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Abstract. Providing expert trajectories in the context of Imitation
Learning is often expensive and time-consuming. The goal must therefore
be to create algorithms which require as little expert data as possible. In
this paper we present an algorithm that imitates the higher-level strat-
egy of the expert rather than just imitating the expert on action level,
which we hypothesize requires less expert data and makes training more
stable. As a prior, we assume that the higher-level strategy is to reach
an unknown target state area, which we hypothesize is a valid prior for
many domains in Reinforcement Learning. The target state area is un-
known, but since the expert has demonstrated how to reach it, the agent
tries to reach states similar to the expert. Building on the idea of Tempo-
ral Coherence, our algorithm trains a neural network to predict whether
two states are similar, in the sense that they may occur close in time.
During inference, the agent compares its current state with expert states
from a Case Base for similarity. The results show that our approach can
still learn a near-optimal policy in settings with very little expert data,
where algorithms that try to imitate the expert at the action level can
no longer do so.

Keywords: Case-Based Reasoning, Inverse Reinforcement Learning, In-
complete Trajectories, Learning from Observations, Temporal Coherence

1 Introduction

In Reinforcement Learning (RL), the goal of the agent, given a Markov Decision
Process, is to maximize the expected cumulative reward. The higher the expected
reward, the better the agent’s policy. In Imitation Learning, on the other hand,
the agent does not have access to a reward signal from the environment. Instead,
it either has access to an expert who can be asked online for the best action
for a given state or a set of trajectories generated by the expert is available.
Imitation Learning has been proven to be particularly successful in domains
where the demonstration by an expert is easier than the construction of a suitable
reward function [AD21]. There are two main approaches to Imitation Learning:
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Behavioral Cloning (BC) [Pom91] and Inverse Reinforcement Learning (IRL)
[FLLI7TIAD21JANO4]. In BC, the agent learns via supervised learning to produce
the same actions that the expert would have produced. The advantage of this
approach is that no further rollouts in the environment are necessary. However,
the approach suffers greatly from compounding error, i.e., the slow drift of states
visited by the expert [RGB11]. In the second approach, IRL, a reward function
is learned under which the expert is uniquely optimal. Then, a policy can be
learned using classical Reinforcement Learning and this reconstructed reward
function. However, the drawback of this approach is that it usually requires a
lot of rollouts in the environment, as it often includes RL as a subroutine.

GAIL [HEI6| is another approach to Imitation Learning. It builds on the
ideas of Generative Adversarial Networks. In this approach, a policy and a dis-
criminator are learned. The goal of the discriminator is to be able to distinguish
state-action pairs of the expert from state-action pairs of the agent, while the
goal of the policy is to fool the discriminator. GAIL requires expert actions,
but there is an extension, named GAIfO, which does not [TWS18]. While GAIL
discriminates between state-action pairs produced by the agent or the expert
respectively, GAIfO does so with state transitions. In this paper we consider,
as GAIfO does, the setting where no expert actions are available to the agent.
This setting is also called Learning from Observation (LfO) or Imitation from
Observation (IfO) [YMHT19JTWSIS].

Providing expert trajectories is often very expensive and time-consuming, espe-
cially if the expert is a human. The goal must therefore be to create algorithms
which require as little expert data as possible.

The aim of this paper is to present an algorithm that imitates the higher-level
strategy of the expert rather then just imitating the expert on action level.

Our motivation for this is that we hypothesize that it takes less expert data
to learn the higher-level strategy than to imitate the expert on action level. We
also hypothesize that it makes the training more stable, with less “forgetting” of
what has already been learned. As a prior for the higher-level strategy, we assume
that the higher-level strategy is to reach an unknown target state area, which
we hypothesize is a valid prior for many domains in Reinforcement Learning.

We present an algorithm that learns these higher-level strategies from expert
trajectories. To prove that the algorithm does not imitate the expert on action
level, we consider a special setting of Imitation Learning, which is characterized
by incomplete expert trajectories. Here, the agent does not see every state of the
expert trajectory, but, for example, only every fifth. Thus, it cannot imitate the
expert on action level.

