Skip to main content

Improving Automated Hyperparameter Optimization with Case-Based Reasoning

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2022)

Abstract

The hyperparameter configuration of machine learning models has a great influence on their performance. These hyperparameters are often set either manually w. r. t. to the experience of an expert or by an Automated Hyperparameter Optimization (HPO) method. However, integrating experience knowledge into HPO methods is challenging. Therefore, we propose the approach HypOCBR (Hyperparameter Optimization with Case-Based Reasoning) that uses Case-Based Reasoning (CBR) to improve the optimization of hyperparameters. HypOCBR is used as an addition to HPO methods and builds up a case base of sampled hyperparameter vectors with their loss values. The case base is then used to retrieve hyperparameter vectors given a query vector and to make decisions whether to proceed trialing with this query or abort and sample another vector. The experimental evaluation investigates the suitability of HypOCBR for two deep learning setups of varying complexity. It shows its potential to improve the optimization results, especially in complex scenarios with limited optimization time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The example is derived from an introduction on convolutional neural networks, accessible at https://www.tensorflow.org/tutorials/images/cnn.

  2. 2.

    http://procake.uni-trier.de.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

    Article  Google Scholar 

  2. Amin, K., Lancaster, G., Kapetanakis, S., Althoff, K.-D., Dengel, A., Petridis, M.: Advanced similarity measures using word embeddings and siamese networks in CBR. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1038, pp. 449–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29513-4_32

    Chapter  Google Scholar 

  3. Auslander, B., Apker, T., Aha, D.W.: Case-based parameter selection for plans: coordinating autonomous vehicle teams. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS (LNAI), vol. 8765, pp. 32–47. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11209-1_4

    Chapter  Google Scholar 

  4. Bergmann, R.: Experience Management: Foundations, Development Methodology, and Internet-Based Applications. LNCS, vol. 2432. Springer, Heidelberg (2002)

    Book  Google Scholar 

  5. Bergmann, R., Grumbach, L., Malburg, L., Zeyen, C.: ProCAKE: a Process-oriented case-based reasoning framework. In: Workshop Proceedings of ICCBR, vol. 2567, pp. 156–161. CEUR-WS.org (2019)

    Google Scholar 

  6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2), 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Claesen, M., de Moor, B.: Hyperparameter search in machine learning. CoRR abs/1502.02127 (2015)

    Google Scholar 

  8. Falkner, S., Klein, A., Hutter, F.: Bohb: robust and efficient hyperparameter optimization at scale. In: ICML, pp. 1437–1446 (2018)

    Google Scholar 

  9. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_1

    Chapter  Google Scholar 

  10. Hoffmann, M., Bergmann, R.: Using graph embedding techniques in process-oriented case-based reasoning. Algorithms 15(2), 27 (2022)

    Article  Google Scholar 

  11. Hoffmann, M., Malburg, L., Klein, P., Bergmann, R.: Using siamese graph neural networks for similarity-based retrieval in process-oriented case-based reasoning. In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 229–244. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2_15

    Chapter  Google Scholar 

  12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of International Conference on Neural Networks (ICNN’95), Perth, WA, Australia, 27 November - 1 December, 1995, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  13. Leake, D., Crandall, D.: On bringing case-based reasoning methodology to deep learning. In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 343–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2_22

    Chapter  Google Scholar 

  14. Leake, D., Schack, B.: Exploration vs. exploitation in case-base maintenance: leveraging competence-based deletion with ghost cases. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 202–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_14

    Chapter  Google Scholar 

  15. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Luo, G.: A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Netw. Model. Anal. Health Inform. Bioinf. 5(1), 1–16 (2016). https://doi.org/10.1007/s13721-016-0125-6

    Article  Google Scholar 

  17. Malburg, L., Hoffmann, M., Trumm, S., Bergmann, R.: Improving similarity-based retrieval efficiency by using graphic processing units in case-based reasoning. In: Proceedings of the 34th FLAIRS Conference FloridaOJ (2021)

    Google Scholar 

  18. Mathisen, B.M., Bach, K., Aamodt, A.: Using extended siamese networks to provide decision support in aquaculture operations. Appl. Intell. 51(11), 8107–8118 (2021). https://doi.org/10.1007/s10489-021-02251-3

    Article  Google Scholar 

  19. Molina, M.M., Luna, J.M., Romero, C., Ventura, S.: Meta-learning approach for automatic parameter tuning: a case study with educational datasets. In: Proceedings of the 5th International Conference on Educational Data Mining, pp. 180–183. Chania, Greece (2012)

    Google Scholar 

  20. Pavón, R., Díaz, F., Laza, R., Luzón, V.: Automatic parameter tuning with. a bayesian case-based reasoning system a case of study. Expert Syst. Appl. 36(2), 3407–3420 (2009)

    Article  Google Scholar 

  21. Quijano-Sánchez, L., Bridge, D., Díaz-Agudo, B., Recio-García, J.A.: A case-based solution to the cold-start problem in group recommenders. In: Agudo, B.D., Watson, I. (eds.) ICCBR 2012. LNCS (LNAI), vol. 7466, pp. 342–356. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32986-9_26

    Chapter  Google Scholar 

  22. Roth-Berghofer, T.R.: Knowledge Maintenance of Case-Based Reasoning Systems: The SIAM Methodology, Dissertationen zur künstlichen Intelligenz. Akad. Verl.-Ges. Aka, Berlin (2003)

    Google Scholar 

  23. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_9

    Chapter  Google Scholar 

  24. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)

    Google Scholar 

  25. Wettschereck, D., Aha, D.W.: Weighting features. In: Veloso, M., Aamodt, A. (eds.) ICCBR 1995. LNCS, vol. 1010, pp. 347–358. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60598-3_31

    Chapter  Google Scholar 

  26. Yang, L., Shami, A.: On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing 415, 295–316 (2020)

    Article  Google Scholar 

  27. Yeguas, E., Luzón, M.V., Pavón, R., Laza, R., Arroyo, G., Díaz, F.: Automatic parameter tuning for evolutionary algorithms using a bayesian case-based reasoning system. Appl. Soft Comput. 18, 185–195 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, M., Bergmann, R. (2022). Improving Automated Hyperparameter Optimization with Case-Based Reasoning. In: Keane, M.T., Wiratunga, N. (eds) Case-Based Reasoning Research and Development. ICCBR 2022. Lecture Notes in Computer Science(), vol 13405. Springer, Cham. https://doi.org/10.1007/978-3-031-14923-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14923-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14922-1

  • Online ISBN: 978-3-031-14923-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics