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Abstract Simulation of Reaction Networks
via Boolean Networks

Joachim Niehren1,2, Athénäıs Vaginay3, and Cristian Versari1

1 BioComputing Team of CRIStAL Lab, Université de Lille, 2 Inria Lille, 3 Université
de Lorraine, CNRS, CRAN, INRIA, LORIA, F-54000 Nancy.

Abstract. We propose to simulate chemical reaction networks with the
deterministic semantics abstractely, without any precise knowledge on
the initial concentrations. For this, the concentrations of species are ab-
stracted to a boolean stating whether the species is present or absent, and
the derivation of concentrations are abstracted to signs saying whether
the concentration is increasing, decreasing, or unchanged. We use ab-
stract interpretation over the structure of signs for mapping the ODEs
of a reaction network to a boolean network with nondeterministic up-
dates. The abstract state transition graph of such boolean networks can
be computed by finite domain constraint programming over the finite
structure of signs. Constraints on the abstraction of the initial concentra-
tions can be added naturally, leading to an abstract simulation algorithm
that produces only the part of the abstract state transition graph that is
reachable from the abstraction of the initial state. We proof the sound-
ness of our abstract simulation algorithm, discuss how we implemented
it, illustrate it usefulness for exact reasonning, and show its applicability
to reaction networks in SBML format from the BioModels database.

Keywords: Systems biology · reaction networks · SBML · boolean net-
works · abstract interpretation · logic · constraint programming.

1 Introduction

Reaction networks [7,3,8,6] are the most prominent formalism for modelling the
dynamics of biological system. We consider the deterministic semantics of reac-
tion networks, which describes their dynamics by ordinary differential equations
(ODEs). The solutions of ODEs are functions of type R+ → R that are called
trajectories. The values of trajectories for reaction networks must always be pos-
itive since they stand for concentrations of species. In contrast, the derivations
of trajectories may be negative. The values of the trajectories at time point 0
are called the initial concentrations. It is well-known that for any assignment of
species to some initial concentrations, there exists at most one solution of the
ODEs of the reaction network. This solution can be approximated numerically
by Euler’s deterministic simulation algorithm [5].

The concrete state of a reaction network at a given time point is a vector of
positive real numbers, one for the concentration of each species. Any concrete
state can be abstracted to a vector of booleans, stating for each species whether
its concentration is zero or not. The possible trajectories of a reaction network
can thus be abstracted to a transition graph of bit vectors. The graph can be



enriched, when not only considering the trajectories but also their derivations.
Since these may become negative, the concrete states now become vectors of real
numbers that can be abstracted to vectors of signs: increasing↗ = 1, decreasing
↘ = −1, and no-change → = 0. In this way, we obtain an enriched abstract
state transition graph between sign vectors.

The question that we study in the present paper is whether one can compute
the abstract state transition graph of a reaction network. Clearly, abstract state
transition graphs are finite, but since they may have 2|S| + 3|S| many states,
where |S| is the number of species, they are quickly be too big to be enumerated.
Therefore, we propose to study the problem of abstract simulation, which is to
compute the part of the abstract state transition graph that is accessible from
the abstraction of the initial concentrations. This also has the advantage that the
concrete initial concentrations do not need to be known precisely. Nevertheless,
the problem remains nontrivial, given that trajectories are infinite objects, and
that there are infinitely many trajectories depending on choice of the initial
concentrations.

Our idea for abstract simulation is based on the abstract interpretation of
ODEs of a reaction networks over the structure of signs S. This abstraction
introduces non-determinism, since ↗+S↘ may be evaluated to any sign. This
abstract interpretation can be proven to provide a sound over-approximation
based on John’s theorem [1,13,9]. We show that the sign abstraction of the
ODEs of a reaction network can be used to define a boolean network with non-
deterministic updates. It will have rules stating that a species A is present in
the next step, if A was already present at the previous step, or if the derivate
of A was positive at the previous step. Since such rules can be defined by first-
order (FO) formulas, we propose the notion of first-order boolean networks with
non-deterministic semantics (FO-BNNs).

We provide a soundness theorem for abstraction of reaction networks to FO-
BNNs. It will rely on a causal next transition relation rather than on a temporal
next transition relation inferred from the trajectories, given that concrete sim-
ulation algorithms too are based on causality. This may lead to approximation
errors for the concrete numerical simulation, so we have to take care of this for
abstract simulation too.

Given that FO-BNNs are first-order formulas that are to be interpreted over
the finite structure of signs, we use finite domain constraint programming to
compute the abstract state transition graphs of FO-BNNs. Constraints on the
abstraction of the initial concentrations can be added naturally, leading to an
algorithm for abstract simulation based on constraint programming. We have
implemented this algorithm based on Minizinc constraint solver.

While abstract interpretation enable qualitative reasoning, we can support
exact quantitative reasoning about thresholds. We show that whether A ≤ ε for
some threshold ε > 0 can be tested by introducing an artificial species B so
that Ḃ = A − ε. In this way, the sign of the derivation of B indicates, whether
the concentration of A is above, below or equal to the threshold ε. One can
then use exact reasoning with linear equation systems [1] to improve the qual-
ity of our abstract simulation algorithm, while taking thresholds into account.
For instance, we can show for the usual enzymatic reaction network that if the
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initial concentration of the substrate is above of a threshold of ε = 80, then the
concentration of the product may eventually become bigger than ε, and once
this happens, it can never become smaller than ε again. Most interestingly, the
precise initial concentration of the reaction does not matter for this argument,
as long as it is above the given number ε = 80. In this way, abstract simulation
can sometimes show properties of infinitely many concrete simulations.

Last, but not least, we apply our abstract simulation algorithm to a reac-
tion network in the SBML format of the Systems Biology Markup Language
[10] supported by the BioModels database [11]. We consider model https://
www.ebi.ac.uk/biomodels/BIOMD0000000448 that we will call B448 for short.
This network describes the insulin signalling in human adipocytes in normal
conditions [4]. It has 27 species and 34 reactions and its graph covers one full
page (see Fig. 13 of the appendix). Nevertheless, we could apply our abstract
simulation algorithm successfully to B448, leading to a very small subgraph of
the huge abstract state transition graph with more than 227 states.

Outline . We start with preliminaries in Section 2. We recall the notion of reac-
tion networks and their deterministic semantics via ODEs in Section 3. In Sec-
tion 4 we recall the first-order logic, which permits to formally capture ODEs in
Section 5, lays the foundation of FO-BNNs in Section 6, and enables abstract
interpretation in Section 7. We present our compiler from reaction networks to
FO-BNNs and prove its soundness in Section 8. The treatment of thresholds
is discussed in Section 9. It illustrates exact reasoning at the example of the
enzymatic reaction network. The application of abstract simulation to reaction
network B448 of the Biomodels database is shown in Section 10. The conclusion
and future work are given in Section 11. The appendix contains a description of
the implementation in Section 12 and further details on B448.

2 Preliminaries

Let B = {0, 1} be the set of booleans, S = {−1, 0, 1} the set of signs, N the set
of natural numbers including 0, Z the set of integers, R the set of real numbers,
and R+ the set of positive real numbers including 0. Note that B ⊆ N ⊆ R+ ⊆ R
and that S ⊆ Z ⊆ R. For signs we use the symbols ↗ = 1 for increase, → = 0
for no-change and ↘ = −1 for decrease.

The cartesian product of sets A1, . . . , An is denoted by A1 × . . . × An. The
domain of a partial function f ⊆ A×B is denoted by dom(f). The restriction of
f to a subset A′ ⊆ dom(f) is written as f|A′ . We write [a1/b1, . . . , an/bn] for the
finite function f with dom(f) = {a1, . . . , an} and f(ai) = bi for all 1 ≤ i ≤ n.
For any two sets A,B, the power set AB = {f | f : A → B} is the set of total
functions from A to B. A multiset M with elements in A is an element M ∈ NA.
For any a ∈ A the multiplicity of a in M is M(a).

Let V be a set of variables. The set of arithmetic expressions e ∈ Earith(V) is
the least set of terms containing the reals ρ ∈ R, the variables x ∈ V, and that is
closed under addition, multiplication, subtraction, division, and exponentiation:

e, e′ ∈ Earith(V) ::= ρ | x | e+ e′ | e ∗ e′ | e− e′ | e/e′ | exp(e, e′)

Arithmetic expressions have various usages and interpretations that are sum-
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Level arithmetic expressions structure variable assignments

CRN kinetic expressions reals α : V → R
ODE in equations real functions β : V → (R+ → R)
BN in equations signs γ : V → S

Table 1: Interpretation of arithmetic expressions in various structures.

marize in Table 1. For instance, they can be used as arithmetic expressions in
reactions that are interpreted over the reals. For any variable assignment to real
numbers α : V → R, an arithmetic expression can be evaluated to a real num-
ber if all application of the operations for the operator are well-defined. In our
formalization later on, we will define a set JeKR,α that contains this unique real
number if it exists and is empty otherwise. The evaluator over the structure
of reals has to interpret any binary operator � ∈ {+, ∗,−, /, exp} as a binary
function of the structure of reals �R : R2 × R that may be partial though. In
particular the division operation /R is only a partial function, since division by
zero is not defined. In contrast +R, ∗R, −R, and expR are total functions.

