
Dynamic Checks of Evidence Models
for Assurance Projects in Eclipse

OpenCert

Jabier Martinez1(B) and Ángel Jesús Varela-Vaca2

1 Tecnalia, Basque Research and Technology Alliance (BRTA), Derio, Spain
jabier.martinez@tecnalia.com

2 IDEA Research Group, University of Seville, Seville, Spain

ajvarela@us.es

Abstract. The modelling of regulatory frameworks and industry stan-
dards, including their argumentation and expected evidence, are used
during assurance processes to demonstrate the compliance of systems.
However, this is handled mainly in a static fashion, and using these mod-
els for dynamic evidence checking along the system life-cycle, including
operation (checking the model at runtime), is not yet mainstream. This
preliminary work shows a tool-supported modelling method for the auto-
matic and dynamic evaluation of evidence. The solution is supported by
an Eclipse OpenCert tool extension where the capabilities of evidence
models are extended with automatic checks. The user monitoring the
assurance project receives alerts when evidence are unsatisfied. It also
exports a continuous log of these checks using the XES standard to enable
traceability and historical creation of passing and failing checks for anal-
ysis and auditing purposes. While some evidence checks are generic, the
diversity of checking processes required our solution to be extensible.

Keywords: Safety · Security · Reference frameworks · Dynamic check

1 Introduction

Reference frameworks for systems engineering, such as safety or security regu-
lations, standards, industrial guidelines, or even in-house guidelines, represent
a reasonable way to build trust in systems and have confidence in the process
of their construction. To make explicit or to audit the compliance to a certain
reference framework, assurance projects are conducted. An assurance case is a
structured argument supported by a body of evidence, which provides a convinc-
ing and valid justification that a system meets its assurance requirements for a
given application in a given operating environment [4]. Dynamic evidence checks
can be useful for processes (e.g., organisational or engineering processes) with
the need for continuous checking that the process is followed as established and
the expected assets are produced and checked for validity. One specific type of

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14862-0_12&domain=pdf
https://doi.org/10.1007/978-3-031-14862-0_12


process is systems during operation (e.g., self-adaptive systems) that need
to demonstrate or validate correct functioning at runtime.

On the left side of Fig. 1, we illustrate an overview of assurance consisting of
three layers. The reference frameworks provides guidance for assurance projects
which, at the same time, provide guidance for the systems engineering itself, e.g.,
the creation of system assets and their characteristics, the verification and vali-
dation (V&V), or concrete activities to follow in the organization. The systems
engineering project assets are intended to provide traceable evidences to fulfil
the assurance needs, and consequently, the compliance to reference frameworks.
On the right side of the figure we illustrate the modelling solution proposed
in Eclipse OpenCert [6] as a tool for assurance management. Reference frame-
works are modelled through the Common Assurance and Certification Meta-
model (CACM) [11] with concepts such as requirements, activities, artefacts,
roles, levels, and a large set of elements expressive enough to capture diverse ref-
erence frameworks. Then, for the assurance layer, two types of models are key,
namely assurance case models, and evidence models. Assurance case models uses
the Goal Structuring Notation (GSN) [7] and it is similar to the elements pro-
posed in the Structured Assurance Case Metamodel (SACM) [10] such as claims,
argumentation, evidences. The evidence models is another part of the CACM
to capture the life-cycle of the evidences and more technical details about the
evidences than in the assurance cases models. Finally, in the project assets, given
the diverse nature and technological stack of each project, we have the actual
assets of the systems engineering activities.

Traceability means are possible through the mapping models provided by the
tool, and for the case of evidence models and the actual project assets, Uniform
Resource Identifiers (URI) are used as attributes in the evidence model elements.

In the scope of this work, we focus on the part inside the square of Fig. 1. The
concrete implementation in Eclipse OpenCert of this high-level picture is consid-
ered an iterative process where the assurance cases are built and the assurance
is managed across the life-cycle. We make the following contributions:

Fig. 1. Overview of reference frameworks, assurance, and project assets, with the cor-
responding models or expected project assets in Eclipse OpenCert.



– Evidence checks: The traceability information of evidence models to actual
assets is enriched with an extensible method for their validation. That means
that traces are not just pointers anymore, but also a way to automatically
check that the pointed elements are valid. As basic example, an evidence can
actually point to a file, but the file can be empty or incomplete with respect
to the expected content.

