
HAL Id: hal-04426156
https://hal.science/hal-04426156

Submitted on 30 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interval Weight-Based Abstraction for Neural Network
Verification

Fateh Boudardara, Abderraouf Boussif, Pierre-Jean Meyer, Mohamed Ghazel

To cite this version:
Fateh Boudardara, Abderraouf Boussif, Pierre-Jean Meyer, Mohamed Ghazel. Interval Weight-Based
Abstraction for Neural Network Verification. International Conference on Computer Safety, Relia-
bility, and Security, Sep 2022, Munich, Germany. pp.330-342, �10.1007/978-3-031-14862-0_24�. �hal-
04426156�

https://hal.science/hal-04426156
https://hal.archives-ouvertes.fr

Interval weight-based abstraction for neural
network verification

Fateh Boudardara1[0000−0001−5771−7676], Abderraouf Boussif1, Pierre-Jean
Meyer2, and Mohamed Ghazel1,2

1 Technological Research Institute Railenium, 180 rue Joseph-Louis Lagrange,
F-59308, Valenciennes, France

{fateh.boudardara,abderraouf.boussif}@railenium.eu
2 Univ Gustave Eiffel, COSYS-ESTAS, 20 rue Élisée Reclus, F-59666, Villeneuve

d’Ascq, France {pierre-jean.meyer,mohamed.ghazel}@univ-eiffel.fr

Abstract. In recent years, neural networks (NNs) have gained much
maturity and efficiency, and their applications have spread to various
domains, including some modules of safety-critical systems. On the
other hand, recent studies have demonstrated that NNs are vulnerable
to adversarial attacks, thus a neural network model must be verified
and certified before its deployment. Despite the number of existing
formal verification methods of neural networks, verifying a large network
remains a major challenge for these methods. This is mostly due to
the scalability limitations of these approaches and the non-linearity
introduced by the activation functions in the NNs. To help tackle this
issue, we propose a novel abstraction method that allows the reduction
of the NN size while preserving its behavioural features. The main idea
of the approach is to reduce the size of the original neural network
by merging neurons belonging to the same layer, and defining the new
weights as intervals and sums of absolute values of those of the merged
neurons. The approach allows for producing an abstract (i.e., reduced)
model that is smaller and simpler to verify, while guaranteeing that
this abstract model is an over-approximation of the original one. Our
early experiments show that the approach enhances the scalability when
performing verification operations, such as output range computation,
on the abstract model.

Keywords: Neural network abstraction · Neural network verification ·
Over-approximation · Output range computation

1 Introduction

Neural networks (NNs) are a machine learning technique that is extensively
integrated today in several domains, such as financial transactions and trading,
image recognition and object detection [13]. Moreover, NNs are increasingly
deployed in safety-critical systems such as autonomous vehicles and trains [3,18].
The standard evaluation methods of neural networks, that rely on running a
series of tests on a finite subset of sample input data, cannot provide any

2 F. Boudardara et al.

guarantee on the unseen samples. Indeed, these methods have proven to be
sensitive and easy to fool by applying imperceptible perturbations. For instance,
some undesired behaviours can be generated by applying small perturbations on
the inputs [12,22]. This raises the issue about how these models can be verified
and certified when it comes to deploy them in safety-critical systems.

Being given the accomplishments of formal methods in proving safety
features in different software and hardware systems including in safety-critical
applications [2,4], the idea of applying these methods on NNs has attracted a
lot of attention; significant progress has been achieved in recent years and many
NN verification methods and tools are developed [8,23]. In fact, NN verification
methods can be classified into two main groups: complete and incomplete.
Complete verification methods, also called exact methods, encode the exact
behaviour of the model and the property to verify as linear programming (LP)
problem, and then apply an adequate LP-solver to perform the verification.
Mixed-Integer Linear Programming (MILP) and SAT/SMT based methods are
the main techniques in this category of NN verification methods [5,6,9,11,15].
Because of the non-linearity of NNs (related to non-linear activation functions),
these methods are able to verify only small networks. In contrast, incomplete
methods construct an abstract model, generally by linearizing the activation
function using abstract domains [20], linear functions [6] or some quadratic
functions [25]. These methods are more scalable and can verify larger NNs, but
since they actually investigate over-approximations of the model, they suffer
from spurious counterexamples.

The main challenge of the aforementioned works lies in their scalability;
indeed, the existing methods do not scale to verify large NNs [8,23]. To
handle this issue, some model reduction methods are proposed [1,7,16,17,19,21].
The broad concept of these methods is to reduce the size of the neural
network by merging some similar-behaving neurons while guaranteeing an over-
approximation of the original network. This ensures that the property at hand
holds on the original network whenever it holds on the reduced one.

In this work, we propose a novel NN reduction method to enhance the
scalability of NN verification techniques. The method consists in merging nodes
in the same layer based on formulas for calculating their incoming and outgoing
weights. The obtained model N over-approximates3 the behavior of the original
one N , i.e., for every input x, the output y of N is included in the set of outputs
Y of N . The obtained network N is called an interval neural network since it may
have interval weights [17]. To evaluate the efficiency of the proposed approach,
we implemented it as a Python framework and used it to build the abstract
model.

With regard to the related works, the closest approaches to our work are
those proposed by Prabhakar and Afzal [17] and Elboher et al. [7]. The former
is based on taking the interval hull of the incoming and the outgoing weights
of the merged neurons. In our method, we replace the outgoing weights by the
sum of the absolute value of the weights to enhance the precision. Elboher et

3 With a slight abuse of notation, we write N ⊆ N .

Interval weight-based abstraction for neural network verification 3

al. [7] abstract the outgoing weights by taking their sum after ensuring that
they have all the same sign (positive or negative). In addition, the abstraction
of incoming weights is done by either taking their min or max depending
on the category of the merged neurons (only neurons belonging to the same
category can be merged); hence an important preprossessing phase is required
before applying the abstraction. In our approach, no preprossessing phase is
required and, theoretically, all neurons of the same layer may be merged together.
In addition, and unlike these approaches that support only NNs with Relu,
our approach can abstract networks with Tanh and Relu activation functions;
furthermore, it can be extended to cover a wide range of activation functions.

The remaining of this paper is structured as follows: in Section 2 we provide
a technical background on NNs and their verification. Section 3 is devoted to
presenting our abstraction approach. Section 4 is dedicated to the numerical
evaluation of the approach based on the ACAS Xu benchmark. Finally, section 5
provides some concluding remarks and future work directions.

2 Background

2.1 Neural Networks

x1

x2

x3

y1

y2

Hidden
layer 1

Input
layer

Hidden
layer 2

Output
layer

Fig. 1: Example of a neural network

A neural network N is a set of layers L = {l0, l1, ...ln} where l0 and ln are the
input and the output layer, respectively, and Hl = {li : 1 ≤ i ≤ n− 1} is the set
of hidden layers. Each layer li contains a set of nodes Si, such that ∀ 1 ≤ i ≤ n,
a node sij ∈ Si is connected to all the nodes si−1,k of the predecessor layer li−1

with weighted edges wi
jk = w(si−1,k, sij). Accordingly, the value v(sij) of a node

4 F. Boudardara et al.

sij ∈ Si : 1 ≤ i ≤ n can be calculated using Equation 1.{
z(sij) =

∑
s∈Si−1

w(s, sij)× v(s) + bsij
v(sij) = α(z(sij))

(1)

where α : R → R is the activation function of node sij , and bsij is its bias.
Calculating the output of N for a given value of the input x is performed by
calculating v(snj),∀snj ∈ Sn. This can be done by initializing S0 with the given
values of x (x is a vector and |S0| = |x|), and then repeatedly applying Equation 1
to each hidden node sij ∈ Si, i ∈ {1, 2, ..., n}. In this paper, and for the sake
of simplicity and readability, zij can be used to denote the value of a node
sij ∈ Si before activation instead of z(sij), similarly, the value after activation
can be denoted as vij . Besides, the value of a hidden layer li for a given input is
represented by the column vector Vi = [vi1, vi2, ..., vi|Si|]

T .
Prabhalar and Afzal [17] introduced a new representation of neural networks

called interval neural networks (INNs). The weights of edges in INNs are intervals
w = [wl, wu] instead of scalars as in classic NNs. It is worth noticing that the
classic neural networks can be considered as a particular case of INNs where
wl = wu. The general structure along with the operations on INNs are similar
to those on NNs.