Equations with arithmetic expressions are used ODEs, where they are inter-
preted over real-valued functions. For any variable assignment β : V → (R+ →
R), an arithmetic expression e is evaluated to a real value function if all the
application of all the operators for the operations are well-defined. The set de-
fined later on JeKR+→R,β will contains this unique real function if it exists and
is empty otherwise. For this we interpret the operators � ∈ {+, ∗,−, /, exp} as
operations on real valued functions �R+→R : (R+ → R)2× (R+ → R). Note that
the division operation of real-valued functions /R+→R inherits the partiality of
the division operation on the reals /R. And finally notice, that the constants
ρ ∈ R in arithmetic expressions must be reinterpreted as constant functions.

Furthermore, we will abstractly interpret equations with arithmetic expres-
sions over the structure of signs. For any variable assignment to signs γ : V → S,
an arithmetic expression e is evaluated nondeterministically, that is to a set of
possible signs JeKR+→R,γ . For this we interpret the operators � ∈ {+, ∗,−, /, exp}
as the naturally corresponding operations on signs �S : S2 × S. We note that
the addition operator is not even functional, give that 1 + (−1) = ↗ + ↘
can be evaluated to any sign. Furthermore, any constant ρ ∈ R is now to
be reinterpreted as the sign hS(ρ) where hS : R → S so that hS(ρ) = 1 if
ρ > 0, hS(ρ) = 0 if ρ = 0 and hS(ρ) = −1 if ρ < 0. The interpretation of S
turns hS : R → S into a homomorphism between Σarith-structures, satisfying
�S = {(hS(ρ), hS(ρ′), hS(ρ′′)) | (ρ, ρ′, ρ′′) ∈ �R} for any operator � ∈ Σarith.

3 Chemical Reaction Networks

Let S be a finite set. A chemical solution with species in S is a multiset M : S →
N, i.e., an element of NS . The multiset [A/3, B/2] for instance is often written
as 3A+ 2B.
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r1 : S + E
1000000∗S∗E−−−−−−−−→ C

r−1 : C
0.2∗C−−−−→ S + E

r2 : C
0.1∗C−−−−→ E + P

(a) Reactions of Renz .

S

E

C

P

1
1000000S E

−1
0.2C

2
0.1C

(b) Graph of Renz .

S̊
◦
= −r1 + r−1

∧ E̊
◦
= −r1 + r−1 + r2

∧ C̊
◦
= r1 − r−1 − r2

∧ P̊
◦
= r2

where
r1 = 1000000 ∗ S ∗ E
r−1 = 0.2 ∗ C
r2 = 0.1 ∗ C

(c) ode(Renz ).

Fig. 1: The enzymatic reaction network Renz .

Definition 1. A (chemical) reaction with species in S is an element of NS ×
Earith(S)×NS . A (chemical) reaction network with species in S is a subset R of
reactions with species in S.

For instance, if e = 5.1 ∗ exp(A, 2) ∗ B then r = (3A + B, e,A + 2C) is a

chemical reaction, that we denote as usual as r : 3A + B
e−→ A + 2C. A state

α of a reaction network R assigns each species of R a concentration, which is a
positive real number, so α : S → R+. Let JeKR,α = 5.1∗R (JAKR,α)2∗R JBKR,α. The
above reaction states that the concentration of A changes at any time point with
state α with speed −2 ∗R JeKR,α, the concentration of B with speed −1 ∗R JeKR,α,
and the concentration of C with speed 2 ∗R JeKR,α. Negative speeds mean that
the species is consumed, while positive speeds mean that the species is produced.

Let r = (M, e,M ′) be a chemical reaction with species in S. We denote
the kinetic expression of r by kinr = e. For any species A ∈ S a species, the
stoichiometry of A in r is defined by stoicr(A) = M ′(A) −M(A). The ODE of
a reaction network R is the following equation system:

ode(R) =def

∧
A∈S

Ȧ
◦
=

∑
r∈R

stoicr(A) ∗ kinr ∧A ≥ 0

A formal definition of the syntax and semantics of ODEs will be given in Section
5 based on notions from the first-order logic in Section 4. For now, we just state
that all species occurring in an arithmetic expression denote some real valued
function of type R+ → R, that must be positive in addition. An expression
Ȧ denotes the derivation of the denotation of A if its derivation exists, and is
undefined otherwise. Note that derivations may become negative. The arithmetic
operators are interpreted as arithmetic operations in the structure of real-valued
functions R+ → R.

