Skip to main content

Fast Node Selection of Networked Radar Based on Transfer Reinforcement Learning

  • Conference paper
  • First Online:
  • 923 Accesses

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 659))

Abstract

The networked radar system can synthesize different echo signals received by various radars and realize the cooperative detection of multiple radars, becoming more and more critical for data fusion sharing and network collaboration. However, due to the large number and wide range of nodes in the networked radar system, there exists a redundancy problem in radar node assignment, which causes additional resource consumption and slows down the task execution speed of radar node selection. To solve the above problem, this paper proposes a fast radar node selection method based on transfer reinforcement learning to quickly select the optimal and minimum node resources. The proposed method devises a novel reward function for the Monte Carlo Tree and a different termination state of iteration to select the minimize the number of radar nodes. In order to further accelerate the selection of radar nodes, transfer reinforcement learning is presented to fully leverage the previous knowledge. Experimental results show that our proposed method can quickly select the optimal and minimum radar nodes in a brief period, significantly improving the speed of radar node selection in the networked radar .

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

  2. Berenguer, I., Wang, X., Krishnamurthy, V.: Adaptive MIMO antenna selection. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 1, pp. 21–26. IEEE (2003)

    Google Scholar 

  3. Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993)

    Article  MATH  Google Scholar 

  4. Browne, C.B., et al.: A survey of Monte Carlo tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

    Article  Google Scholar 

  5. Godrich, H., Petropulu, A.P., Poor, H.V.: Sensor selection in distributed multiple-radar architectures for localization: a knapsack problem formulation. IEEE Trans. Signal Process. 60(1), 247–260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gorji, A.A., Tharmarasa, R., Blair, W., Kirubarajan, T.: Multiple unresolved target localization and tracking using colocated MIMO radars. IEEE Trans. Aerosp. Electron. Syst. 48(3), 2498–2517 (2012)

    Article  Google Scholar 

  7. Guo, J., Tao, H.: Cramer-Rao lower bounds of target positioning estimate in netted radar system. Digital Signal Process. 118, 103222 (2021)

    Article  Google Scholar 

  8. Hou, Y., Ong, Y.S., Feng, L., Zurada, J.M.: An evolutionary transfer reinforcement learning framework for multiagent systems. IEEE Trans. Evol. Comput. 21(4), 601–615 (2017)

    Article  Google Scholar 

  9. Huang, B., Feng, F., Lu, C., Magliacane, S., Zhang, K.: AdaRL: what, where, and how to adapt in transfer reinforcement learning. arXiv preprint arXiv:2107.02729 (2021)

  10. Konidaris, G., Barto, A.: Autonomous shaping: knowledge transfer in reinforcement learning. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 489–496 (2006)

    Google Scholar 

  11. Lazaric, A.: Transfer in reinforcement learning: a framework and a survey. In: Reinforcement Learning, pp. 143–173. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-27645-3_5

  12. Mirjalili, S.: Genetic algorithm. In: Evolutionary Algorithms and Neural Networks. SCI, vol. 780, pp. 43–55. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93025-1_4

    Chapter  MATH  Google Scholar 

  13. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  14. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  Google Scholar 

  15. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI global (2010)

    Google Scholar 

  16. Zhu, Z., Lin, K., Zhou, J.: Transfer learning in deep reinforcement learning: a survey. arXiv preprint arXiv:2009.07888 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, Y. et al. (2022). Fast Node Selection of Networked Radar Based on Transfer Reinforcement Learning. In: Shi, Z., Jin, Y., Zhang, X. (eds) Intelligence Science IV. ICIS 2022. IFIP Advances in Information and Communication Technology, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-031-14903-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14903-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14902-3

  • Online ISBN: 978-3-031-14903-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics