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Abstract. We consider the auto-organization of a set of autonomous
vehicles following each other on either an in�nite or circular road. The
behavior of each car is speci�ed by its "speed regulator", a device that
decides to increase or decrease the speed of the car as a function of
the head-tail distance to its predecessor and the speed of both cars.
A collective behavior emerges that corresponds to previously proposed
cellular automata tra�c models. We further analyze the tra�c patterns
of the system in the long term, as governed by the speed regulator and
we study under which conditions tra�c patterns of maximum �ow can
or cannot be reach. We show the existence of suboptimal �ow conditions
that require external coordination mechanisms (that we don not consider
in this paper) in order to reach the optimal �ow achievable with the given
density.

1 Introduction

The collective behavior of interacting autonomous vehicles is an interesting ques-
tion in view of its impact on tra�c conditions, such as security or reduced con-
gestion. Our goal is to investigate the capability of autonomous cars, following
each other, to reach a state of global maximum �ow, by only interacting deter-
ministically with the preceding car.

Our approach follows the work initiated in [14] of modeling tra�c using cel-
lular automaton. The road is seen as a collection of cells and cars are moving
from one cell to another following some rules that we refer to as the speed reg-

ulator. Among the questions of interest is the determination of the maximum
�ow as a function of the number N of cars. This is described as the fundamental
diagram, a relation between the tra�c �ow and the car density ρ = N/L [cars
per unit of length], where L is the length of the road section. This fundamen-
tal diagram usually shows two distinct dynamics, a �rst where increasing the
density increases the �ow and a second one where, due to high density, the cars
interact and tra�c jams occur.

Classical analysis of tra�c models amount to classify the di�erent dynamics
and identify the conditions for transition, for instance the existence of on/o�-
ramp [7, 6, 4], tra�c lights [2], lane changing [15], mixed-tra�c [13], and combi-
nations [5].
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Real Tra�c have been subject to empirical studies where sensors located on
the road provide measurements of various parameters like speeds and head-tail
distances between cars. These works lead to an understanding of the various dy-
namics depending on the tra�c conditions. In particular to the three-phase traf-
�c theory [10, 8, 11]. Roughly, this theory distinguishes the free-�ow phase where
cars update their speeds independently, the synchronized �ow where speeds and
head-tail distances decrease and tend to synchronize and, lastly the jammed �ow
where we observe cars with null speed.

The large amount of data collected from real tra�c conditions and the accu-
rate analysis, foster speed regulator designers to devise models that reproduce
the observed dynamics [9, 12, 19, 17, 20]. These models introduce new parame-
ters, such as probabilities, that are wisely tuned to reproduced the observed
dynamics.

This paper follows a di�erent approach. We consider a simple collision-free,
deterministic speed regulator, that mimics the behaviour of an autonomous car.
This speed regulator the behaviour of each car. Collectively, it leads to various
possible �ow patterns that we want to compute rigorously and check whether
the resulting tra�c �ow is maximum. We do not intend to reproduce real traf-
�c patterns like those mentioned in the literature. Rather, our long-term goal
is the search for an e�cient speed regulator to equip autonomous car whose
performance are better that human drivers.

We start here to consider the simplest speed regulator, which could be used
by autonomous cars, ensuring that: (i) no collision occurs and, (ii) speed is max-
imized. We analyze the dynamic of a pool of cars obeying the speed regulator.

In particular, we �nd a bound for the maximum �ow as a function of the
density that leads to the fundamental diagram. We identify the tra�c patterns
of maximum �ow - reaching the bound. We show as well that in some non
optimal tra�c patterns the cars involved cannot increase their speed due to the
no-collision constraint. In this situation, some external mechanism, that we do
not consider in this paper, is required to allow the cars to switch to a more
e�cient tra�c pattern.

In Section 2 we de�ne the speed regulator. It maximizes the speed va of
a car a according to the head-tail distance d with a leading car b, ensuring
that no-collision occurs. We call viable a con�guration where no-collision occurs
and shows that for viable con�gurations the property d < va is transient, see
Proposition 1. Hence, the long-term tra�c patterns show d ≥ va, see Proposition
2. This leads in Section 3 to bound the maximum �ow, see Proposition 4. The
fundamental diagram and related maximum �ow tra�c patterns are presented
in Section 4.

Interestingly, the condition d ≥ va plays a similar role as the synchronization
distance in the KKW-model [9, 20].

The evaluation of the speed regulator performance requires to understand
the tra�c patterns generated. We show tra�c patterns where the car's speeds
are locked to non-optimal values, and the general form of �ow-optimal tra�c



Maximum tra�c �ow patterns in interacting autonomous vehicles 3

patterns in Proposition 2. We have also found other tra�c patterns that are
metastable in the sense of [16] not included due to the lack of space.

Unsurprisingly, our speed regulator is similar to several CA tra�c models
proposed in the literature. For instance in [12] where it is complemented with
parameters that are tuned to reproduce some tra�c patterns and human behav-
ior. Our use of the regulator is di�erent.

2 The speed regulator

A (one-lane) road section consists in L cells that can be occupied by only one
car at a time. Cars are moving from cell to cell. Time is discrete t ∈ N. We
use letters a, b, . . . to denote cars, va, vb, . . . to denote the speeds of the cars and
xa, xb, . . . to denote the positions of the cars along the section of the road. If the
speed of a, is va at time t the position update of the car a is xa+va at time t+1,
we do not write the factor ∆t = 1, i.e. xa + va∆t. Usually, the distance of a cell
is 7.5 meters and speeds belong to {0, . . . , vmax}. For our numerical experiments
we use vmax = 5. Similarly, acceleration is bounded and belongs to {−1, 0, 1}.
Once the position is updated, the velocity is adjusted as explained below. The
updated quantities are indicated with a tilde on top ( e.g. ṽa and d̃). Distances,
positions and speeds are all natural numbers.

Because the speed is bounded we use the following de�nition for the bounded
operators (adding a dot on top of the plus and minus signs).

De�nition 1. The bounded addition and subtraction are de�ned by:

v+̇1 = min(v + 1, vmax),

v−̇1 = max(0, v − 1).

To denote that the speed regulator updates the speed of a we use the notation
ṽa and similarly for the updated head-tail distance d̃. This shorten the notation
va = va(t) and va(t + 1) = ṽa. Distances, positions and speeds are all natural
numbers.

We �rst focus on the dynamics of two cars a following b and the state of the
dynamical system is (va, vb, d), where d is the head-tail distance of cars a and b
(i.e. the number of empty cells).

In one step (t 7→ t+ 1) two operations are done: (1.) move the cars according
to their speed, i.e. x̃a = xa + va, x̃b = xb + vb hence d̃ = d − va + vb and, (2.)
cars revise their speed following the speed regulator. We consider the succession
of con�gurations of the form

(va, vb, d) =⇒︸︷︷︸
1. position updates

(va, vb, d̃ = d− va + vb) =⇒︸︷︷︸
2. speed updates

(ṽa, ṽb, d̃) (1)

For the simulation where many cars are present the updates are done syn-
chronously.
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De�nition 2. We de�ne the function df : N→ N as df(v) = v+(v−1)+. . .+1 =
v(v+1)

2 , v ≥ 0.

The function df gives the braking distance for a car moving at speed v and
decelerating constantly such that ∆v = 1 each time step. The speed regulator
shown in Algorithm 1 sets the speed ṽa in such a way that no-collision occurs
even if the leading car b brakes constantly to 0.

Algorithm 1 Basic speed regulator.