As an example for a CRN, we show the network of enzymatic reactions in
Fig. 1. It has species S = {S,E,C, P} and the three reactions in Fig. 1a, all
with mass action kinetics. Reaction r1 transforms a pair of a substrate S and
an enzyme E to a complex C, reaction r−1 does the inverse, and reaction r2

transforms the complex C into the free enzyme E and the product P . The
graph of the CRN Renz is given Fig. 1b and its ODEs in Fig. 1c.
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4 First-Order Logic

We call the syntax and semantics of first-order logic formulas. It will lay a com-
mon foundation for defining ODEs and boolean networks with non-deterministic
updates, and serve in all algorithms of the present paper.

A ranked signature is a set Σ = C ∪
⋃
n≥1 F

(n) that contains a subset of

constants c ∈ C and subsets of function symbols F (n) of arity n for all n ≥ 1.
We assume that all these subsets are pairwise distinct. For instance, we consider
the signature of arithmetics Σarith = R∪F (2) where F (2) = {+, ∗,−, /, exp} and
Σ̇arith = Σarith ∪ F (1) where F (1) = { ˙ }.

A relational Σ-structure is a pair S = (dom(S), .S) such that the inter-
pretation �S is a relation fS ⊆ dom(S)n × dom(S) for any � ∈ F (n). If all
interpretations are total functions, then we call S a Σ-algebra. In concrete ex-
amples, we will often confuse a Σ-structure with its domain. Our first example
is the set of reals which forms a Σarith-structure which we call R, equally to its
domain. Note that /R is only partial function since division by zero not defined.
Therefore, R is not an Σarith-algebra. The second example is the set of total
functions of type R+ → R. It forms a Σ̇arith-structure that we call R+ → R.
The interpretation of the dot operator ˙∈ F (1) in this structure is the operation
that maps any real-valued function of type R+ → R to its derivative if it exists,
and is undefined otherwise. The set of signs forms a Σarith-structure with do-
main S that we also call S. It is not a Σ-algebra, since +S is not functional. In
particular, (−1) + 1 can be evaluated non-deterministically to any sign of S.

Let V be a set of variables. The set of Σ-expressions with variables in V is
defined by the following abstract syntax

e ∈ EΣ(V) ::= x | c | �(e1, . . . , en) where x ∈ V, c ∈ C and � ∈ F (n)

By definition the set of arithmetic expressions satisfies Earith(S) = EΣarith
(S).

For any expression e, the set of free variables fv(e) is the set of all variables that
occur in e. The semantics of an expression e ∈ EΣ(V) is defined in Fig. 2 as a
subset of values of the domain JeKα,S ⊆ dom(S). It depends on some relational
Σ-structure S for interpreting the operators and a variable assignment into the
domain of this structure α : V → dom(S) with fv(e) ⊆ V .

The set of first-order formulas FΣ(V) is constructed from equations between
Σ-expressions and the usual first-order connectives:

φ ∈ FΣ(V) ::= e
◦
= e′ | ∃x.φ | φ ∧ φ | ¬φ where e, e′ ∈ EΣ(V) and x ∈ V

We sometimes use shortcuts e ≥ 0 for the formula ∃x.e ◦= x2 and e ≤ e′ for
e′−e ≥ 0. We also write Farith = FΣarith

for the set of arithmetic formulas build
from arithmetic expressions. The set of free variables fv(φ) contains all those
variables of φ that occur outside the scope of any occurrence of the existential
quantifier.

The semantics of a first-order formula φ ∈ FΣ(V) is the truth value JφKα,S ∈
B defined in Fig. 3. It depends on some Σ-structure S and variable assignment
α : V → dom(S) with fv(φ) ⊆ V . An equation e

◦
= e′ is true if the intersection

of the possible values for e and the possible values for e′ is non-empty, that is, if
JeKα,S∩Je′Kα,S 6= ∅. The set of solutions of a formula φ ∈ FΣ(V) over a relational
Σ-structure S is solS(φ)={α : fv(φ)→ dom(S) | JφKα,S = 1}..
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JcKα,S = cS JxKα,S = {α(x)}
J�(e1, . . . , en)Kα,S = {s | (s1, . . . , sn, s) ∈ �S , si ∈ JeiKα,S for all 1 ≤ i ≤ n} where � ∈ F (n)

Fig. 2: Interpretation of expressions e ∈ EΣ(V) over a relational Σ-structure S
with variable assignment α : V → dom(S) where fv(e) ⊆ V .

