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Abstract Object detection neural network models need to perform reliably in highly dy-
namic and safety-critical environments like automated driving or robotics. Therefore, it is
paramount to verify the robustness of the detection under unexpected hardware faults like
soft errors that can impact a system’s perception module. Standard metrics based on average
precision produce model vulnerability estimates at the object level rather than at an image
level. As we show in this paper, this does not provide an intuitive or representative indicator
of the safety-related impact of silent data corruption caused by bit flips in the underlying
memory but can lead to an over- or underestimation of typical fault-induced hazards. With
an eye towards safety-related real-time applications, we propose a new metric IVMOD
(Image-wise Vulnerability Metric for Object Detection) to quantify vulnerability based on
an incorrect image-wise object detection due to false positive (FPs) or false negative (FNs)
objects, combined with a severity analysis. The evaluation of several representative object
detection models shows that even a single bit flip can lead to a severe silent data corruption
event with potentially critical safety implications, with e.g., up to � 100 FPs generated,
or up to ∼ 90% of true positives (TPs) are lost in an image. Furthermore, with a single
stuck-at-1 fault, an entire sequence of images can be affected, causing temporally persistent
ghost detections that can be mistaken for actual objects (covering up to ∼ 83% of the im-
age). Furthermore, actual objects in the scene are continuously missed (up to ∼ 64% of TPs
are lost). Our work establishes a detailed understanding of the safety-related vulnerability
of such critical workloads against hardware faults.

1 Introduction

Research communities seek to make the deployment of general artificial intelligence (AI) and deep
neural networks (DNNs) used in everyday life as dependable as possible. Significant emphasis is
placed on handling corrupted input (e.g. due to visual artifacts or to attacks) provided to the
model. However, less effort has been dedicated to studying corruptions of the internal state of
the model itself, most importantly caused by faults in the underlying hardware. Such faults can
occur naturally, such as memory corruption induced by external (e.g., cosmic neutron) radiation or
electric leaking in the circuitry itself, typically manifested as bit flips or stuck-at-0/1s in the memory
elements [1, 16], which may alter the DNN model parameters (weight faults) or the intermediate
states (neuron faults). Platform faults can also impact the input while it is held in memory, yet
this work focuses on the computational part of the DNN as our goal is to estimate the vulnerability
of the model. The impact of these faults is often unpredictable in systems with large complexity.
Alterations can be of transient or permanent nature: Transient faults have a short life span of the
order of a few clock cycles and are therefore harder to detect by the system. On the contrary,
permanent faults may silently corrupt the system output for a longer period. Memory protection
techniques like error correcting code (ECC) can mitigate the risk of hardware faults [20]; however,
they are typically applied only to selected elements to avoid significant cost overheads. Given the
rise in technology scaling with smaller node sizes and larger memory areas, future platforms are
expected to become even more vulnerable to hardware faults [20].

Object detection DNNs are among the most common examples of highly safety-critical DNN ap-
plications as they are in autonomous vehicles or in medical image analysis. Typically, autonomous
systems process events based on perception techniques. Hence, it is critically important that any
potential hazards does not impact the system-level evaluation of events. While the chances for a
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(a) Inference from Yolov3 model and Kitti dataset

(b) Inference from Faster-RCNN model and Kitti dataset

Figure 1: Examples of the impact of a single neuron bit flip (at bit position b and layer index l, see image
insets). TPs are marked by green, FPs by red and FNs by blue rectangles, comparing the fault-free (top)
and the faulty (bottom) predictions. In example (a) multiple FPs are generated right in front of the ego
vehicle, while in (b) all previous detections are erased due to the fault.

hardware fault to occur (for example, the chance of a neutron radiation event hitting a memory el-
ement) can be estimated statistically, it remains unclear how to quantify the safety-related impact
of the failure of a DNN applied for the purpose of object detection. In contrast to simpler classi-
fication problems, the model output here typically consists of a multitude of bounding boxes and
classes per image, of which a subset can be altered in the presence of a fault while others remain
intact, see Fig. 1. We find that commonly used average precision (AP) [19] metrics inappropriately
rely on the count of false objects irrespective of their interrelations (grouping in the same image
or distributed across multiple frames). In real-time applications of DNNs, it further matters if the
corrupted output is volatile or temporally stable across multiple input frames. The user is typically
behind a tracking module that can regularize instantaneous alterations. We, therefore, see the need
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to establish a safety-related assessment of the vulnerability of object detection workloads under
soft errors. Depending on the specifications from safety assessment, we adopt a generalized notion
of a safety hazard as a perturbation that causes a potentially unsafe decision by the end-user of
the object detection module.

Therefore, we introduce two variants of the metric IVMOD (Image-wise Vulnerability Metric
for Object Detection), namely IVMODSDC in case of an image-wise silent data corruption (SDC),
and IVMODDUE in case of detectable uncorrectable errors (DUE)s.