1: if d̃+ df(vb−̇1) >= df(va + 1) then
2: ṽa = va+̇1
3: else if d̃+ df(vb−̇1)) >= df(va) then
4: ṽa = va
5: else
6: ṽa = va−̇1
7: end if

For a con�guration (va, vb, d) we de�ne the viability condition ensuring that
the tra�c dynamic avoids collisions.

De�nition 3. We say that a con�guration (va, vb, d) is viable if

d ≥ df(va)− df(vb),

or equivalently d̃ ≥ df(va−̇1)− df(vb−̇1).

It can be shown that the regulator preserves the viability condition hence, the no-
collision condition. In the next sections it is implicit that the viability property
holds for the initial states and hence at any time. This ensures that the

speed regulator can at any time sets the maximum speed that avoids

collision.

Next, we show that the con�gurations with d < va are transient and the
speed regulator eventually leads to d ≥ va.

Proposition 1. If (va, vb, d) is viable and d < va then vb ≥ va. Moreover, such

con�guration is transient in the sense that eventually d ≥ va holds.

Proof. va + df(vb) > d + df(vb) ≥ df(va) results from viability and d < va.
Hence, df(vb) > df(va)− va = df(va−̇1), which implies vb ≥ va. For the second
statement, the argument rests on vb > va except when b is decelerating. Each
time vb > va the head-tail distance increases and when b decelerates ṽa decreases.
The �rst case leads to d ≥ va because va is bounded and the second as well
because va decreases to 0.

To exemplify Proposition 1 consider a con�guration (3, 3, 2), the two cars
move at speed 3 and distance 2. This condition is viable (no-collision occurs in
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the future). Indeed, after updating the position, the trailing car reduces its speed
to 2 and then, d ≥ 2 ≥ va. In the long term the con�guration (3, 3, 2) cannot
be observed since it is transient and the property d ≥ va is preserved by the
speed regulator as shown in Proposition 2. Such a con�guration could only be
observed because of the initial condition.

Proposition 2. d ≥ va =⇒ d̃ ≥ ṽa.

Proof. If d ≥ va then d̃ = d− va + vb ≥ vb and the result is true if vb ≥ ṽa. Let
us assume that vb < ṽa.

Case 1. We assume that ṽa = va + 1 which occurs if d̃ ≥ df(va + 1)− df(vb−̇1)
from which we deduce d̃ ≥ ṽa.
Case 2. We assume that ṽa = va which occurs if d̃ ≥ df(va) − df(vb−̇1) from
which we deduce d̃ ≥ ṽa.
Case 3. We assume that ṽa = va − 1 which occurs if d̃ ≥ df(va − 1)− df(vb−̇1)
from which we deduce d̃ ≥ ṽa.

The next proposition shows a set of con�gurations where the car copies the
behavior of the leader car. This behavior is referred to lag synchronization in the
literature [1]. Interestingly, such con�gurations are �ow optimal, see Proposition
4.

Proposition 3. If | va − vb |≤ 1 and d = va then ṽa = vb and d̃ = ṽa, in

particular | ṽa − ṽb |≤ 1.

Proof. d̃ = d− va + vb, hence d = va =⇒ d̃ = vb, it remains to see that ṽa = vb.

| va − vb |≤ 1 =⇒ va = vb − 1 or va = vb or va = vb + 1.

If va = vb − 1 : (in particular vb 6= 0) d̃+ df(vb− 1) = df(vb) = df(va + 1). The
speed regulator follows line 1 ṽa = va + 1 = vb.

If va = vb : d̃+ df(vb−̇1) = df(vb) = df(va). The speed regulator follows line 3
and ṽa = va = vb (condition d̃+ df(vb−̇1) ≥ df(va + 1) is not ful�lled).

If va = vb + 1 : d̃+ df(vb−̇1) = df(vb) = df(va− 1), the regulator follows line 6
and ṽa = va − 1 = vb (conditions d̃+ df(vb−̇1) ≥ df(va + 1) and d̃+ df(vb−̇1) ≥
df(va) are not ful�lled).