Je ◦= e′Kα,S =

{
1 if JeKα,S ∩ Je′Kα,S 6= ∅
0 else

Jφ ∧ φ′Kα,S = JφKα,S ∧B Jφ′Kα,S

J¬φKα,S = ¬B(JφKα,S) J∃x.φKα,S =


1 if exists s ∈ dom(S).

JφKα[x/s],S = 1
0 else

Fig. 3: Interpretation of formulas φ ∈ FΣ over a Σ-structure S with respect to
a variable assignment α : V → dom(S) with fv(φ) ⊆ V .

5 ODEs

We now define ordinary differential equations (ODEs) as formulas of first-order
logic in order to formalize their syntax and semantics in a framework suitable
for abstract interpretation.

Definition 2. An ODE is a formula of first-order logic with signature Σ̇arith.

The semantics of an ODE φ is the set of its solution over Σ̇arith-structure of
real-valued functions, i.e., solR+→R(φ). For any choice of initial concentrations α :
S → R, there exists at most one solution β ∈ solR+→R(φ), such that β(x)(0) =
α(x) for all x ∈ fv(φ). This solution can be computed numerically by the usual

Fig. 4: The deterministic numerical simulation of ode(Renz ) with initial concen-
trations S(0) = 1.0 ∗ 10−5, E(0) = 0.5 ∗ 10−5 and P (0) = C(0) = 0 mol/L.

integration methods for ODEs starting with the initial concentrations. If some
operations of the ODEs are undefined during the integration, no solution exists.
For illustration, we show in Fig. 4 the solution of the ODEs of the reaction
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network Renz with initial concentrations S(0) = 1.0 ∗ 10−5, E(0) = 0.5 ∗ 10−5

and P (0) = C(0) = 0 mol/L.
A (concrete) state of an ODE φ is a real solution in solR(φ). An abstract state

is a sign solution in solS(φ). We next show how to define a successor relation on
abstract states for ODEs.

Definition 3. Let γ1, γ2 : S → S be two abstract states of φ. We call γ2 a
next state of γ1 with respect to φ and write (γ1, γ2) ∈ nextφ if there exists a
real-valued function β ∈ solR+→R(φ) and two time points 0 ≤ t1 < t2 such that
for all species A ∈ S and time points t′2 ∈]t1, t2]: γ1(A) = hS(β(A)(t1)) and
γ2(A) = hS(β(A)(t′2)).

For instance for ode(Renz ), the next state of [S/1, E/1, C/0, P/0] is [S/1,
E/1, C/1, P/1], which has itself as next state. For this example, the next states
are always unique, but in general this must not be the case.

Interestingly, [S/1, E/1, C/0, P/0] does not have [S/1, E/1, C/1, P/0] as next
state. The reason is that instantaneously when C is produced, reaction r2 starts
producing P , so that both C and P will appear at the same time point. Never-
theless, the creation of C causes the creation of P , but this is not observable in
the temporal order and thus not in the relation nextode(Renz ).

The states of ode(φ) do not contain information about the values of the
derivates. In order to change this, let˚: V → V be a bijection such that S̊ is
disjoint from S for any S ⊆ V. For any formula φ we define a formula φ̊ assigning
the values of the derivation ẋ to the variable x̊:

φ̊ =def φ ∧
∧

x∈fv(φ)

x̊
◦
= ẋ

When interested in derivates we consider the successor relation of the formula
next φ̊. For instance, with respect to next ˚ode(Renz )

, the abstract state γ1 = [S/1,

E/1, C/0, P/0, S̊/↘, E̊/↘, C̊/↗, P̊ /→] has the successor γ2 = [S/1, E/1, C/1,
P/1, S̊/↘, E̊/↘, C̊/↗, P̊ /↗]. Furthermore, causality can be observed in the
signs of the derivates: we have γ1(C̊) =↗ since γ1(E) = γ1(S) = 1. In contrast
we have γ1(P̊ ) = → since γ1(C) = 0. As a consequence, for any solution β ∈
solR+→R(ode(Renz )), the value of limt→0 β(C)(t)/t 6= 0 so the change of C(t) at
t = 0 can be observed in the limit, while limt→0 β(P )(t)/t = 0, so the change of
P (t) at t = 0 cannot be observed in the limit. Nevertheless γ2(C) = γ2(P ) = 1,
since the successor time point of 0 is not in the limit.