In this paper, we discuss the characteristics of the AP-based metrics in detail when used to
quantify a model’s vulnerability. For example, AP50 is found to be hypersensitive to rare single
corruption events compared to an evaluation at the image level. Our work supports maintaining
the relationship of the system-level hazard evaluation to the impact of any hardware faults. We
find that a hardware fault - if it hits the crucial bits of either neuron or weight - can silently lead to
excessive amounts of additional false positives (FPs) and increase the rate of false negatives (FNs)
misses. We further study the impact of permanent faults in a real-time situation by considering
continuous video sequences and observing a significant frequency that the error manifestation
persists for a critical time interval.

In summary, this paper makes the following contributions:
• We demonstrate that AP-based metrics lead to misleading vulnerability estimates for object
detection DNN models (Sec. 4.1)

• We propose an SCD-based/DUE-based metric IVMOD to quantify the vulnerability of object
detection DNN models under hardware faults (Sec. 4.2).

• We evaluate the vulnerability of various representative object detection DNN models using
the proposed IVMOD, illustrating the probability of a single bit flip resulting in a potentially
safety-critical event (Sec. 5.1).

• For each such event, we propose various quantitative metrics to estimate the impact severity
for typical safety-critical applications (Sec. 5.2).

• We extend our image-based evaluation to a video-based safety-critical system and measure
the vulnerability of temporal persistency (AFPblob and AFNblob) due to a permanent fault, by
tracking the FPs and FNs across multiple video frames (Sec. 6).

2 Related Work

The effort to estimate the vulnerability or resilience of the DNNs against hardware faults affecting
the model has been explored recently to study the safety criticality of a model when used in
real-time operation.

To this extent, faults are injected in DNNs during inference either at the application layer
on weights/neurons ([6, 16]), or by neutron beam experiments ( ([4, 9]), black-box techniques).
Authors of Ref. [2, 16] considered transient faults, which are multiple event upsets occurring in
data or buffers of DNN accelerators. Many prior works claimed DNNs to have inherent tolerance
towards faults. Li. et al. ([2]) studied the vulnerability of DNNs by injecting faults in data paths and
buffers with different data type levels and quantified it in the form of SDC probabilities and FIT
(failure in time) rates. It is seen that errors in buffers propagate to multiple locations compared to
errors in data-path. These works estimated the resiliency of the model by injecting multiple fault
injections during the feed-forward inference. This analysis is limited to image classification models
like AlexNet [14], VGG [24], and ResNets [7]. Our analysis does not characterize the faults in buffer
and faults in the data-path. We assume the faults will propagate to the application layer, which
may impact either the weights or the neurons. Hence we analyze them independently, assuming
equal probabilities. The Ares framework [21] demonstrated that activations (neurons) in image
classification networks are 50x more resilient than weights. These works focus mainly on fault
models involving multiple bit flips captured by bit error rate (BER). There is limited research
done on understanding the vulnerability of object detection DNNs. The work in Ref. [4] quantified
the architectural vulnerability factor (AVF) of Yolov3 using metrics like SDC AVF, DUE AVF, and
FIT rates. This work studies fault propagation by injecting a random value in the selected register
file and not flipping a bit. The authors argue that not all SDCs are critical, given that change in
objects’ confidence scores after injecting faults is tolerable. The definition of SDC used in this work
is not straightforward. They use the precision and recall values computed at the object level by
combining all the images, obscuring the actual vulnerability. The vulnerability of object detection
DNNs is studied by injecting faults using neutron beam [18]. The authors analyzed both transient
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and permanent faults but not on continuous video sequences. Also, the dataset considered in these
experiments was primarily limited to only one object per image. Also, they injected faults into the
input image. We limit our fault injections to neurons and weights and only to convolution layers
of the DNNs as the fully connected layers did not change much of the observed data. We believe
fault-injected images do not fall into the category of the model vulnerability. They rather find their
place in adversarial input space within various adverse fault/noise models. The results obtained
from many of these works are not easy to compare as the failure and SDC definitions differ and
do not follow standard baseline. To our best knowledge, our paper is the first to demonstrate
vulnerabilities of the object detection models in detail using the proposed (IVMOD) metrics to
measure the severities at the image level. Also, we introduce a new metrics AFPblob and AFNblob

quantifying the area occupancy of FP/FN blobs, which is essential to establish the safety criticality
of the object detection models concerning specific real-time applications.

3 Preliminaries

3.1 Hardware faults vocabulary

Our fault injection technique includes transient and permanent faults. Transient faults refer to
random bit flips (0→1 or 1→0) of a randomly chosen bit, which occur during a single image
inference and are removed afterward. Permanent faults are modeled as stuck-at-0 and stuck-at-1
errors, meaning that a bit remains consistently in state ’0’ or ’1’ without reacting on intended
updates. Those faults are assumed to persist across many image inferences. We inject faults either
into intermediate computational states of the network (neurons) or into the parameters (weights)
of the DNN model, focusing only on convolutional layers, which constitutes a significant part of all
operations in the studied DNNs. Both types of faults represent bit flip in the respective memory
elements, holding either temporary states such as intermediate network layer outputs or learned
and statically stored network parameters. A fault can potentially induce critical alterations of the
model predictions, measured by IVMODSDC or IVMODDUE as shown in Eq. 1.