– Dynamic evidence checks: The automation of evidence checks opens the
door for a continuous validation of the evidence models. Our preliminary
implementation allows to schedule validations, receive alerts for the user mon-
itoring the assurance project, and exporting a continuous log.

– Research results availability: The tool extension is publicly available1 to
make this research reproducible and allow others to build on top of it.

The paper is organised as follows. The approach is detailed in Sect. 2, and
the related work is presented in Sect. 3. Finally, a conclusion is drawn and per-
spectives are outlined in Sect. 4.

2 Approach

Section 2.1 provides technical details about how we integrated automatic evi-
dence checks in the tool, how it is extensible, and it also presents some available
generic checks that can be already used. Then, Sect. 2.2 presents how we included
this functionality as part of a dynamic evidence checking loop, including the gen-
eration of logs.

2.1 Extensible Evidence Checks

Figure 2 shows an illustrative example of an evidence model. An Artefact Model
contains Artefact Definitions with their corresponding Artefacts with its
version, creation date etc. An Artefact can have several Resources where one
of the attributes is the location. In this attribute, an URI is expected pointing to
the actual resource. An Artefact can contain Assurance Asset Evaluations
which semantics refer to any assessment of judgement about the asset. This
way, each Assurance Asset Evaluation has attributes for entering free plain
text named criterion, criterion description, evaluation results, and
the rationale. Metamodel details are in the CACM specification [11].

Instead of modifying the CACM, we decided to reuse the Assurance Asset
Evaluation concept defining a tool-supported convention. Basically, when the
criterion match the identifier of a registered automatic check type, the tool
will be able to launch an automatic check. If further information is needed (e.g.,
parameters), they will be obtained from the criterion description.

1 Plugin org.eclipse.opencert.evidence.check at https://gitlab.eclipse.org/eclipse/
opencert/opencert/-/tree/release/2.0.

https://gitlab.eclipse.org/eclipse/opencert/opencert/-/tree/release/2.0
https://gitlab.eclipse.org/eclipse/opencert/opencert/-/tree/release/2.0


Fig. 2. Example of evidence model.

Eclipse OpenCert was enriched with an extension point to register auto-
matic checks. The interface to be implemented is quite simple but allows com-
plex operations. The method to implement just receive the Assurance Asset
Evaluation element as input, and this allow to access the Resource and its
URI, and the criterion description if needed. The user of the tool can, on
demand, select and launch the evaluation or a set of evaluations.

Implemented checks: The checks can be extremely diverse. That is way exten-
sibility was mandatory. However, a couple of predefined check are included by
default: FileExists: Used to check that an asset that was considered finished
actually exists. In a runtime context, it can be used to check that certain file
did not disappear. The URI of the Resource is resolved (e.g., URIs using the
protocols file:/ or platform:/resource/) and it checks that the file exists.
FileIntegrity : The monitoring of file integrity is a typical process in security

management where certain relevant files (e.g., access control information files,
security or system configuration files) are checked against malicious or uninten-
tional modifications. Different hashing algorithms can be used with the content
of a file. Java includes MD5, SHA-1, SHA-256 and many others depending on
the Java version. There are three ways to use this check type. 1) Using only
the id without anything on the description will calculate the hash in the first
check, and this hash will be used in all the subsequent checks. Default algorithm
is SHA-256. 2) Specifying the hashing algorithm in the description (e.g., MD5,
SHA-384). 3) Specifying both the hashing algorithm and the concrete expected
hash (e.g., MD5=ccdd5ea222ef7a601322a7a9b79c2ef4). This is preferred to avoid
that the integrity of the file was not respected in the first check.



Fig. 3. Artefact model with the toggle button (icon in the upper left corner) for
dynamic evidence checking.

2.2 Dynamic Evidence Checks and Log Streaming

Figure 3 shows the toggle button available in the tool to activate or deactivate
the dynamic evidence checks of the evidence model. Certain parameters are
requested such as the periodicity of the checking and if a continuous log wants
to be exported. The background process is launched while allowing to continue
using the tool. However, the user is notified when any evidence check fails. Fail-
ing a check does not stop the process as the failing messages are included and
accumulated in a status window.

The logs are exported in XES (1849-2016 IEEE Standard for eXtensible
Event Stream)2 using the OpenXES library. An example is shown in Listing 1.1.
Each check is streamed as an <event> with information such as the id of the eval-
uation, whether it was satisfied, and the timestamp. Each complete validation
of the evidence model is contained within a <trace>.

Listing 1.1. Example of XES from dynamic evidence checks

<?xml version="1.0" encoding="utf-8"?>

<log xes.version="1.0" xes.features="nested-attributes" openxes.version="1.0RC7">

<extension name="Time" prefix="time" uri="http://www.xes-standard.org/time.xesext"/>

<extension name="Concept" prefix="concept" uri="http://www.xes-standard.org/concept.xesext"/>

<string key="concept:name" value="Evidence model ID: null Name: my artefact model"/>

<trace>

<string key="concept:name" value="instance_0"/>

<event>

<string key="criterion" value="FileIntegrity"/>

<boolean key="check" value="true"/>

<string key="concept:name" value="Evaluation ID: integrity Name: integrity"/>

<date key="time:timestamp" value="2021-09-28T16:04:17.933+02:00"/>

</event>

<event>

... more individual checks

</event>

</trace>

<trace>

... more complete set of checks of the evidence model

</trace>

</log>

3 Related Work

The system assurance is demonstrated as a crucial discipline for industrial sec-
tors [13] specially in certification for safety-critical systems. Dynamic assurance
cases [3,5] were described as one way to enable proactive assurance management.
Dynamic safety assurance have been applied in multiple industrial contexts such

2 https://xes-standard.org/ and https://www.xes-standard.org/openxes/start.

https://xes-standard.org/
https://www.xes-standard.org/openxes/start


as autonomous systems [1,8], software-intensive systems [14], and embedded
systems [9]. These approaches focused on theoretical or conceptual approaches
by incorporating components to feed (back), improve or empower the assurance
cases, e.g., machine learning components to analyse the operation of real systems.
However, other approaches deal with dynamic assurance by continuous assess-
ment, e.g., in software-intensive systems [14]. Most approaches contributed on
the level of assurance and evidence models, i.e., GSN and evidence models (e.g.,
[1,3–5]), while our focus is on the validation of the evidence models against the
actual evidence artefacts. Contrary to conceptual frameworks or industrial tools
that might cover to some extent what we propose, we focused on the technical
aspects to provide a publicly available tool focused on automatic and dynamic
checks.

4 Conclusion and Perspectives

Eclipse OpenCert is a tool for assurance management. In this work, the tool has
been extended to automate the validation of evidences, and to enable a dynamic
validation at runtime. This preliminary study does not intend to demonstrate
high conclusions but some goals and achievements in supporting some aspects.
In this respect, the tool presented focused on demonstrating the integration
of dynamic evidence checks on the Eclipse OpenCert tool following reference
frameworks supporting the metamodels of CACM [11].

The future work and perspectives opened by this preliminary work include:

Correctness and validation: The preliminary implementation is functional and
available but its design and implementation could be refined, i.e., through auto-
matic tests simulating runtime processes beyond the manual testing we con-
ducted so far, and a real system assurance case with configuration management
problematic of many evidences coming from several components.

Further support for context-awareness: We mitigated the complexity in the diver-
sity of systems engineering projects by making the approach extensible with
regard to check types. However, the tool only allows to schedule the checks with
a user-defined frequency. It can be envisioned that the tool should also be exten-
sible for allowing another kind of context events (e.g., changes in specific assets)
to automatically trigger the checks. Regarding the logs, the XES information
can end up in large files after a large amount of time. For the moment, it is
expected that other tools consume the XES and handle the stream.

Handling the implications of evidence checks: The tool support does not cover
important aspects, such as how to respond to the failing checks (e.g., corrective
actions) or which are the implications at higher levels. For instance, impact anal-
ysis could be performed to identify which argumentations at the assurance case
level do not hold any more. Notably, our approach can help to identify rebutting
defeaters (an evidence contradicting a claim), thus potentially contributing in
the process of dialectic argumentation [2,12]. In this process, the objective will
be to defeat the defeater through further argumentation so as to maintain the



assurance case in a valid state. At even higher level, impact analysis can be per-
formed at reference framework level, i.e., which parts of the reference framework
is respected, and which are not because of the missing or incorrect evidence. In
this sense, the approach can be extended to contribute to checkpointed safety
cases for submission to regulators. Currently, the XES logs work directly at
evidence model level, but not at higher levels.