3 Analysis of the �ow

In the previous sections we analyzed the speed regulator by considering con�g-
urations of the form (va, vb, d). Here, we consider a �ow of cars. Recall that if
N cars are on a road section of length L, we de�ne the density ρ = N/L [cars
per length units] and the �ow j(N,L) = ρv̄ [cars per time unit] where v̄ is the
average speed of the N cars.

Propositions 1 and 2 show that in the long term con�gurations satisfy d ≥ va.
This leads to the next proposition.
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Proposition 4. In the long term, for N cars are on a road of length L the

maximum �ow j(N,L) is bounded by

j(N,L) ≤ 1− N

L
.

In particular, the �ow is maximal if all the cars con�gurations (va, vb, d) belong

to the invariant set de�ned by Proposition 3.

Proof. Because in the long term con�gurations satisfy d ≥ v by Propositions 1
and 2 we have N +

∑N
i=1 vi ≤ N +

∑N
i=1 di = L, from which we get j(N,L) =∑

vi
L ≤ 1 − N

L . Proposition 3 de�nes a �ow-optimal invariant set since the con-
dition v = d (va = d in the notation of the proposition) is ful�lled.

It is common to express the �ow as a function of the density ρ = N/L, i.e.
j(N,L) = j(ρ).

We represent �ows with a typewriter style using . to denote an empty cell of
the road and a number to indicate that the cell is occupied by a car and the speed
of the car. For instance a con�guration (va = 3, vb = 4, d = 3) is represented as
3︸︷︷︸
va

...︸︷︷︸
d

4︸︷︷︸
vb

.

We start with a counterexample of Proposition 4. The tra�c pattern 3..3..3..
etc. is viable (does not lead to collision), of density 1

3 and of �ow ρ = 1, hence it
seems to contradict the statement of Proposition 4. However, this tra�c pattern
is transient (notice d < va) because at the next step cars decrease their speed
to 2 and we get the tra�c pattern 2..2..2..etc. which satis�es the bound of
Proposition 4 and d ≥ va. In general, our analysis of the �ow is in the long term
and transient tra�c patterns are ignored. It is not stated systematically that
only long term tra�c patterns are considered although everywhere assumed in
the following.

A (long term) tra�c pattern of maximal �ow is

.....5.....5.....5.....5.....5.....5..... etc. (2)

This �ow is maximal because the head-tail distance d equals the speed as proved
in Proposition 4. Notice, that the �ow is regular if measured on a road section
of length L with L = 6N where N is the number of cars, i.e. the con�guration
maximizes the function j(N,L) = j(N, 6N). Hence for density ρ = 0.166̄. The
reader can imagine the same pattern repeating in�nitely often.

Another example of maximal �ow is

...3...3...3...3...3...3...3...3... etc. (3)

which is maximal for L = 4N hence for density ρ = 0.25.
Maximal �ow can be obtained by other regular patterns for di�erent values

of N and L. For instance, the �ow of .1.2..3...2..1 etc. is maximal for
N = 5k and L = 14k for any k > 1, hence for density ρ = 5/14 = 0.36.
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In general, for tra�c patterns with v = d and Ni cars at speed i satisfy

vmax∑
i=0

iNi = L, and

vmax∑
i=0

Ni = N. (4)

Equations (4) are useful to generate �ow-equivalent tra�c patterns. For instance,
if we assume that there exists a con�guration with N2, N3, N4 > 0 we can �nd
a tra�c pattern with one less car in N2 and N4 and two more in N3. Consider
a car a ∈ N4 at speed 4, it can be turned to speed 3. To ensure �ow-optimality
(va = d) the next cars are moved one cell back until the speed of the car moved
back is 2. The speed of this last car is turned to 3. We obtain a new con�guration
still satisfying (4). Actually this process can be repeated until N2 or N4 is empty.
For instance, .1.2..3...2..1. etc. can be turned to .1.2..2..2..2.. etc.

without modifying the �ow-optimality of the tra�c pattern.
The following tra�c patterns are not optimal and of same density than (3):
.....4.....4.....4.....4..... etc. and
.....3.....3.....3.....3..... etc..
Indeed, in both con�gurations the density is ρ = 0.166̄ and no car changes his

speed due to the regulator speed in Algorithm 1. Indeed, for the tra�c pattern
4.....4..... to increase the speed to 5 the condition df(5) ≤ d + df(3) (the
trailing car pays attention to the fact that the leading car can break) must be
satis�ed which is not the case, i.e. 25 6≤ 5 + 6. The same argument holds for the
second tra�c pattern, i.e. 10 6≤ 5 + 3.

Another non �ow-optimal tra�c pattern is given by

3....4.....5......4.....3....4.....5...... etc. (5)

This con�guration is not optimal since the following one with same density has a
higher �ow 5.....5.....5.....5.....5..... etc. Indeed, both con�guration
have density ρ = 1/6 but the �ows are 16/24 and 20/24 respectively.

In summary, all these examples show that some tra�c patterns are permanent
but not optimal. This means that the �ow of cars can be trapped in a sub-optimal
state. Escaping such a state requires coordination. For instance, all the cars must
agree to accelerate at the same time. Otherwise, an accelerating car would violate
the viability condition.
Jam formation. A classical tra�c pattern is the appearance of a jam without
bottleneck, see [18] for real tra�c experiment and [3] for a recent review. For
instance, cars are following a tra�c pattern of the form of 3...3...3...etc. For
a reason a car slow down to speed 2 then 1 at some time and for a given period.
The trailing cars are following the speed changes and the cars are platooning at
speed 1. When the braking car restarts following the speed regulator we observe
that the �ow increases. The relevant observation is that no trailing car

is slowing below speed 1. Notice that the constant speed pattern seems hard
to restore and we observe a regular pattern of the form of (5).

The point is that, this is not what may be observed in real tra�c conditions
where some cars are going to stop (at speed zero) [18]. Such an observation is
then not compatible with the respect of the viability condition.
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4 Fundamental diagrams

In this section we evaluate the average speed of cars v̄ and the corresponding
�ow j for a tra�c pattern where at most one car does not satisfy v = d. Consider
N cars separated by a distance d on a circular road of length L, d = max{x |
n(x+1) ≤ L} except for one car where the distance between it and the next can
be greater than d. Therefore, we can set the speed v = min(d, vmax) of the cars
without having a risk of collision and the �ow is maximal by proposition 4.
Case d ≥ vmax. In this part, the density of the road is low enough so that the
cars can be at v = vmax and the �ow j = vmaxρ.
As the number of cars increases, we reach a critical density ρcrit where their
distance d = vmax. We denote the critical number of cars Ncrit = L

(vmax+1) . If

this value is an integer, we can reach the maximal �ow jmax = vmax

(vmax+1) .

Case d < vmax, i.e. N > Ncrit. It is still possible that some cars reach the
maximum speed but overall the cars will have their speed v = d = b LN c − 1. Let
M + d be the remaining distance between the last car and the �rst car. This
distance can be written as: M = L−N(d+ 1) ≥ 0.
Subcase M = 0. Every car have exactly a head-tail of d, no more, no less. The
cars are in a synchronized state as their speed will never change i.e. v = v̄ = d
and the �ow j = 1− ρ. This is the maximal achievable �ow (see Proposition 4).
Using ρcrit = Ncrit

L we can substitute into the equation to get the maximal �ow:

jmax = 1− ρcrit = 1− Ncrit
L

= 1− L

L(vmax + 1)
= 1− 1

vmax
=

vmax
vmax + 1

This is the value where the two �ow functions intersect (see Figure 1). Below
shows such a con�guration.

4....4....4....4....4....4....4....4....4....

