success = false for an

L ∈ O
(

max

(
d(log

θ

θ − 1
+ log

1

r
), log

r

d
+ log

θ

θ − 1

))
or enters the for loop with |P (c+ rζg, L) | > `

2 and
∣∣∣P′(c+rζg,L)P(c+rζg,L)

∣∣∣ < 2`′ for all g.

Then by Lem. 7, Algo. 1 terminates for L ∈ O
(
d
(

log 1
re + log θ

θ−1

))
.

(a) is a consequence of Lem. 3 and eq. (4) of Thm. 5.
(b) If D(c, rθ) contains no root of p then (a) holds and for all i ∈ {0, . . . , h},

si (p∆, 0, 1) = 0.
(c) IfD(c, rθ) contains no root of p then (a) holds and s0 (p, c, r) = s0 (p∆, 0, 1) =

# (∆, p).

(d) success = false iff for a g it holds that |P (c+ rζg, L) | < ` or

∣∣∣∣P′
(
c+rζg

′
,L

)
P(c+rζg′ ,L)

∣∣∣∣ >
`′ and so |p(c + rζg)| < ` or

∣∣∣∣p(c+rζg′ )p(c+rζg′ )

∣∣∣∣ > `′ and A(c, r/θ, rθ) contains at

least a root of p.
(e) Suppose that A(c, r/θ, rθ) contains no root of p (otherwise the proposition

is proved). Then si (p∆, 0, 1) ∈ si and si (p∆, 0, 1) 6= 0. Now if ∆ contains
no root of p then D(0, 1) contains no root of p∆ and si (p∆, 0, 1) = 0, which
is a contradiction. ut

A.4 Proof of Lemma 11

See Fig. 1 for an illustration. Let cj,j+1 be the middle of cj , cj+1 and zj , z
′
j be

the intersections of the two circles C(cj , aρ), C(cj+1, aρ) with a > 1, such that
‖c− zj‖ < ‖c− z′j‖. Let x be the distance ‖cj,j+1 − cj+1‖; one has

x = ‖cj,j+1 − cj+1‖ = µ sin(π/v) ≤ ρ/2. (17)

Let y be the distance ‖cj,j+1 − zj‖; one has

y =
√

(aρ)2 − (µ sin(π/v))2 ≥ ρ
√
a2 − 1/4. (18)

where the inequality follows from Eq. (17). Finally,

‖cj,j+1 − c‖ = µ cos(π/v) ≥ µ cos(1/2w). (19)

One has to show:

µ cos(π/v)− y ≤ µ− ρ (20)

µ cos(π/v) + y ≥ µ+ ρ (21)

Eq. (20) is straightforward when y ≥ ρ, which is the case when a = 5/4. Ac-
cording to inequalities (18) and (19), Eq. (21) holds if

µ cos(1/2w) + ρ
√
a2 − 1/4 ≥ µ+ ρ
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which rewrites
a ≥

√
(w(1− cos(1/(2w))) + 1)2 + 1/4.

The right-handside of the latter inequation is decreasing with w when w ≥ 1,
and is less that 5/4 for any w ≥ 1. ut

A.5 Proof of Prop. 14

Each call to CauchyRC2 in Algo. 5 terminates as a consequence of Prop. 8.
Suppose that Algo. 5 enters the while loop with

l <
u

ν
i.e.

u

l
> ν.

From the choice of a in step 1, f−(a, θ) > ν−1/4 and one has

1

f−(a, θ)
< ν1/4 <

(u
l

)1/4
.

Let l′, u′ be the new values for l, u after one iteration of the while loop; in the
worst case (step 14) one has

u′

l′
=

u

f−(a, θ)(lu)
1
2

=
(u
l

)1/2 1

f−(a, θ)
<
(u
l

)1/2 (u
l

)1/4
<
(u
l

)3/4
.

As a consequence the while loop decreases the value log2

(
u
l

)
by at least 4

3 every
each recursive application as long as

u

l
> ν ⇔ log2 u− log2 l − log2 ν > 0

and so it stops in at most

dlog 4
3

(log2 u− log2 l − log2 ν)e ∈ O(log log(r/ε))

steps.
Next, suppose that RootRadius(P,P ′, ∆,m, ν, ε) return r′.
To prove (b), suppose that ∆ contains m roots of p and CauchyRC2 returns

a correct result each time it is called in Algo. 5.
Suppose first that the call CauchyRC2 in step 3 returns m′ = m: then

r′ = ε and D(c, r′) contains m roots thus rm(c, p) ≤ ε.
Suppose now that the call CauchyRC2 in step 3 returns m′ 6= m. If m 6= 0,

from Prop. 12, then A
(
c, εf−(a, 43 ), εf+(a, 43 )

)
contains a root. Since εf+(a, 43 ) <

2ε ≤ r (from the choice of a in step 1) and ∆ = D(c, r) contains m roots,
rm(c, p) >= f−(a, 43 )ε.

Finally, if the call CauchyRC2 in step 3 returnsm′ = 0 thenD(c, ε) contains
no roots and rm(c, p) >= ε > f−(a, 43 )ε.

Thus if Algo. 5 enters the while loop, it does so for l and u satisfying l <=
rm(c, p) <= u. Apply the same reasoning to show that this property is preserved
by the while loop, and when it terminates, rm(c, p) ≤ r′ ≤ νrm(c, p).
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Let us finally prove (a). Suppose that ∆ contains at least a root of p, and let
r1(c, p) be the smallest distance of a root of p to c.

Any call CauchyRC2(P,P ′, D(c, t), a) in Algo. 5 with t ≤ (1/a)r1(c, p) will
necessarily return 0 as a consequence of Prop. 12, and r′ will necessarily be
greater than (1/a)r1(c, p). Remark that the parameter a chosen in step 1 is less
than 2 and complete the proof. ut

A.6 Proof of Prop. 17

Let θ = 2. To prove (a), suppose that ∆ is at least θ-isolated. Since min(ε′, 1) ≤ 1
one can apply (c) of Prop. 8 and after step 2 of Algo. 6, success is true and s0
contains the unique integer m equal to the number of root of p in ∆. As a
consequence of (a) of Prop. 8, s1 satisfies |c ( s1)−s1(p, c, r)| < ε′/2 and since
m ≥ 1, |c ( s1)− s1(p, c, r)| < mε/4θ.

If Algo. 6 enters step 6, D(c, r/2) contains m roots and has radius less that
ε.

Otherwise, c′ defined in step 8 satisfies |c′ − s1(p, c, r)/m| < ε/4θ. When
m = 1, the unique root of p in ∆ is s1(p, c, r)/m, thus D(c′, ε′) contains this
root.

Suppose now m ≥ 2; from Lem. 16, the disc D(c′, u) where

u = max
(
|c− c′|+ r

θ
, r
)

contains the same m roots of p as ∆. Also, ε/θ ≤ u/2 as required in Algo. 5 for
RootRadius. In step 13, RootRadius(P,P ′, D(c′, u), 43 ,m, θ, ε/θ) returns an
r′ with either r′ = ε/θ and rm(c′, p) ≤ ε/θ, or rm(c′, p) ≤ r′ ≤ θrm(c′, p).

If r′ = ε/θ, then D(c′, r′) contains the same m roots of p as ∆.
Otherwise, r′ ≥ ε/θ, we proove that D(c′, r′) is at least 1/8-rigid.
m ≥ 2, and s1(p, c, r)/m is the center of gravity of the m roots of p in ∆.

The distance from s1(p, c, r)/m to any root of p in ∆ is maximized when one
root, say α, has multiplicity m− 1, and the other one, say α′, has multiplicity 1.

In this case, | s1(p,c,r)m − α′| ≤ | s1(p,c,r)m − α| = m−1
m |α − α

′|. Generally speaking,
one has

rm

(
s1(p, c, r)

m
, p

)
≤ m− 1

m
max

α,α′∈Z(∆,p)
|α− α′|.

Since
∣∣∣c′ − s1(p,c,r)

m

∣∣∣ ≤ ε
4θ , one has

rm (c′, p) ≤ m− 1

m
max

α,α′∈Z(∆,p)
|α− α′|+ ε

4θ
,

and since r′ ≤ θrm (c′, p), one has

r′ ≤ θm− 1

m
max

α,α′∈Z(∆,p)
|α− α′|+ ε

4
.
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Since r′ > ε/2, r′ − ε/4 ≥ r′/2 and

max
α,α′∈Z(∆,p)

|α− α′|
2r′

≥ m

(m− 1)× θ × 4
≥ 1

8
.

We now prove (b): suppose Algo. 6 enters step 7: if m > 0, D(c, r) contains
at least a root as a consequence of (e) of Prop. 8. Suppose Algo. 6 enters step
11: D(c, r) contains at least a root as a consequence of (e) of Prop. 8. Otherwise,
(b) is a consequence of (a) of Prop. 14.

We finally prove the computational cost. When r/2 ≥ ε, the call

ApproxShs(P,P ′, ∆, 2, 1,min(ε/4, 1))

in step 2 requires evaluation of P and P ′ at O (C (d, r, ε, 2)) points and the same
number of arithmetic operations, all with precision less than L (d, r, ε, 2). In step
12, u ∈ O(r) (see Lem. 15), thus the call

RootRadius(P,P ′, D(c′, u),
4

3
,m, θ, ε/2)

amounts to
O
(

loglog
r

ε

)
calls CauchyRC2(P,P ′, D(c, t), a) with a = 11/10 and t ≥ ε/2. From Cor. 13,
this amounts to evaluation of P and P ′ at

O
(
C (d, ε) loglog

r

ε

)
points and the same number of arithmetic operations, all with precision less than
L (d, ε). ut
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