Handling valid checks that are actually invalid: Our current approach does not
consider evidences that might appear valid through the automatic check, but
they are not. For instance, the environment might have changed causing the case
to become invalid, or malicious actors can change an actual evidence artefact to
promote false confidence that the system is safe when it actually is not. Dialectic
argumentation to refine the assurance case (and the evidence model) seems to
be a possible solution to alleviate these problems.

Acknowledgment. Jabier Martinez was supported by the TRUSTIND project (Cre-
ating Trust in the Industrial Digital Transformation), an Elkartek project funded by
the Basque Government. The work of Angel J. Varela-Vaca has been funded by the
projects COPERNICA (P20 01224), AETHER-US (PID2020-112540RB-C44/AEI/ 10.
13039 / 501100011033), and METAMORFOSIS (US 1381375). We would like to thank
the anonymous reviewers for their valuable feedback.

References

1. Asaadi, E., Denney, E., Menzies, J., Pai, G.J., Petroff, D.: Dynamic assurance
cases: a pathway to trusted autonomy. Computer 53(12), 35–46 (2020)

2. Bloomfield, R., Rushby, J.: Assurance 2.0: a manifesto. In: Parsons, M., Nicholson,
M. (eds.) Systems and Covid-19: Proceedings of the 29th Safety-Critical Systems
Symposium (SSS 2021), pp. 85–108. Safety-Critical Systems Club, York, UK, final
draft available as arXiv preprint arXiv:2004.10474 (2021)

3. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engi-
neering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Softw. Eng. 44(11), 1039–1069 (2018)

4. Denney, E., Pai, G., Whiteside, I.: Hierarchical safety cases. In: Brat, G., Rungta,
N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 478–483. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38088-4 37

5. Denney, E., Pai, G.J., Habli, I.: Dynamic safety cases for through-life safety assur-
ance. In: ICSE 2015, pp. 587–590. IEEE Computer Society (2015)

6. Eclipse: Opencert platform (2022). https://www.eclipse.org/opencert
7. Goal Structuring Notation Standard Working Group: Goal Structuring Notation

(2021). https://scsc.uk/gsn
8. McDermid, J.A., Jia, Y., Habli, I.: Towards a framework for safety assurance of

autonomous systems. In: Artificial Intelligence Safety (2019)
9. Moncada, D.S.V., et al.: Dynamic safety certification for collaborative embed-

ded systems at runtime. In: Model-Based Engineering of Collaborative Embedded
Systems, pp. 171–196. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
62136-0 8

10. OMG: Structured Assurance Case Metamodel (2017). https://www.omg.org/spec/
SACM

http://arxiv.org/abs/2004.10474
https://doi.org/10.1007/978-3-642-38088-4_37
https://www.eclipse.org/opencert
https://scsc.uk/gsn
https://doi.org/10.1007/978-3-030-62136-0_8
https://doi.org/10.1007/978-3-030-62136-0_8
https://www.omg.org/spec/SACM
https://www.omg.org/spec/SACM


11. Ruiz, A., et al.: AMASS platform validation, D2.9 (2019). https://www.amass-
ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/D2.9 AMASS-platform-
validation AMASS Final.pdf

12. The Assurance Case Working Group (ACWG): Assurance case guidance: chal-
lenges, common issues and good practice v1 (2021). https://scsc.uk/r159:1

13. Virvou, M., Matsuura, S.: Toward dynamic assurance cases. In: Knowledge-Based
Software Engineering: Proceedings of the Tenth Joint Conference on Knowledge-
Based Software Engineering, vol. 240 (2012)

14. Zeller, M.: Towards continuous safety assessment in context of DevOps. In: Habli,
I., Sujan, M., Gerasimou, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2021.
LNCS, vol. 12853, pp. 145–157. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-83906-2 11

https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/D2.9_AMASS-platform-validation_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/D2.9_AMASS-platform-validation_AMASS_Final.pdf
https://www.amass-ecsel.eu/sites/amass.drupal.pulsartecnalia.com/files/D2.9_AMASS-platform-validation_AMASS_Final.pdf
https://scsc.uk/r159:1
https://doi.org/10.1007/978-3-030-83906-2_11
https://doi.org/10.1007/978-3-030-83906-2_11

	Dynamic Checks of Evidence Models for Assurance Projects in Eclipse OpenCert
	1 Introduction
	2 Approach
	2.1 Extensible Evidence Checks
	2.2 Dynamic Evidence Checks and Log Streaming

	3 Related Work
	4 Conclusion and Perspectives
	References