The idea behind machine learning is to derive general rules from a large amount
of data, which can then be applied to new, unknown scenarios. This induction-
based learning principle differs from Case-Based problem solving. In Case-Based
Reasoning, a set of problems solved in the past is stored in a database. If a
new, unknown problem is to be solved, the problem most similar to the current
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situation is retrieved from the database and used to solve the current problem.
Applications of Case-Based Reasoning range from explaining neural network out-
puts [LLCRISIKK19] over financial risk detection [LPS21] to medical diagnosis
[CB16]. In our algorithm we build on ideas from Case-Based Reasoning as well
as on the idea of Temporal Coherence.

Temporal Coherence [GBT™15MCWO09JZNYTI] originates from Video Rep-
resentation Learning, where the idea is that two images, which occur shortly
after each other in a video, are very likely to show the same object or objects.
The two images should therefore have a similar representation. On the other
hand, distant images should have different representations. The combination of
this convergence and divergence, also called contrastive learning, can be used as
a self-supervised training signal to learn semantically meaningful representations
IKHW™21].

Our contribution in this paper is twofold. First, we propose the setting with
incomplete expert trajectories without expert actions as a way to prove that
the agent really learns the expert’s strategy and does not imitate the expert on
action level. The prior we are using for the higher-level strategy is to reach an
unknown target state area. Second, we present an algorithm that can learn such
higher-level strategies and we test it on four typical domains of RL. The results
show that our approach can still learn a near-optimal policy in settings with
very little expert data, where IRL algorithms that try to imitate the expert at
the action level can no longer do so.

2 Background

In this section we want to provide a brief introduction to Markov Decision Pro-
cesses (MDP) [ADBBI7]. A MDP is a tuple (S, A,T, R,~). S is a set of states,
combined with a distribution of starting states p(sp). A is a set of actions the
agent can perform. T is the transition function of the environment which com-
putes the next state ;11 given a state s; at time ¢t and an action as: T'(sp11]8¢, at).
The property of T that the computation of s;11 depends only on the last state
s¢ and not on s, is also called the Markov property, hence the name Markov
Decision Process. 1 = R(st,at,5¢41) is a reward function and v € [0;1] is a
discount factor. If v < 1, immediate rewards are preferred compared to later
rewards. An agent acts in a MDP using its policy 7. The policy is a function
which outputs an action a given a state s: m(s) = a. MDPs are often episodic,
which means that the agent acts for T steps, after which the environment is reset
to a starting state. The goal of the agent in a MDP is to maximize the expected
return by finding the policy

7" = argmax F[R|n] (1)

where the return R is calculated via:

T-1
R=> 7'rn (2)
t=0



4 Nifllein et al.

3 Related Work

Combination of Case-Based Reasoning (CBR) and Reinforcement
Learning (RL): In [BRLAMQ9] the authors use Case-Based Reasoning (CBR)
in the setting of Heuristic Accelerated Reinforcement Learning, where a heuristic
function assists in action selection to accelerate exploration in the state-action
space. In [ALUHMAQS], Case-Based Reasoning is used to efficiently switch be-
tween previously stored policies learned with classical RL. A similar approach is
taken by [WW14]. Most Imitation Learning algorithms try to imitate the expert
skill step-by-step. In [LHYL19], a hierarchical algorithm is presented where this
goal is mitigated. Instead, a policy is learned that reaches sub-goals, which in
turn are sampled by a meta-policy from the expert demonstrations.

Temporal Coherence in Reinforcement Learning: Some papers have
already investigated the use of Temporal Coherence in the context of Reinforce-
ment Learning. For example, in [FDH™19| it was proposed to learn an embedding
for the inputs of the Markov Decision Process, such that the euclidean distance
in the embedding space is proportional to the number of actions the current
agent needs to get from one state to the other. The byproduct of this is a pol-
icy that can theoretically reach any previously seen state on demand. A similar
idea is followed in the context of goal-conditioned RL: In [LSSL21] a proximity
function f(s,g) is learned that outputs a scalar proportional to the distance of
the state s to the goal g. The distance then serves as a dense reward signal for a
classical RL agent. This is especially beneficial when the environment’s reward
function is sparse.