As mentioned before, α in Equation 1 is an activation function. Recall that
there are various types of activation functions which are used in NNs. Equations 2
and 3 represent Relu and Tanh activation functions, respectively.

relu(x) = max(0, x) ; x ∈ R (2)

tanh(x) =
ex − e−x

ex + e−x
; x ∈ R (3)

A neural network can be seen as a function N : R|S0| → R|Sn|, such that:
N (x) = fn(fn−1(...(f1(x))...), where fi is the corresponding function of layer
li, for 1 ≤ i ≤ n. Fig. 1 depicts a network of 3 inputs, 2 hidden layers and 2
outputs. Its associated function is: N : R3 → R2, s.t: N (x) = f3(f2(f1(x))).

Remark 1. Notice that a neural network with α activation function (denoted
as α-NN) means that the same function α is applied on all its hidden layers.
For instance, a Relu-NN (resp. Tanh-NN) has only Relu (resp. Tanh) activation
functions.

2.2 Verification of Neural Networks

Formal verification is the process of checking the correctness of a system model
M with respect to a set of specifications, i.e., to check whether or not a model of
a system satisfies a set of requirements (specifications) [4]. A formal verification
method is used to prove that some property P holds on a system-model M

Interval weight-based abstraction for neural network verification 5

(a) The original network (b) The abstract network

Fig. 2: An example explaining the main idea of the proposed approach.

(denoted as M |= P); otherwise, some counterexamples illustrating that P is
not satisfied by M (M ̸|= P) can be issued.

Similarly, NN verification consists of determining whether the NN model N
satisfies some property P , which is generally defined by a set of constraints on
its input and output. That is to say, the NN verification problem can be defined
by the tuple ⟨N,Pre, Post⟩ where N is the NN model, Pre is the set of input
constraints and Post is the set of output constraints [14]. Let us denote by
N : R|S0| → R|Sn| the associated function of N , a verification property P on N
can be formally expressed as:

∀x ∈ R|S0|, P re(x) =⇒ Post(N (x)) (4)

3 Proposed Approach

3.1 Main Idea

In this paper, we propose a method to construct an over-approximation of NNs
by merging neurons that belong to the same layer. To explain the general idea of
the method, let us refer to Fig. 2 where the original network N is presented on
Fig. 2a and its abstract network N after merging nodes s1 and s2 is presented on
Fig. 2b. The challenge is how to determine the weights of the edges connecting
the node ŝ to the previous and the next layer, while ensuring that y = v(s)
is included in ȳ = v̂(s̄) for all possible values of sin (keeping in mind that
the values of nodes of the abstract network N are intervals). The value of s is
y = α(c × v(s1) + d × v(s2)), and the value of its associated abstract node s̄ is
ȳ = α(ŵ2v̂(ŝ)), s.t: v̂(ŝ) = α(ŵ1x), where ŵ2 is the weight connecting ŝ to s̄ and
ŵ1 the weight w(sin, s). Our goal is to calculate ȳ in such a way that y ∈ ȳ. We
can define the abstract incoming weight of ŝ as ŵ1 = [min(a, b), max(a, b)] to
ensure that v(s1) ∈ v̂(ŝ) and v(s2) ∈ v̂(ŝ). The next step is to define ŵ2. One
way to do that is to sum c and d, i.e., ŵ2 = c + d. However, in case of c = −d,
the sum would be zero (which leads to always having ȳ = 0). To avoid that,
we take the sum of the absolute value of c and d, and we transfer the signs of
c and d backward to the previous layer’s weights. The formula for calculating
the interval weights will be provided in the sequel for Tanh and Relu activation
functions.

6 F. Boudardara et al.

(a) A sub neural network containing
three hidden layers, we want to merge
the two nodes of layer li.

(b) The sub neural network after
abstraction. Here ŵl

k, ŵ
u
k : 1 ≤ k ≤ m are

the weights calculated using formula (6)

Fig. 3: An illustration of our abstraction method applied on a hidden layer li.
The model on the right is the abstraction of the one on the left, where the node
ŝ is obtained upon merging sip and siq.

For the sake of clarity, we firstly provide the abstraction formula for the case
of merging two neurons. Then, we discuss the general formula when it comes to
the case of merging a set of neurons.

Let us consider the example in Fig. 3 showing a sub-network that contains
three hidden layers with the same activation function α, and we aim to merge
neurons sip and siq of layer li. The incoming weights to sip and siq are denoted
by ak and bk, respectively. Formally, ak = w(si−1,k, sip) and bk = w(si−1,k, siq)
for each si−1,k ∈ Si−1. Analogously, we denote the outgoing weights by cj and
dj such that cj = w(sip, si+1,j) and dj = w(siq, si+1,j), for all si+1,j ∈ Si+1.

Definition 1. We define the sign function in this paper as follows: sign : R →
{−1, 1}

sign(x) =

{
1, if x ≥ 0

−1, otherwise
(5)

3.2 Abstraction for NNs with Tanh

In this part, we suppose that the used activation function α = tanh. The
abstraction of the two nodes of li is obtained by applying the steps presented in
Procedure 1.

Procedure 1

1. Create a new node ŝ
2. Calculate the incoming weights of ŝ: ∀si−1,k ∈ Si−1 : w(si−1,k, ŝ) = [ŵl

k, ŵ
u
k],

such that: ŵl
k = min

1≤j≤n
{sign(cj) ak, sign(dj) bk}

ŵu
k = max

1≤j≤n
{sign(cj) ak, sign(dj) bk}

(6)

Interval weight-based abstraction for neural network verification 7

(a) The original model N : sip and siq
of layer li are to be merged.

(b) The obtained model N after
abstraction.

Fig. 4: An example of the abstraction method applied on two neurons of hidden
layer li. Let us take v(si−1,1) = 2, then we have v(si+1,1) = 0 and v(si+1,2) = 10,
v̂(si+1,1) = [−20, 30] and v̂(si+1,2) = [−8, 12]. Hence, the over-approximation is
fulfilled, since v(si+1,k) ∈ v̂(si+1,k) for k = 1, 2.

where n = |Si+1| is the the number of neurons of li+1.
3. Calculate the outgoing weights of ŝ, namely ∀si+1,j ∈ Si+1:

ŵ(ŝ, si+1,j) = |cj |+ |dj | (7)

4. Calculate the
biases of ŝ: bŝ = [blŝ, b

u
ŝ], such that: blŝ = min

1≤j≤n
{sign(cj)bsip , sign(dj)bsiq}

and buŝ = max
1≤j≤n

{sign(cj)bsip , sign(dj)bsiq}, where bsip and bsiq are the biases

of sip and siq, respectively.
5. Remove sip and siq from Si, add ŝ to Si and connect ŝ to the nodes in li−1

and li+1 using the calculated weights.

Procedure 1 can be applied repeatedly on the same layer to merge pairs
of neurons, and can be iterated on multiple layers. An example depicting the
execution of our abstraction method is given in Fig. 4.

Proposition 1. Let N be a NN with Tanh activation function. The application
of Procedure 1 on a hidden layer li : i ∈ {1, 2, . . . , |N | − 1}, guarantees that for
every possible value of vi−1(s), s ∈ Si−1: vi+1 ∈ v̂i+1. ■

Due to the limit on the number of pages, the proofs are omitted from this
version of the paper.

Up to now, we have considered the procedure of abstraction through
the successive merging of two neurons each time. Hereafter, we propose the
generalized procedure to merge more than two nodes at the same time. This can
be done by updating equations 6 and 7, as follows:

Procedure 2
Lets denote by Ŝ ⊆ Si the set of neurons to merged:

8 F. Boudardara et al.

(a) A fragment of the original
model N : we want to merge s1 and
s2.

(b) The obtained partition after
abstraction procedure defined by
Equations 6 and 7.

Fig. 5: A counter-example of applying Procedure 1 on a Relu NNs.

1. Incoming weights of the abstract node ŝ:
ŵl

k = min
si∈Ŝ,s′∈Si+1

{sign(w(si, s′))× w(si−1,k, si)}

ŵu
k = max

si∈Ŝ,s′∈Si+1

{sign(w(si, s′))× w(si−1,k, si)}

2. Outgoing weights for each s′ ∈ Si+1:

ŵ(ŝ, s′) =
∑
si∈Ŝ

|w(si, s′)|

Corollary 1. Let N be a network with Tanh activation function, and N its
abstract model obtained using Procedure 2 on one or multiple hidden layers.
Then, the following holds: N ⊆ N . ■

Remark 2. Applying the proposed abstraction method until saturation would
result in a network with a single neuron in each hidden layer, which would be
a massive reduction of the size of the original network. However, it is plain to
state that there is a trade-off, between the size reduction of the original model
and the precision of the obtained abstract model, to be considered.

In the previous section, we considered networks with Tanh activation
function. In the next section, the approach will be adjusted to handle Relu-
networks.

3.3 Abstraction for NNs with Relu

We present in this section an adaptation of Formula 6 in order to extend our
abstraction technique to NNs with Relu. The Relu eliminates the negative values.
Hence, when we shift the signs of cj and dj back to previous layer (see Fig. 3), the
lower bound of the obtained output may be greater than the original output (as
shown in Fig. 5); namely assume that v(s1) = 1, then v(s4) = 4 ̸∈ v̂(s4) = [6, 9].
To tackle this issue, we propose the following procedure to calculate the lower
bound of the incoming weights for NNs with Relu activation function.

Interval weight-based abstraction for neural network verification 9

Fig. 6: An example illustrating the execution of Procedure 3 on a NN with Relu

Therefore, we update the main abstraction procedure, presented in
section 3.1, by adding a condition that checks whether the incoming and the
outgoing weights have the same signs. Adding such a condition guarantees that
the abstract model over-approximates the behaviour of the original one. For
instance, let us apply the new abstraction procedure on the same sub-network
presented in Fig. 5a. Assume again that v(s1) = 1, then the value of s4 is
v(s4) = 4. Its abstract sub-network is presented in Fig. 6; and for the same value
of s1 (v(s1) = 1) v̂(s4) = [0, 9]; hence, v(s4) ∈ v̂(s4).

Procedure 3
1. Create a new node ŝ
2. Let c∗j (resp. d∗j) be the outgoing weight cj (resp. dj) such that sign(cj∗)ak =

min
1≤j≤n

{sign(cj) ak} (resp. sign(dj∗) bk = min
1≤j≤n

{sign(dj) bk}).
Calculate the incoming interval weights of ŝ as follows: ∀si−1,k ∈ Si−1,
w(si−1,k, ŝ) = [ŵl

k, ŵ
u
k], such that:

(a) if sign(ak) ̸= sign(c∗j) or sign(bk) ̸= sign(d∗j), then:ŵl
k = min

1≤j≤n
{sign(cj) ak, sign(dj) bk}

ŵu
k = max

1≤j≤n
{sign(cj) ak, sign(dj) bk}

(b) if sign(ak) = sign(c∗j) and sign(bk) = sign(d∗j) then:{
ŵl

k = min{ak, bk}
ŵu

k = max
1≤j≤n

{sign(cj) ak, sign(dj) bk}

3. Calculate the outgoing weights of ŝ as follows:

∀si+1,j ∈ Si+1, ŵ(ŝ, si+1,j) = |cj |+ |dj |

4. Remove sip and siq from Si, and add ŝ to Si. Connect ŝ to the nodes in li−1

and li+1 using the calculated weights.
5. After applying the abstraction on all hidden layers, replace all the remaining

scalar weights w ∈ R by an interval: [min(w, 0),max(w, 0)].