Subcase 0 <M < d + 1. The last car cannot increase its speed, therefore all
cars are driving at the same speed v = v̄ = d. But the last car has some extra
space which it will never catch up. The �ow is given by j = (b1ρc − 1)ρ. Below
shows a con�guration where all cars have a head-tail of 4 except the last one
who has 7 but cannot increase its speed.

4....4....4....4....4....4....4....4....4.......

Subcase M ≥ d + 1. The last car l has more head-tail and will increase its
speed to v = d+ 1. This happens only when M ≥ d+ 1, see the speed regulator.
Such speed updates are going on for all trailing car successively. Eventually l
reaches a head-tail of 2d to the next car and reduces its speed to v = d. The
global �ow follows the dynamic of Proposition 3. In the example below, most
of the cars are at speed 3 except the ones that take advantage of M ≥ d + 1
to accelerate. In this case, we have v̄ = L−d

N − 1, since one car has head-tail 2d

and cannot accelerate, and the corresponding �ow is j = 1− d
L − ρ. Notice that

d < vmax.

3...3....4....4....4....4...3...3...3...3......
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(a) vmax = 5 (b) vmax = 10

Fig. 1: Fundamental diagrams of our simulation with L = 100 and going through
all the possible densities (ρ = [0.01, 1]). Starting initial position as described in
the text.

In �gure 2a, we see the results of our simulation in dark blue dots. The plain
lines are the theoretical solutions of j = 1 − d

L − ρ. The dashed vertical line
shows the value of the maximal �ow jmax. As stated, this value is not reachable
since Ncrit = 16.67̄ is not an integer. For a density N/L the car reaches a tra�c
pattern where d ∈ {0, 1, 2, 3, 4}.

In cyan we simulated a �exible road which changes its length Lf = b LN c·N in
order to always satisfy the conditionM = 0. This implies that the �ow is always
maximal and that we can reach the maximum �ow. In �gure 2b, we see the same
diagram with a higher speed. We observe the same pattern but with a jmax
bigger and pushed to the left. The what seems to be random points after jmax
are density who follows the �ow j = (b 1ρc−1)ρ. From these observations, we can
conclude that there are con�gurations where the �ow is optimal. This happens
only when the cars use all the space available, i.e.M = 0 =⇒ vi = di for all cars
i. A con�guration not optimal cannot go to an optimal one with our regulator
conditions. It would require one car to violate the condition d̃ + df(vb−̇1) >=
df(va + 1) thereby risking a collision. Finally, the state depends on the initial
conditions. If we start the cars at v = d = 0, like at a tra�c light, they will
reach the maximum �ow since our regulator assure vi = di. Nevertheless it only
happens if the last car reaches the �rst car before it starts closing the gap M to
zero. Otherwise, M > 0 and the �ow will not be optimal.

To conclude the presentation of these experiments, we show the fundamental
diagram obtained with random starting initial conditions, the positions of the
cars are random and the speed is 0. We observe various �ow value that are due to
more general tra�c patterns. These tra�c patterns are not optimal and can be
explained with an extended version of Proposition 3. In particular, it is always
the case that ṽa = vb meaning that the trailing cars copy the speed of their
leading car, this correspond to lag synchronization.
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(a) vmax = 5 (b) vmax = 10

Fig. 2: Fundamental diagrams of our simulation with L = 100 and going through
all the possible densities (ρ = [0.01, 1]). Starting with random initial positions.

5 Conclusions

In this paper we analyzed theoretically and numerically the tra�c patterns that
are accessible for autonomous vehicles equipped with a simple, local and deter-
ministic speed regulator. We consider a simple tra�c situations (cars following
each other) and identi�ed the potential strength and weakness of an automatic
driving system, such as stop and go waves or non-optimal �ow conditions. Of
course, more complex situations need to be investigated, such as junctions, merg-
ing or lane changing to better understand the emergent collective behavior of
autonomous cars.
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