In [SLCT18], a special setting is considered where multiple observations are
available simultaneously, showing the same state from different perspectives.
An embedding is then learned so that contemporaneous observations have the
same embedding and temporally distant observations have different embeddings.
Thus, a perspective-invariant representation is learned, which contains semantic
information. That paper also considers the case where only one perspective is
available. In this case, the embeddings of two nearby inputs should be as similar
as possible and temporally distant inputs should be as dissimilar as possible.
We build on this idea of Temporal Coherence, although we do not learn an em-
bedding. [DTLSIS| extends the idea of [SLCT18] to input sequences to contrast
movements.

In [SRM™18|, the concept of Reachability Networks is already introduced,
i.e., a network that classifies whether two states can occur in short succession in
a trajectory. This network is then used as a curiosity signal to guide exploration
in sparse reward domains. We build on this concept, but use it differently. While
in [SRM 18| the agent searches for dissimilar states, the goal of the agent in our
approach is to reach similar states (compared to expert states).

Curriculum via Expert Demonstrations: As we will see in the next sec-
tion, the reconstructed reward function in our approach can be interpreted as
an implicit curriculum. A related approach, which creates an explicit curriculum
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using expert demonstrations, is [DHW2I]. In that paper the expert trajectory
is divided into several sections and state resetting to expert states is used to
increase the difficulty of reaching the goal state. The sector from which expert
states are sampled for resetting is gradually pushed away from the goal as the
curriculum progresses. A similar approach is [HAE™20|, which again uses reset-
ting to starting states of varying difficulty.

Unsupervised Perceptual Rewards for Imitation Learning: the clos-
est work to ours is [SXLI6]. In that paper the authors examine how to use pre-
trained vision models to reconstruct a reward function from few human video
demonstrations. They do so by first splitting the human demo videos into seg-
ments, then selecting features of a pre-trained model which best discriminate
between the segments and then using a reward function, which is based on these
selected features, to learn a policy via standard RL algorithms. The biggest dif-
ference to our algorithm is that [SXLI6] reconstructs the reward function entirely
before training in the RL domain. In contrast, we learn the reward function and
the policy at the same time.

4 Case-Based Inverse Reinforcement Learning (CB-IRL)

In this work, we consider a special setting of Imitation Learning that is charac-
terized by two main features. First, there are no expert actions available to the
agent and, second, the expert trajectories are incomplete, i.e., from the original
sequence of MDP states of the expert [sg, s1, $2, ..., 7], the agent only sees, for
example, every fifth state: [so, 5, s10, -..]. This makes it impossible for the agent
to imitate the expert at the action level. Given such a setting, we now propose
the algorithm Case-Based Inverse Reinforcement Learning (CB-IRL). The archi-
tecture of CB-IRL consists of the Case Base (C) and two neural networks, the
Equality Net (EF) and the Policy (7), see Figure 1. C is filled with the expert
trajectories.

The basic idea is that the agent should not act in every step exactly as the
expert would do, but instead imitate the higher-level strategy of the expert.
We chose the task of reaching a target state area as the prior for the higher-
level strategy. For example, for the OpenAl domain ‘MountainCar’ the target
state area are the states where the car is on top of the mountain. For the Atari
game ‘Pong’ the target state area would be the states where the agent has 21
points. The agent does not know the target state area, but since the expert has
demonstrated how to reach the target state area, CB-IRL trains the agent to
reach similar states as the expert.

Two states are “similar” in the context of Reinforcement Learning if it takes
only few steps (actions) to get from one state to the other. Other approaches
[FDHT19ISLCT18/DTLSIE| try to learn a state-embedding such that the eu-
clidean distance of the representations is proportional to the number of steps
needed to get from one state to the other. We take a different approach and
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instead train a neural network that accepts two states s; and s, as input and
outputs a scalar E(s1,s2) =d ; E : S xS — [0;1] to classify whether sy can
be reached within windowFrame steps from s;. Thus, this is a classification and
not a regression. We believe a classification is easier and more stable to learn
compared to a regression, since it suffers less from the “moving target” problem.
For example if we would predict the number of steps which are required to go
from one state to the other, the target of this supervised learning tasks is heavily
based on the current performance of the agent. In contrast, for near/far classi-
fication, it does not matter if the states are, for example, 30 or 40 steps apart if
windowFrame = 10. In both cases the state pair gets the target 0 for supervised
learning, since it shall be classified as dissimilar.

Algorithm 1: CB-IRL

Data: Case-Base C' (containing expert trajectories)
Result: Policy m, Equality Net E

while training do
s < sample start state

Tpre < Reward(s)

trajectory + [s]

while episode is not finished do

a <+ m(s)

s’ « execute a

trajectory.append(s’)

Tpost < Reward(s")

T 4 Tpost — Q% I'pre

use (s,a,r,s’) for training 7

548

Tpre — Tpost

end

append trajectory to the Replay Buffer of E

train F using the Replay Buffer, C' and the hyperparameters
windowFrame and v

end

Function Reward(s):
mostSimilar =
stmilarity = T

foreach trajectory € C do

foreach o(ei> € trajectory do
if E(s,0%") > similarity then
mostSimilar =1
similarity = E(s, oéi))
end

end
end
return mostSimilar
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Fig. 1. This figure shows the usual cycle of Reinforcement Learning, with a small
adjustment. The Equality Net (E) is interposed between the environment and the
agent. The agent performs an action a, which is executed in the environment. E receives
the next observation o' from the environment, then calculates the reward r using the
case database and forwards both to the agent.

A second advantage of Reachability Networks in contrast to embeddings is
that they are suitable for asymmetric state-action spaces. For example, it may
be easy to reach ss from s1, but difficult or impossible to reach s; from ss.

The policy 7 is learned via Inverse Reinforcement Learning using the case
database C and the Equality Net E. If the agent is in state o, it executes the
action a = m(0) with its current policy 7 and receives the next observation o’
from the environment. Using F, all expert observations ol from C are now
checked to see if they are similar to o, where the similarity must be above a
threshold 7. If there is a similar expert state oéj ) (if more than one, choose the
most similar), the reward is given by the position number j. Thus, the further
back the similar expert state is in the expert trajectory, the higher the reward
the agent receives. If there is no similar expert state, the agent receives a penalty
i (a negative reward). Figure 2 shows the idea schematically. The complete al-
gorithm is summarized in Algorithm 1.

The algorithm contains several hyperparameters, whose task and influence we
discuss in the following: 7 € [0;1] is the threshold that determines the minimum
similarity of an expert state 08) to the current state o of the agent, so that
the agent receives a positive reward. If no expert state has a similarity higher
than 7, the agent receives a penalty (a negative reward p). The hyperparameter
a € [0;1] controls whether the actual reward for the agent is always the reward
difference (o = 1) or whether the agent always receives the full reward (a = 0).
For a = 0, the agent tends to achieve large rewards as quickly as possible, but
maybe not reliably, whereas for o = 1, the agent tries to achieve a large reward
as reliably as possible by the end of the episode.
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Fig. 2. This figure shows schematically how the algorithm works. Assume the rectangle
is a two-dimensional state space. The light and dark gray boxes represent the trajectory
of expert states but only the dark states are visible to the agent. Using its own rollouts
the agent now learns the Equality Net, which classifies whether two states can occur
close to each other in a trajectory. The outputs of the Equality Net for the expert states
are represented in the image by the circles around them. During inference, the agent
checks whether the current state is similar to an expert state or not. For example, if
the agent is in the yellow state, it is similar to expert state es and therefore receives
reward 3. If the agent is in the blue state, it is not similar to any expert state and
receives a negative reward p.

The hyperparameters windowFrame and v are used to train E. They model
on the one hand the threshold which indicates whether two states are considered
similar or dissimilar and on the other hand the number of explicit divergence
between states of the agent and states of the expert.