3.2 Experimental setup: Models, datasets and system

We use standard object detection models - Yolov3 [22], RetinaNet [17], Faster-RCNN (F-RCNN[23])
- together with the test datasets CoCo2017 [19], Kitti [5] and Lyft [12]. We retrained Yolov3 on
the Kitti and Lyft dataset, and the Faster-RCNN model on Kitti for comparative experiments. We
used open-source trained weights for the rest of the models and datasets. The base performances of
these models in terms of AP50 and mAP can be found in Fig. 3. The parameter configurations used
for these models (NMS threshold, confidence score, etc.) are taken from the original publications.
Since fault injection is compute-intensive, we select a subset of 1000 images for each dataset to
perform the transient fault analysis and use a single Lyft sequence of 126 images for the permanent
fault analysis. All experiments adopt a single-precision floating-point format (FP32) according to
the IEEE754 standard [10]. Our conclusions also apply to other floating-point formats with the
same number of exponent bits, such as BF16 [11], since no relevant effect was observed from fault
injections in mantissa bits.

4 Methodology of vulnerability estimation

4.1 Issues with average precision

In object detection, evaluation and benchmarking methods are most commonly selected from the
family of average precision (AP)-based metrics (in combination with specific IoU thresholds such
as AP50 or mAP). Libraries such as CoCo API [19] perform the following relevant steps to obtain
AP values from a set of object predictions: i) ground truth and the predicted objects are collected
in groups of the same class label, ii) within a group, the predicted objects are sorted w.r.t their
confidence scores, iii) the sorted predictions are consecutively assigned to the ground truth objects
within the same class group, using an appropriate IoU threshold, iv) precision and recall (PR)
curves are evaluated sequentially through the confidence-ranked TP, FP, and FN objects, v) the
class-wise AP is calculated as the area under the interpolated PR curve of a class, and vi) the
overall AP is determined as the average of the class-wise AP values.

It has been pointed out that such AP metrics can lead to non-intuitive results in the detection
performance of a model on a specific data set [22]. In the following, we illustrate that an AP-based
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(a) (b) (c) (d)

Figure 2: Simulation of the effect of fault injection on the AP metric. Here, an artificial data set of 100
objects was generated, where each object was classified as TP with a chance of 0.7 or as a FN otherwise.
In addition, FPs were created with a rate of 0.3 per true detection. Both TPs and FPs are assigned
random confidence values between 0.7 and 1. To this setup (a), additional FPs simulating the effect of
fault injection were augmented or existing TPs were randomly eliminated to model fault-induced FNs ((b)-
(d)). The diagrams show the PR curves and the effect of fault injection on them. Number and confidence
range of the faulty objects are given in the insets.

evaluation can be misleading when estimating the vulnerability of a model against corruption events
such as soft errors in a safety-critical real-time context concerning the probability and severity of
corruption. Corruption events lead to additional FP and FN objects merged into or eliminated
from the healthy list of detected objects. We identified the following issues when trying to quantify
model vulnerability based on AP metrics:

• Object-level evaluation: The AP is calculated on an object level, i.e., the amount of TP,
FP, FN objects accumulated across all images is used for evaluation. This does not consider
how corrupted boxes are distributed across images, i.e., one image with a large number of
fault-induced FP detections can have the same effect as many corrupted images with few FP
detections each. From a real-time safety perspective, however, the amount of corrupted image
frames is typically relevant, as this may determine, for example, the robustness of a video
stream used for environment perception.

• Dependency of PR on confidence: Due to the sequential and integration-based character-
istic of the average precision, the fault-induced FP object’s impact depends highly on those
sample’s confidence. This does not reflect the potential safety relevance a low-confidence FP
object may have, see more below.

• Dependency of box assignment on confidence: The strict confidence ranking can, in
some cases, lead to a non-optimal global assignment of bounding boxes. For example, a better
matching box might have slightly lower confidence than a global optimization would demand.

• Class-wise average: Common and rare classes have the same weight in the overall AP metric.
However, their detection performance and vulnerability can be quite different as they typically
relate to the samples the model encountered during training.

In particular, the second point above is non-intuitive; we therefore illustrate this in more detail
in Fig. 2 with the help of a generic example from a randomly generated data set of 100 objects.
Additional FPs with low confidence compared to the reference set of objects have a negligible
impact on the metric as they get appended to the tail of the PR curve, even when numerous and
potentially safety-critical. On the contrary, few high-confidence FP objects can lead to significant
drops in the AP as those samples get sorted in at the head of the PR curve to lower it. Fault-induced
FNs reduce the area under the PR curve by pushing the samples towards smaller recalls.

4.2 Proposed metrics: IVMOD

We introduce IVMOD metrics to measure the image-wise vulnerability of the object detection
DNNs. Our evaluation strategy described in the following seeks to counter the issues with AP-based
metrics described in the last section in order to reflect vulnerability estimation better addressing
safety targets. In particular, our approach is characterized by:

• Image-level evaluation: We evaluate vulnerability on an image level instead of an object
level. This approach reflects that those faults jeopardize safety applications that silently alter
the free and occupied space by inducing false detections in an image, particularly sequences
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thereof, even if such an alteration involves only few false objects per frame. We register image-
wise SDC and DUE events, see Sec. 4.2, to determine the probability of a relevant fault impact.
The severity of the latter is evaluated separately in terms of the amount of induced FPs and
FNs. Due to their image-based character, IVMODSDC and IVMODDUE metrics are naturally
independent of the object confidences.

• Confidence-independent box assignment: False-positive objects can be critical whether
they have high or low confidence, which is masked in the AP metric. We apply a different
assignment scheme for FPs and FNs that omits confidence ranking and hence makes the model
vulnerability metric independent of the confidence of FPs, see Sec. 4.2. The assignment strategy
can also be varied to relax class correspondence requirements, which are often overemphasized
from a safety perspective. The system can perform at degraded level if its sure of object location
and not much about the class.

• Class-independent average: We evaluate the overall sample mean instead of the mean of
individual class categories to reflect typical imbalances in the data set concerning object classes.

Assignment policy In contrast to the sequential and class-wise matching described in Sec. 4.1,
we calculate the cost matrix from a set of predictions and ground truth objects for a single image.
The cost for matching objects is the IoU between the bounding boxes. If the IoU is below the
specified threshold IoUeval = 0.5, or if the classes of the two objects are not the same, we assign
a maximum cost. To analyze the relevance of exact class predictions for an application, we can
harden or soften the class matching from a one-to-one correspondence to compatible class clusters
or neglect class matching altogether. A Hungarian association algorithm [15] is then deployed to
obtain the global optimal cost assignment. As usual, the number of accepted matches per image
represents the true positive (TP) cases. False detections are registered in the following cases: i)
a FP and a simultaneous FN detection occurs if the IoU with the assigned ground truth object
is below the threshold, independent of the predicted class, or if the IoU is sufficiently large, but
the classes are not compatible, ii) a single FP occurs if there is a predicted object that cannot
be assigned to any ground truth object with acceptable costs, iii) a single FN occurs if there is a
non-assigned ground truth object. Fig. 1 shows an illustrative example of assigned TP, FP, FN
boxes. In our setup, we clip predicted bounding boxes reaching out of the image dimensions – e.g.,
due to faults – to the actual image boundaries.
IVMOD (IVMODSDC and IVMODDUE) We define the IVMODSDC rate as the ratio of events
where a fault during inference causes a silent corruption of an image and the total number of image
inferences. IVMODSDC is an SDC defined as a change in either of the TP, FP, or FN count of the
respective image, compared to the original fault-free prediction, given that no irregular NaN (not
a number) or Inf (infinite) values occur during the inference as shown in Eq. 1. Since TPs and
FNs are complementary to each other, we can eliminate either TP or FN in IVMODSDC in Eq. 1.
On the other hand, the IVMODDUE rate is the ratio of events where irregular NaN or Inf values
are generated during inference and detected inside the layers or in the predicted output due to the
injected fault in the respective image during inference and are computed using the Eq. 1. As DUE
events are naturally detectable, they typically are less critical than SDC events. Explicitly,

IVMODSDC = 1
N

N∑
i=1

{[
(FPorig)i 6= (FPcorr)i ∨ (FNorig)i 6= (FNcorr)i

]
∧ ¬Infi ∧ ¬NaN

}
,

IVMODDUE = 1
N

N∑
i=1

[Infi ∨ NaNi] .

(1)

5 Transient faults

Our evaluation concept is guided by the assumption that in safety-critical applications, both the
miss of any existing object as well as the creation of any false positive object can be potentially
hazardous. Therefore, we consider the probability that such an SDC event occurs and our primary
metrics IVMODSDC and IVMODDUE (Eq. 1) captures the vulnerability of a model. For transient
faults, this evaluation is performed in Sec. 5.1. Accordingly, we independently inject 50,000 random
single-bit flips in neurons and weights at each inference of the chosen test datasets. Subsequently,
Sec. 5.2 discusses the severity of each of those SDC events in terms of the average impact of
additional FP and FN objects, their size, and confidence. If a specific use case is given, the factors
of probability and severity can be used to derive the risk of an error [13].
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(a) Neuron faults

(b) Weight faults
Figure 3: Key metrics to interpret the vulnerability of object detection DNNs in the presence of transient
hardware faults: (left) AP50, (center) mAP, (right) error rate, distinguishing IVMODSDC and IVMODDUE.
We study both neuron faults (a) and weight faults (b).

5.1 Corruption probability
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Figure 4: Example of the AP50 PR
curves of few classes from Yolov3 and
Kitti in the fault free and faulty cases.