Proposition 2. For a network N with the Relu activation function, applying
the abstraction method defined in Procedure 3 on a layer li : i ∈ {1, . . . , |N | − 1}
guarantees that for every possible value vi−1(s) of s ∈ Si−1 and ∀si+1,j ∈ Si+1 :
v(si+1,j) ∈ v(ŝi+1,j).

■

Notice that in Propositions 1 and 2, we assume that the layers li−1, li and
li+1 have the same activation function (either Tanh or Relu).

10 F. Boudardara et al.

4 Early Experiments

We implemented our abstraction method as a Python framework while
considering a NNET format reader [10]. The user can set the abstraction’s
parameters, such as the maximum number of nodes on each layer after
abstraction and the strategy of nodes selection. In our analysis, we simply
used random selection, but different nodes’ selection strategies (using heuristics
for instance) can be integrated. To evaluate the performance of our proposed
method, we conducted a series of experiments on the ACAS Xu benchmark [10].
This benchmark is a set of 45 NNs pertaining to an airborne-collision avoidance
system. Each network has 300 hidden nodes (6 hidden layers with 50 neurons
each), 7 inputs and 5 outputs.

After uploading the model N from the NNET file4, we generate 5 abstract
models N i , i ∈ {1, 2, 3, 4, 5} with 5, 15, 25, 35 and 45 nodes on all hidden layers,
respectively. We also considered some constraints on the NN input, namely
specified by property ϕ5 as defined in [11]. Moreover, we used the Interval Bound
Propagation (IBP) algorithm [24] for calculating the output range of N and
and abstract networks N i. Over 50 random runs, we calculated the average
of the abstraction time for each abstract network N i and we compared the
average of the output ranges (upper bound) and the IBP computation time of
abstract networks to those of the original network N . The obtained results are
summarized in Figures 7a, 7b, 8.

From Fig. 7a, we can observe that the precision of the abstract model highly
depends on the number of the merged nodes, i.e., allowing for more abstract
nodes leads to less precise abstract models. Contrarily, the output computation
time is proportional to the number of nodes on each layer as shown in Fig. 7b).

4 The network ACASXU_experimental_v2a_1_1.nnet is used in this work.

(a) Average of upper output range on
dimension 1

(b) IBP computation time on the original
and the reduced models

Fig. 7: Comparison between the output and computation time of the original
and the abstract models

Interval weight-based abstraction for neural network verification 11

Fig. 8: Abstraction time for different size of abstract models.

It is straightforward to notice that the fewer the number of nodes of each
layer, the faster the computation is performed. Although IBP is among the
fastest verification methods, its computation time is significantly higher than
the abstraction time which can be neglected if a more costly verification method
is applied.

5 Conclusion

In this paper, we proposed a novel NN reduction method for the sake of
enhancing the efficiency of various analysis operation that can be performed on
NNs, such as, for instance, the computation of the output range (for invariant’s
checking for instance) or any other verification operations. Our method can
be applied on both feed-forward Tanh-NN and Relu-NN. Yet, the approach
can be extended to further activation functions. The model reduction approach
guarantees that the abstract model is an over-approximation of the original one.
Therefore, once some property is satisfied on the abstract model N , it necessarily
holds on the original one N .

The approach is implemented using Python, and an experimental study was
conducted to analyse the efficiency and the precision of the generated abstract
model. The conducted experiments on the basis of a state-of-the-art benchmark
show how the precision of the abstract model is impacted by the size of its hidden
layers. Furthermore, we showed that the proposed method can effectively reduce
the output range computation time.

In the present paper, we proved the over-approximation of the abstract model
w.r.t. the original one in the case of Tanh and Relu activation functions. In future
work, we aim to extend the proof to consider the Sigmoid, Leaky Relu and SELU
activation functions. In addition, in the present work, the nodes to be merged
were selected randomly; but we intend to develop some nodes’ selection heuristics
that can improve the precision of the abstract model.

12 F. Boudardara et al.

Acknowledgements This research work contributes to the french collaborative
project TASV (autonomous passengers service train), with Railenium, SNCF,
Alstom Crespin, Thales, Bosch, and SpirOps. It was carried out in the framework
of IRT Railenium, Valenciennes, France, and therefore was granted public funds
within the scope of the French Program “Investissements d’Avenir”.

References

1. Ashok, P., Hashemi, V., Křetínskỳ, J., Mohr, S.: Deepabstract: Neural
network abstraction for accelerating verification. In: International Symposium on
Automated Technology for Verification and Analysis. pp. 92–107. Springer (2020)

2. Biere, A., Heule, M., van Maaren, H.: Handbook of satisfiability, vol. 185. IOS
press (2009)

3. Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., et al.: End to end learning for
self-driving cars. arXiv preprint (2016)

4. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R., et al.: Handbook of model
checking, vol. 10. Springer (2018)

5. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep
feedforward neural networks. In: Proc. 10th NASA Formal Methods. pp. 121–138
(2018)

6. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis.
pp. 269–286. Springer (2017)

7. Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for
neural network verification. In: International Conference on Computer Aided
Verification. pp. 43–65. Springer (2020)

8. Huang, X., Kroening, D., Ruan, W., Sharp, J., Sun, Y., Thamo, E., Wu, M., Yi,
X.: A survey of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability. Computer Science
Review 37, 100270 (2020)

9. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: International conference on computer aided verification. pp. 3–29.
Springer (2017)

10. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy
compression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th
Digital Avionics Systems Conference (DASC). pp. 1–10. IEEE (2016)

11. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: International conference
on computer aided verification. pp. 97–117. Springer (2017)

12. Kurakin, A., Goodfellow, I.J., Bengio, S.: Adversarial examples in the physical
world. In: Artificial intelligence safety and security, pp. 99–112. Chapman and
Hall/CRC (2018)

13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. nature 521(7553), 436–444
(2015)

14. Leofante, F., Narodytska, N., Pulina, L., Tacchella, A.: Automated verification
of neural networks: Advances, challenges and perspectives. arXiv preprint
arXiv:1805.09938 (2018)

Interval weight-based abstraction for neural network verification 13

15. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
relu neural networks. arXiv preprint (2017)

16. Prabhakar, P.: Bisimulations for neural network reduction. arXiv preprint (2021)
17. Prabhakar, P., Afzal, Z.R.: Abstraction based output range analysis for neural

networks. arXiv preprint (2020)
18. Ristić-Durrant, D., Franke, M., Michels, K.: A review of vision-based on-board

obstacle detection and distance estimation in railways. Sensors 21(10), 3452 (2021)
19. Shriver, D., Xu, D., Elbaum, S., Dwyer, M.B.: Refactoring neural networks for

verification. arXiv preprint (2019)
20. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying

neural networks. Proceedings of the ACM on Programming Languages 3(POPL),
1–30 (2019)

21. Sotoudeh, M., Thakur, A.V.: Abstract neural networks. In: International Static
Analysis Symposium. pp. 65–88. Springer (2020)

22. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. arXiv preprint (2013)

23. Urban, C., Miné, A.: A review of formal methods applied to machine learning.
arXiv preprint (2021)

24. Xiang, W., Tran, H.D., Yang, X., Johnson, T.T.: Reachable set estimation for
neural network control systems: A simulation-guided approach. IEEE Transactions
on Neural Networks and Learning Systems 32(5), 1821–1830 (2020)

25. Zhang, H., Weng, T.W., Chen, P.Y., Hsieh, C.J., Daniel, L.: Efficient neural
network robustness certification with general activation functions. arXiv preprint
(2018)

	Interval weight-based abstraction for neural network verification