Training of the Equality Net: The task of the Equality Net F is to classify
whether two inputs can occur in short succession in a trajectory and are thus
“similar”. To train E, we use the Replay Buffer that contains the trajectories
sampled by the agent. E is trained using supervised learning. The training set
consists of similar and dissimilar state pairs. For the similar state pairs, two
states are selected from the same trajectory of the Replay Buffer which are
no further apart than windowFrame steps. For the dissimilar state pairs, two
states are sampled from two different trajectories. For the similar state pairs,
the network F is trained to output the value 1, for dissimilar state pairs it is
trained to output 0. The structure of E is graphically visualized in Figure 3.
In addition, training can also be performed in an analogous manner on the expert
trajectories. The hyperparameter v models the number of explicit divergence
between agent and expert state. That is, there are v state pairs where one state
is sampled from the Replay Buffer and the other state is sampled from C'. The
target for these state pairs during supervised learning is 0, since they shall be
classified as dissimilar.

The output of the Equality Net can be understood as a (lossy) binary distance
measure. The distance measure is binary because it only distinguishes between
similar (1) and dissimilar (0).
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Fig. 3. The Equality Net E accepts as input two states and classifies whether they are
similar in the sense that they can appear close to each other in a trajectory. During
inference, I receives as input the current state o of the agent and compares it to all
expert states 08). FE is trained using supervised learning on the trajectories produced
by the agent, which are stored in the Replay Buffer.

Equality Net

5 Experiments

We tested our algorithm in four OpenAl Gym domains [BCPT16]: Acrobot,
Mountain Car, Lunar Lander, and Half Cheetah. For Half Cheetah, we cre-
ated a modified version called Half Cheetah Discrete. Details can be found in
Appendix A. As justified in [CLB™17], only domains should be used for the eval-
uation of IRL algorithms in which the episodes are always of the same length.
This is because early ending of episodes may contain implicit information about
the reward. For example, in the ‘Mountain Car’ domain, the episode ends when
the car has successfully driven up the hill. For this reason, we have adjusted all
domains so that episodes are always of the same length, with the agent receiving
the last observation until the end if the episode ended early.

We first trained an expert for each domain using the reward function of the
environment. We then used these experts to create exactly one trajectory for each
domain, which consisted only of the expert states and not the expert actions.
We then used it to train CB-IRL and GAIFO. GAIFO had access to all expert
states, while CB-IRL only had access to every tenth expert state. For example,
for Lunar Lander, the expert trajectory was about 150 steps long, so the training
set for GAIFO consisted of these 150 expert states, while the training set for
CB-IRL consisted of only 15 expert states.

For the hyperparameter search, we tested five hyperparameter sets for each
algorithm and domain and selected the best one. Using these hyperparameters,
we then trained CB-IRL and GAIFO three times with three different seeds.
During training we generated 20 episodes every 10,000 steps for each seed and
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Fig. 4. Scaled performance of CB-IRL and GAIFO on four different domains trained
using one expert trajectory, where GAIFO had access to all expert states and CB-IRL
had access to only one in ten.

algorithm (for a total of 60 episodes per algorithm every 10,000 steps). For
each episode, we calculated the total return using the environment’s reward
function. The returns were then scaled using the performance of a random agent
(representing value 0) and the expert (representing value 1). We then calculated
the 0.25, 0.5 (median), and 0.75 quantiles for these 60 return values. For both
algorithms, the solid lines represent the median and the shaded areas enclose
the 0.25 and 0.75 quantiles.

As can be seen in Figure 4, CB-IRL mostly performed better than GAIFO
in the experiments, even though it had access to only one tenth of GAIFQO’s
training set. Furthermore, CB-IRL showed a more stable learning behavior. The
difference was particularly clear in the Half Cheetah Discrete domain. Here, the
advantage of CB-IRL became apparent, where the agent did not learn to behave
exactly like the expert in every state, but to reach similar states as the expert.
CB-IRL has learnt the high-level strategy to “run as far as possible”.

A Python implementation of CB-IRL and the code used to create the exper-
iments are available on GitHub [https://github.com/JonasNuesslein/CB-IRL].
For GAIFO we used the implementation of tf2rl [Ota20]. The chosen hyperpa-
rameters for the experiments can also be found on GitHub in the file config.py.
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6 Discussion of the Approach

In this section we discuss the advantages and disadvantages of CB-IRL. Turning
first to the disadvantages: The computation of the reward is more computa-
tionally intensive than in many other IRL algorithms, because in each step the
current state must be compared against all expert states in the case base C. The
run-time complexity is thus linear in the size of C. This can be serious for larger
case bases, however, the target application areas of CB-IRL are precisely the
settings where very little expert data is available. Moreover, the computational
intensity can be reduced by calculating a reward only in every k-th step, rather
than in every step.

The second drawback of our approach is the specialization of CB-IRL to state-
reaching in contrast to state-keeping domains. By state-reaching domains, we
mean domains in which certain variables of the state vector have to be changed.
An example of this is the OpenAl Gym domain ‘Mountain Car’ [BCP*16], in
which the goal is to maximize the x-position of the car. Another example is the
Atari game ‘Pong’ [MKS™15], in which the goal of the agent is to reach 21 points.
By state-keeping domains, we mean domains in which the goal is to leave certain
variables of the state vector unchanged. An example of this would be ‘Cart-Pole’
IBCPT16], where the goal is to keep the angle of the pole at 90° if possible or
‘HalfCheetah’ [BCPT16], where the goal is to keep a high velocity. Due to the
structure of CB-IRL, it is predominantly suitable for state-reaching domains,
as the algorithm encourages the agent to reach states from the posterior of the
expert trajectory.

The advantages of CB-IRL are that it does not require a reward function, expert
actions, or complete expert trajectories. Since the agent can learn with incom-
plete expert trajectories, it has proven that it imitates the higher-level strategy
of the expert and does not imitate the expert on action level.

This allows the agent to learn a near-optimal strategy with little data, which
would be insufficient to imitate the expert on action level (as can be seen in the
Half Cheetah Discrete domain). The learning behavior also shows a more stable
pattern with less “forgetting” of what has already been learned.

A second possible advantage, which we leave as future work to verify, is that
the Equality Net is not task-specific and can be reused for other tasks in the
same domain, which can enable fast transfer learning.

A third possible advantage also left for future work is that the ability to learn
from incomplete trajectories may be beneficial in real-world applications, where
state observations may be noisy or delayed.

7 Conclusion

In this paper, we have shown that when very little expert data is available, it
is advantageous to imitate the higher-level strategy of the expert, rather than
imitating the expert on action level.
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To prove that the agent really imitated the strategy and not the expert
actions, we considered a special setting of Imitation Learning characterized by
incomplete expert trajectories. Moreover, no expert actions were available to
the agent (Learning from Observations). The chosen prior for the higher-level
strategy was to reach an unknown target state area. But since the expert has
demonstrated how to reach it, the agent tries to reach similar states as the
expert.

The presented algorithm Case-Based Inverse Reinforcement Learning (CB-
IRL) builds on the idea of Temporal Coherence and Case-Based Reasoning. The
algorithm trains a neural network to predict whether a state s can be reached
from a state s; within windowFrame time steps (actions). If so, the states can be
considered “similar”. During inference, the agent uses this network to compare
its current state o against expert states ogi) from a Case Base. If a similar expert
state ogj ) exists, the position j of this expert state in the expert trajectory serves
as a (positive) reward signal for the agent. If no similar expert state exists, the
agent receives a penalty. Thus, the agent is trained to reach similar states to the
expert states. We tested our approach on four typical domains of Reinforcement
Learning, where in every case only one tenth of an expert trajectory was available
to the agent. The results show that CB-IRL was able to learn a near-optimal
policy, often better than GAIfO, which had access to the full expert trajectory
and was trying to imitate the expert at action level.
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A  Appendix

The OpenAl domain Half Cheetah does not normally contain any absolute posi-
tion information. To make this domain a state-reaching domain, we additionally
added the x-position of the Cheetah to the otherwise 17-dimensional state space.
Furthermore, the action space of this domain is originally continuous, which
greatly complicates exploration. To facilitate exploration, we created a modified
version called “Half Cheetah Discrete”. For this, 20 random (continuous) action
vectors were sampled from the continuous action space. These 20 action vectors
can be seen as basis vectors of the original continuous action space and together
they now form a discrete action space (consisting of 20 possible actions). If one
of the 20 discrete actions is selected, the corresponding continuous action vector
is executed in the background.
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