In Fig. 3, we present the fault injection campaigns of all stud-
ied networks, comparing the typical benchmark metrics AP-50
and mAP to the IVMODSDC and IVMODDUE rate as defined
in Sec. 4.2. Both Yolov3 and RetinaNet show a significant
change in the AP-50 and mAP metrics under the injected neu-
ron and weight faults: The accuracy can drop as much as from
89.4% to 34.4% (AP-50) due to a single weight fault in the sce-
nario of Yolov3 and Kitti. On the other hand, F-RCNN does
not showcase much sensitivity to the injected faults (. 0.8%
change in AP-50). At the same time, theIVMODSDC rates
vary between 0.4% and 1.8% (neuron faults), and from 1.5%
to 4.2% (weight faults). This discrepancy illustrates the need
for a more realistic vulnerability estimate. As shown below, in
Tab. 1, fault injections in Yolov3 and RetinaNet tend to pro-
duce many FPs with statistically increased confidence. This
leads to a drastic shift of the PR curves, as shown in the example in Fig. 4, where only 3.2% out of
1000 samples have corrupted prediction (demonstrated the similar effect in Fig. 2(c)). Rare classes
are susceptible to such faults, diminishing the class-averaged metric further. Since the induced false
objects are concentrated on only a few images, the AP metric exaggerates the safety-related vul-
nerability of the model under software errors (see also the discussion in Sec. 4.1).
In contrast, the F-RCNN model architecture appears to be very robust against the generation of
FPs (see Tab. 1). Predictions made in the presence of a soft error have nearly the same confidence
as in the fault-free case. However, faults do disturb the detection of objects as a significant portion
of FNs appear (on average between 10 − 33%). Nevertheless, the AP metrics for FRCNN under
fault injection are hardly affected: We observe very few accuracies drops for both neurons and
weights. At the same time about 0.4− 0.7% (1.5− 1.8%) of the images see silent data corruption.
In this case, the AP-based metric is masking the potentially safety-critical impact of underlying
faults. We further observe that for Yolov3, IVMODDUE events are generated in ∼ 0.9% of the neu-
ron injection cases, while in RetinaNet and F-RCNN and for weight injections, those are negligible
(. 0.1%). We conclude that the Yolov3 architecture stimulates neuron values that have a higher
chance if being flipped to a configuration encoded as NaN or Inf (in FP32, all exponential bits
have to be in state ’1’), compared to RetinaNet and F-RCNN. The weight values of all networks,
on the other hand, are closely centered around zero, which makes it very unlikely to reach a NaN
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or Inf bit configuration [6] (typically MSB and at least another exponential bit are in state ’0’ at
the same time). We observe that the faults injected in weights at any bit of FP32 cause higher
IVMODSDC rates than the faults injected at the neuron level. They showcase ∼ 2× more adverse
effects on predictions than faults injected at the neuron level.

5.2 Corruption severity

We next aimed to understand how faults leading to IVMODSDC events corrupt images and how the
severity of an IVMODSDC event on a potential safety-critical application can be estimated. Even
though the relevance of a safety feature may depend on the specific application, we identified the
following fundamental features to serve as a specific indicative measure of an SDC fault severity,
see Tab. 1:

• The average number of FP objects induced by a given IVMODSDC fault and the proportion of
boxes lost due to a fault, referred to as ∆FP and ∆FNn, respectively as described in Eq. 2
(subscript ’n’ represents normalization as the upper limit of FNs is known, in contrast to FPs).

• The average size of objects in the presence and absence of SDC (avg(size)) since a significant
change of the object size can be safety-critical,

• The average area of the image that is erroneously occupied due to IVMODSDC induced FP
objects (AFPblob) and the average portion of the vacant area created by not detecting the
objects due to IVMODSDC faults (AFNblob).

• The average confidence of objects in the presence and absence of IVMODSDC, avg(conf).

We motivate this choice more in the following subsections.
Table 1: Severity features averaged over all IVMODSDC events.

Yolo+Coco Yolo+Kitti Yolo+Lyft Retina+Coco F-RCNN+Coco F-RCNN+Kitti
Neurons:

avg(∆FP ) 333 36 174 33 0 0
avg(∆FNn)(%) 42.2 41.3 46.6 16.1 25.3 33.3

avg(conf)
(corr, orig)

0.99, 0.52 0.99, 0.51 0.99, 0.65 0.79, 0.11 0.73, 0.73 0.90, 0.89

avg(size)/1e3px
(corr, orig)

4.3, 11.2 34.5, 2.3 17.8, 7.3 5.6, 20.3 17.0, 18.6 6.3, 6.8

Afp-occ(%) 36.8 62.5 59.8 0.7 1.7 0.0
Afn-vac(%) 4.0 5.1 4.8 53.1 41.1 39.8

Weights:
avg(∆FP ) 198 59 145 7 0 0

avg(∆FNn)(%) 23.3 21.7 21.3 4.0 9.6 29.6
avg(conf)
(corr, orig)

1.00, 0.53 1.00, 0.52 1.00, 0.65 0.62, 0.11 0.72, 0.73 0.89, 0.88

avg(size)/1e3px
(corr, orig)

5.5, 12.1 21.4, 2.5 30.8, 6.9 7.9, 19.8 10.0, 15.0 4.9, 5.0

Afp-occ(%) 40.1 81.0 79.1 1.5 0.3 0.0
Afn-vac(%) 15.1 2.5 6.8 42.3 77.8 85.8

Fault-induced object generation and loss Object detection is commonly used in scenarios
where the number of objects, combined with their location and class, is input to safety-critical
decision making. Examples include face detection or vehicle counting in traffic surveillance, auto-
mated driving, or medical object detection. Therefore, to assess IVMODSDC severity, we quantify
the impact of a fault injection by the differences (a loss in TPs equals the gain in FNs)

∆FP = (FPcorr − FPorig) ,
∆FNn = (TPorig − TPcorr)/TPorig,

(2)

In Tab. 1, we observe that all Yolov3 and RetinaNet scenarios exhibit large numbers of fault-
induced FPs (� 100 in Yolov3 and Coco experiments). For neuron faults, the generation of FPs
is, on average, more pronounced. Furthermore, the normalized FN rates show that already a single
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fault can cause a significant loss of accurate positive detections. Average FN rates are higher for
neuron faults than weight faults and reach averages up to 47% (Yolov3 and Lyft). F-RCNN models
are robust against the generation of FP objects but not immune against fault-induced misses
(e.g. Fig. 1b). The number of generated FPs and FNs varies in a broad sample range, up to the
maximum limit of allowed detections (here 1000), due to the inhomogeneous impact of flips in
different bit positions (see Sec. 5.3). In some situations, additional objects created by faults will
match actual ground truth objects, leading to a negative FP or FN difference. This effect originates
from the imperfect performance of the original fault-free model and is tolerated here due to the
minor impact. By relaxing the class matching constraints from one-to-one correspondence to no
class matching, we can further segment the type of FPs that the IVMODSDC events cause. It
appears that situations where an FP is due to a change in the class label only or due to a shift
of the bounding box only (on average . 3 for Yolo models, 0 for others). In most cases, both the
bounding box gets shifted, and the class labels is mixed up, or predicted objects cannot be matched
with any ground truth object at all.
Object size and confidence Box sizes and confidence values are other severity indicators since
large erroneous objects take up a more significant portion of the image space, and high-confidence
objects might be handled with priority in some use cases. Tab. 1 shows the change of the average
box size and confidence of all model detections across the identified IVMODSDC events. In most
models, the typical box size is reduced in the presence of faults, which is partially due to the
creation of boxes with zero width or height. However, there are also scenarios where faults tend to
induce overly large objects (Yolov3 and Kitti, Lyft, see Tab. 1) that can even fill the entire picture.
An object’s average confidence score after fault injection significantly increases in the scenario of
Yolov3 and RetinaNet, while there is hardly any impact on F-RCNN predictions. This explains
why confidence-sensitive metrics based on AP react differently to fault injections in the respective
architectures; see the discussion in Sec. 4.1.
Area occupancy safety-related decision-making in a dynamic environment is most importantly
based on the detected free and occupied space. For example, an automated vehicle will determine
a driving path depending on the detected drivable space. A large number of false-positive objects,
even when small in size, can, in combination, cover a significant portion of the image, which will
leave only little free space. On the opposite, in some situations, they may overlay each other and
occupy only a little space. To reflect a realistic severity of free space, we first cluster all FP and
FN objects to blobs by projecting them to a binary space of occupancy and vacancy (see Fig. 6).
As we are only interested in fault-induced false objects, our blobs for a given frame at time t are
defined as follows:

FPblob = I(detcorr − detorig),
FNblob = I(detorig − detcorr).

(3)

AFPblob = |FPblob|/Aimage,

AFNblob = |FNblob|/|I(detorig)|.
(4)

In Eq. 3, det denotes the set of all detected bounding boxes (TP and FP), and I(x) represents the
pixel-wise projection to binary occupancy space, i.e., for any pixel u in a blob x it is I(u < 0) = 0,
I(u ≥ 0) = 1 (see Fig. 6). We define the occupancy coefficients in Eq. 4, where Aimage is the
size of the image in pixels and | . . . | denotes the sum of all nonzero pixels in a blob. In Tab. 1, we
see Yolo+Kitti creates significantly less ∆FP than Yolo+CoCo, but the average AFPblob , in this
case, is ∼ 2x greater than AFPblob of Yolo+CoCo. This can even be observed using the feature
avg(size)/1e3 (average size of bounding boxes of all the detections combined - TPs+FPs). In the
case of Yolo+Kitti, the avg(size)/1e3 is 15x and ∼ 8x larger than its original detections when a
fault is injected in neurons and weights. This implies that ∆FP alone cannot determine the safety
impact during an IVMODSDC event. Similarly, F-RCNN creates no ∆FP , but large free space
∆FNn by missing the TPs. F-RCNN+Kitti, when induced with weight faults, is more safety-
critical as the AFNblob is highest compared to other studied models. Furthermore, in case of neuron
faults, the RetinaNet and F-RCNN have higher AFNblob .

5.3 Bit-wise analysis of false object count

The severity of an IVMODSDC event typically depends on the magnitude of the altered values,
where values with a considerable absolute value are more likely to propagate and disrupt the
network predictions [6, 8, 16]. Therefore, the severity features are expected to form a non-uniform
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(a) FP Neurons (b) FP Weights

(c) FN Neurons (d) FN Weights
Figure 5: Bit-wise analysis of the severity of IVMODSDC events. Diagrams show the FP difference (a), (b)
and FN rates (c), (d) for neurons and weights, respectively. Bit 31st is the sign bit, 30th bit being the most
significant bit and 23rd bit is the lowest bit of exponent part.

distribution depending on the flipped bit position. To gain a better intuition, we here choose to
present a bit-wise analysis of the ∆FP and ∆FNn samples during the IVMODSDC events. To
quantify the impact of bits, we define the bit-averaged false-positive difference, bitavg(∆FP ),
which intuitively tells us how many FPs an SDC event with a particular bit position induces,
on average. Similarly, for FNs, the normalized bit-averaged difference, bitavg(∆FNn), represents
what portion of the originally detected objects disappears due to an SDC event with a specific bit
position. In Fig. 5, we observe that, for neuron faults, those additional FPs are typically caused
by bitflips in either of the three highest exponential bits, as long as those do not lead to DUE
instead. For weight faults, we find a situation similar to classifier networks where the specific value
range of weights centered around zero is encoded in bit constellations where the MSB is in state
’0’ while the next higher exponential non-MSB bits are in state ’1’, see Ref. [6]. This explains why
almost only MSB flips induce large values and IVMODSDC (with a high number of FPs). Given the
respective relevant neuron and weight bit flips, the ∆FNn ratio is increased up to 90% (meaning
that portion of all true positive detections is lost) in some of the models as shown in Fig. 5(c),(d)).
In particular, due to MSB and other high exponential bit flips the average bitavg(∆FNn) is ∼ 47%.
We observe that FN alterations can, to some extent, be induced also by lower exponential bits.

(a) orig (b) corr (c) F Pblob (d) F Nblob

Figure 6: Illustration of the clustering of bounding boxes to binary occupancy blobs. In this example we
find from (c) and (d) that AFPblob = 33.3%, AFNblob = 7.5% (white pixels indicate space occupied by fault
FPs).

6 Permanent faults

Our analysis in this section aims to understand whether permanent stuck-at faults (see Sec. 3.1)
leads to temporally consistent errors on an object level leading to continuous failure. The object
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Figure 7: Pixel wise tracking of FP blobs. First row: orig dt are fault free detections. Second row: corr dt
are faulty detections. Third row are tracked FP-blobs (white pixels are occupied by FP blobs).
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Figure 8: Pixel wise tracking of FN blobs. First row: orig dt are fault free detections. Second row: corr dt
are faulty detections. Third row are tracked FN-blobs (white pixels is the free space created by FNs).

detection model typically receives sequential images from a continuous video stream in real time
applications. We assume a permanent hardware fault hitting the inference module which in turn
causes persistent miss detections on consecutive images. In this case, they will appear either as
ghost objects in the output (as FPs) or lead to a consecutive miss of an object (as FNs) - both
situations can be highly safety-critical. A perception pipeline typically also includes a tracking
module for detected objects, which can then be used to predict an object’s trajectory and make
an informed decision concerning the next maneuver of the vehicle. Therefore, we simulate a simple
tracking of instantaneous fault-induced FPs and FNs clusters to determine whether they would
be persistent in a realistic scenario. For the analysis in this section, we use Yolov3 and the Lyft
data set. This is the only dataset used in our analysis that provides consecutive images from video
sequences (Lyft sequence of the CAM_FRONT channel featuring 126 frames is considered). From
our experiments with transient faults injections in Sec. 5, we understand that no effect is observed
by altering mantissa bits or by flips in the direction ′1′ → ′0′ since this does not generate large
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Figure 9: Tracking of FP- and FN-blob area
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Figure 10: Vulnerability of Yolov3 and Lyft for permanent faults.

values. Therefore, the experiments of this section are accelerated by using only stuck-at-1 faults in
the exponential bits of FP32. However, results have been rescaled to account for the probability of
injections in all 32 bits. In this section, we designed an experiment where we inject each of 1000
single random permanent faults (exponential bits) at neurons and weights independently for the
above considered sequence to understand its safety impact.
6.1 Evaluating fault persistence
We track the movement of blobs (Eq. 3) using a simple pixel-wise M/N tracking scheme [3]. The
proposed tracker incorporates the following criteria to establish that a given pixel of FP or FN
blob is persistent, at a given frame t: i) The pixel occupied in at least M/N consecutive frames.
(if it is also occupied in the current frame, this corresponds to t track update; otherwise it is a
coasting track), ii) If the occupancy of that pixel in the last N frames is below M, we check the
vicinity around that pixel for past occupancy. Deploying a simplified unidirectional motion model,
we register a persistent dynamic pixel for the current frame if occupancies above M are found in
the past N frames in a close enough (here 50 pixel, abbr. px) vicinity.
For FN blobs, we omit coasting due to the nature of detection misses. After registering the persistent
pixels computed by the pixel-wise tracker, the occupied (AFPblob) or free-space (AFNblob) area is
calculated using Eq. 4. The tracking parameters are chosen as (10/15): The upper frame number
is hereby estimated from a critical time of reaction to a persistent false target (≈ 0.5s) and the
frame rate of the Lyft sequence (30Hz), leading to N = 0.5s · 30s−1 = 15 key sequential frames.
This estimated upper number can be application specific relevant to its safety specifications.

6.2 Corruption probability and severity
In Fig. 7 and Fig. 8, we show examples of persistent FP and FN blobs in selected frames. The
occupied (AFPblob) and free (AFNblob) space of an entire video sequence is presented in Fig. 9a and
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Fig. 9b. For orientation, we also give the area difference between original and ground truth predic-
tions (Fig. 9), AFPref_blob = |I(detorig − gt)|/Aimage and AFNref_blob = |I(gt− detorig)|/|I(detorig)|
(where gt is ground truth). We neglect these contributions originating from the model imperfection
as it is a function of training and is found to be small (in the above examples < 1%) compared
to the fault-induced occupancy (∼ 66% and ∼ 62%, respectively). The example demonstrates that
tracked FP blobs may persist across the entire image sequence and occupy a significant amount of
free space. Similarly, a significant portion of the image can be lost persistently across the sequence
(it reaches as high as ∼ 96%). Our statistical evaluation from 1000 permanent fault injections on
the selected image sequence is given in Fig. 10 for FP and FN. The Fig. 10(a) and (d) shows both
the SDC probability (in the form of persistant occurance) and the severity ((b)-(c), (e)-(f)) in de-
tail. We register an SDC for a given fault if any persistent FP or FN is found during the sequence
with a severity of at least level L. The severity L is quantified as the average area occupied by the
blob (for FP normalized by the image size, for FN by the TP blob size, see above). The severity
levels are varied from 0% to 15% in Fig. 10 to illustrate the effect of softening or hardening of the
safety requirements. As the severity of a fault is again expected to depend on the bit position of
the injected fault, we present both bit-selected and bit-averaged numbers in Fig. 10(b,c,e,f).

In this figure, the permanent faults in neurons and weights have a probability of 1.8% and 3%
to create persistent ghost FP objects with a minimal area of L > 0, respectively. With L > 15%
of an image area, this reduces to 0.9% and 2.9%, respectively. On average, faults hitting MSB
bit in weights on this model have 96% probability to manifest into a persistent FP blob of area
> 81%. On the other hand, persistent FN blobs incorrectly indicating vacant spaces occur with a
much lower chance. Bitflips cause persistent objects only in the highest exponential bits in case of
neurons or in the MSB bits in the case of weights. This observation is consistent with the findings
from transient faults in Sec. 5. Using the given area occupancy metrics, permanent weight faults
have a higher severity than neuron faults; in particular, weight faults on average induce massive
ghost FP blobs of > 83% of the image area.

7 Conclusion
This work points out the challenges in estimating the vulnerability of object detection models
under bit flip faults. Average precision-based metrics are either very sensitive or not sensitive to the
corruption events, which can be misleading in a safety context. For example, for F-RCNN+Kitti,
neuron injections experiments showed almost no impact (< 0.1%) in the AP50 and mAP metrics.
Using the image-based evaluation metric IVMOD proposed here, however, we see that 0.7% of
all images lose substantial amounts (> 30%) of the total TP detections due to a single bit flip.
The evaluation method presented in this work allows us to come to a vulnerability estimate better
addressing safety targets. Given the IVMODSDC probabilities and severities (see Fig. 3 and Tab. 1),
we conclude that the chances of safety-related corruptions due to soft errors are minor to moderate
(0.4%− 4.2%) in the studied setups. IVMODSDC events due to weight faults are about two times
as likely as neuron faults. However, if SDC occurs, the severity can be grave. The IVMOD metric
should always be considered in combination with severity features for safety purposes. This is
because IVMOD does not quantify the severity, but only considers the existence of false and
missed bounding boxes. Our metric is defined relative to the original performance. This means
that even if a fault also acts in a beneficial way, i.e. fixing some FP or FN occurrences, it will
be categorized as a SDC here. We estimated this severity with the help of different safety-related
features. We observed that high bits of the exponent of floating point numbers, when hit by either
neuron or weight faults, can lead to a significant increase in ∆FP and ∆FNn. This effect is also
translated into an average occupancy value that reflects the area portion of the image that is
critically altered by a fault. We find that large average occupancies (up to AFPblob ∼ 81% for FP
and AFNblob ∼ 86% for FN) are common, reflecting significant safety hazards. Finally, we studied
the use case of a sequential real-time image sequence from Lyft to show that permanent stuck-at
faults on neurons or at weights can induce FP objects covering as much as ∼ 83% of the image
area, creating dangerous ghost objects. Similarly, up to ∼ 63% of the TP area in the scene can be
missed. Overall, the weight faults are more likely impactful than neuron faults and have a higher
severity in area occupancy (except for permanent FNs).
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