Definition 4. Let R be a reaction network and γ1, γ2 : (S ∪ S̊) → S ab-
stract states. We call γ2 a causally-next dotted state of γ1 and write (γ1, γ2) ∈

˚cnextode(R) if γ2 ∈ solS( ˚ode(R)) and there exists an abstract state γ′2 such that

(γ1, γ
′
2) ∈ next ˚ode(R)

and for all A ∈ S: γ2(A) = γ1(A) if γ′2(Å) = 0 and

γ2(A) = γ′2(A) otherwise. We say that γ2|S is a causally-next state of γ1|S and

write (γ1|S , γ2|S) ∈ cnextode(R) if If (γ1, γ2) ∈ ˚cnextode(R).

For ode(Renz ), the causally next state of [S/1, E/1, C/0, P/0] is [S/1, E/1,
C/1, P/0], of which the causally next state is [S/1, E/1, C/1, P/1]. As here
we have nextode(R) ⊆ (cnextode(R))

∗ for may reaction networks R. We believe
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Fig. 5: The full state transition graph of the FO-BNN bnn(Renz ) in Fig. 6.

that this holds more generally for any reaction network for which the numerical
simulation by Euler’s algorithm is sound when using exact arithmetics. Euler’s
algorithm performs simulation steps, which may introduce approximation errors.
These errors may lead to arbitrarily false traces in some case, but may also be
ignored in many others. For Renz , this is the error of setting the value of P at
the next step to 0 if the value of P was 0 at the previous step and Ṗ = 0 (since
either A or E were absent). In reality, P should be set to a small nonzero value
at the next step.

The question of the present paper is how to perform some kind of abstract
simulation of a reaction network R, without knowing the exact initial concen-
trations. Instead, the sign abstractions of the initial concentrations should be
given only. These signs are always booleans given that all concentrations are
positive. The idea to do so is to over-approximate the relation nextode(R) be-
tween abstract states, by using the information about signs of the derivates in
next ˚ode(R)

. For this we will abstract reaction networks to boolean networks, by

abstractly interpreting the ODEs of the reaction network over the structure of
signs. This will yield boolean networks with non-deterministic updates, reflecting
the non-determinism of the structure of signs introduced by the sign abstraction.

6 Boolean Networks with Non-deterministic Updates

Any (abstract) state in BS is a function β : S → B that we call a bit vector. For
instance, the state [S/1, E/1, C/0, P/1] can be identified with the bit vector 1101
when ordering the species as in above. In the pictures of state transition graphs,
the states are drawn as bit vectors in oval nodes and the state transitions as
arrows linking these nodes. The legends in blue boxes specify the species order.

Following [14], a boolean network B with non-deterministic updates (BNN)
and species in S is generally some kind of definition of a abstract state transition
graph B ⊆ BS×BS as for instance in Fig. 5. Definitions of state transition graphs
can be expressed in various manners. Here we propose a novel alternative that
is based on formulas of first-order logic interpreted over the structure of signs S.
We assume that S ⊆ V and fix two bijections −→ : V → V and ˚ : V → V such

that S, S̊,
−→
S , and

−→
S̊ are disjoint subsets of V. Furthermore, we assume that−→

x̊ = −̊→x for any x ∈ V.
From the perspective of the sign abstraction of a reaction network, variable

A ∈ S states whether species A is present at the current time point and Å is the

sign of Ȧ. Variable
−→
A stands for the presence of A at the next time point, and

similarly,
−→
Å for the sign of the derivation at the next time point

−̇→
A .
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∃̊S∃E̊∃C̊∃P̊∃
−→
S̊ ∃
−→
E̊∃
−→
C̊∃
−→
P̊ .

S̊
◦
= −r1 + r−1 ∧

−→
S̊
◦
= −−→r1 +−→r−1 ∧

−→
S
◦
= S̊ + S ∧ S ≤

−→
S

∧ E̊
◦
= −r1 + r−1 + r2 ∧

−→
E̊
◦
= −−→r1 +−→r−1 +−→r2 ∧

−→
E
◦
= E̊ + E ∧ E ≤

−→
E

∧ C̊
◦
= r1 − r−1 − r2 ∧

−→
C̊
◦
= −→r1 −−→r−1 −−→r2 ∧

−→
C
◦
= C̊ + C ∧ C ≤

−→
C

∧ P̊
◦
= r2 ∧

−→
P̊
◦
= −→r2 ∧

−→
P
◦
= P̊ + P ∧ P ≤

−→
P

where

r1 = 1000000 ∗ S ∗ E −→r1 = 1000000 ∗
−→
S ∗
−→
E

r−1 = 0.2 ∗ C −→r−1 = 0.2 ∗
−→
C

r2 = 0.1 ∗ C −→r2 = 0.1 ∗
−→
C

Fig. 6: An FO-BNN for the reaction network Renz .

Definition 5. An FO-BNN with variables in V ⊆ V is a first-order formula

φ ∈ Farith with free variables fv(φ) = V ∪
−→
V .

We notice that variables Å may occur in φ but not any expression with
a derivation operator such as Ȧ since it is not in the signature. Any variable

assignment γ : V ∪
−→
V → S yields a abstract state transition:

trans(γ) = (γ|V , γ|−→V ◦
−→) ∈ SV × SV

For illustration, a FO-BNN for Renz with the (free) variables in S = {S,E,C, P}
is shown in Fig. 6. It can be inferred from the ODEs of the reaction network
as follows: First the formula ode(Renz ) is added. Second, a copy of ode(Renz )

is added, in which all variables x are replaced by −→x . All variables in S̊ ∪
−→
S̊

are existentially quantified. Furthermore, for any species A ∈ S, we relate the

variable
−→
A to the variables A and Å by the equation

−→
A
◦
= A + Å. This states

that
−→
A can be true only if either A or Å are true, i.e. if the concentration of

A is either present or increasing at the previous time point. Finally, we impose

A ≤
−→
A for stating that species A can never become absent when it was present

before. Because the kinetics in Renz are all mass-action laws, this invariant holds
here for all the species. It may be false for other reaction networks though.

Furthermore, the solution sets of FO formulas over finite relational structures
such as S can be computed by finite set constraint programming. We have im-
plemented a constraint solver for S in Minizinc, which allows us to compute the
transition graph of FO-BNNs, i.e., the relation of bit vectors that it defines. The
transition graph in Fig. 5 is defined by the FO-BNN for the reaction network
Renz in Fig. 6.

The set of species of reaction network Renz has cardinality 4. Therefore, the
state transition graph of the FO-BNN of Renz has 24 = 16 states. So clearly,
the number of states of a FO-BNN may be exponential in the number of its
species. Therefore, it is generally advantageous if one does not have to compute
the whole state transition graph, but only the needed part of it.

Suppose that we know the sign abstraction of the initial state. We can then
generate the subgraph of the state transition graph that is accessible from the ab-
straction of the initial state, without computing any further states or transitions.

10



In this way, much smaller subgraphs can be observed. For Renz , for instance,
the subgraph accessible by any boolean state contain at most 3 boolean states.

The abstract simulation of the FO-BNN for the reaction network Renz start-
ing with the abstract state [S/1, E/1, C/0, P/0] is given in Fig. 8. This ex-
ample illustrates, that abstract simulation is related to the causality rather
than the temporality of species production. For instance the temporal transition
(1100, 1111) ∈ nextode(Renz ) is represented by two causal edges 1100 → 1110 →
1111 in the abstract simulation. These show the causality of the production: C
is produce if S and E are present and P is produced if C is present. But when C
is produced then instantaneously P is produced too, so even though C causally
precedes P (as shown by the abstract simulation), they are both produced at the
same time (in any solution of the ODEs). We notice that causality also plays for
concrete numerical simulation with Euler’s method: P will be produce shortly
after C there depending on the step width that is admitted. The reachable sub-
graph can be computed by repeated constraint solving. In each step, the values of
the variables in S is constrained to the boolean states from which the subgraph
is to be explored.

In general, for any FO-BNN φ with species in S and abstract initial state

γ0 : V ∪
−→
V → S, the abstract simulation represented by the set Sreach of all

reachable states and the corresponding transition relation Treach can be obtained
by iteratively computing the sets of new transitions Tnew and new reachable
states Snew starting from the initial state γ0, as in Fig. 7. The algorithm ends
when no new reachable states are obtained from the available transitions.

fun abs sim(φ, V, γ0)
Treach := ∅ Sreach := {γ0} Snew := Sreach

while Snew 6= ∅ :

Tnew := trans ◦ solS(φ ∧
∨
γ∈Snew

∧
x∈V ∪

−→
V
x
◦
= γ(x))

Snew := {γ2 | (γ1, γ2) ∈ Tnew} \ Sreach

Treach := Treach ∪ Tnew

Sreach := Sreach ∪ Snew

return Treach

Fig. 7: The abstract simulation of an FO-BNN φ
with variables in V from an abstract initial state γ0

computes the set of abstract state transitions Treach.

Fig. 8: Abstract simula-
tion of the FO-BNN in
Fig. 6 for the reaction
network Renz .

7 Abstract Interpretation of Logic Formulas

We discuss how to interpret logic formulas abstractly and recall John’s soundness
theorem for this abstract interpretation [9].

Theorem 6 John’s Soundness Theorem [1,13,9]. For any homomorphism
h : S → ∆ between Σ-structures and any negation-free formula φ ∈ FΣ(V):
h ◦ solS(φ) ⊆ sol∆(φ).

11



Lemma 7. If (γ1, γ2) ∈ next φ̊ then {γ1, γ2} ⊆ solS(φ) and if (γ1, γ2) ∈ ˚cnextode(R)

then {γ1, γ2} ⊆ solS(ode(R)).

8 Abstract Simulation of Reaction Networks

In order to simulate reaction networks abstractly, we propose to translate them
to FO-BNNs based on the abstract interpretation of logic formulas over the
structure of signs.

For any variable assignment α : V → R, we define −→α :
−→
V → R such that

α(x) = −→α (−→x ) for all x ∈ V . For any reaction network R, let
−→
R be the reaction

network with species in
−→
S obtained from R by replacing any species A ∈ S by

−→
A . For any A ∈ S, let varsA be the sequence of the four variables A, Å,

−→
A,
−→
Å .

Our objective is to approximate the relation cnextode(R) on abstract states
by a boolean network. For any A ∈ S, we consider formulas next spec(varsA)

with the following property. For all γ1, γ2 : S ∪
−→
S → S and all reaction networks

R with species in S:

(γ1, γ2) ∈ ˚cnextode(R) ⇒ (γ1 ∪ −→γ2)|{varsA} ∈ sol
S(next spec(varsA))

There are several possiblities to define next spec of which we propose three in
Fig. 9. It is not difficult to see that next spec1(varsA) satisfy the above re-

next spec1(varsA) =def (
−→
A
◦
= 1→ (A

◦
= 0 ∧ Å ◦

= 1) ∨A ◦
= 1))

∧ (
−→
A
◦
= 0→ (A

◦
= 0 ∧ Å ◦

= 0) ∨
−→
Å
◦
= −1))

next spec2(varsA) =def next spec1(varsA)

∧ (
−→
A
◦
= 0→ ((A

◦
= 0 ∧ Å ◦

= 0) ∨ (A
◦
= 1 ∧ Å ◦

= −1 ∧
−→
Å
◦
= 1))))

next spec3(varsA) =def next spec1(varsA) ∧ (
−→
A
◦
= 0→ A

◦
= 0)

Fig. 9: Three possiblitlity for next spec(varsA).

quirement since using causally-next relation (but this would not hold for the
temporal-next relation). If all kinetic expressions are infinitely derivable, then
when a concentration becomes 0 then the derivation must requires an increase
immediatly after in order to not become negative. If all reactions follows the
mass action law then nonzero concentrations can never become zero later on, so
next spec3(varsA) should satisfy the requirement too.

Let next spec(varsA) be one of the three formulas next speci(varsA) above
or any other formula satisfying the above property. Which of these choices is
applicable or best depends on properties of the reaction network.

Definition 8. For any reaction network R with species S = {A1, . . . , An} we
define the FO-BNN bnn(R) depending on the choice of next spec as follows:

∃Å1. . . . .∃Ån. ˚ode(R) ∧ ∃
−→
Å1. . . . .∃

−→
Ån.

˚
ode(
−→
R ) ∧

∧n
i=1 next spec(Ai, Åi,

−→
Ai,
−→
Åi)
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For illustration, the FO-BNN of the reaction network Renz with next spec3

for next spec is given in Fig. 6. The following theorem states the soundness of
the construction of bnn(R).

Theorem 9 Soundness. cnextode(R) ⊆ trans ◦ solS(bnn(R)).

Based on the Soundness Theorem 12 we can simulate any reaction network
R abstractly without knowing the exact initial concentrations: it is sufficient to
abstractly simulating the boolean network bnn(R). The abstract simulation of
bnn(Renz ) with next spec3 for next spec, for instance, was shown earlier.

9 Thresholds

Booleans serve us to distinguish whether the concentration of a species is zero
or not. It often happens, thought, that we would like to know whether the
concentration of a species is above or below a given threshold. We now show
that this can be treated with the above techniques.

Suppose we are given a species S ∈ S and a threshold ε > 0, say ε = 0.3, and
we want to know whether the concentration of S is above, equal, or below ε, so
whether S − ε < 0. The idea is to add an artificial species Sε to the network,
such that Ṡε = S − ε. This can be done by adding the following two reactions:

Sconsε : Sε
0.3−−→

Sprodε :
S−→ Sε

The ODEs of the so extended reaction network contain the expected equa-
tion. We can thus run the abstract simulation algorithm on the extended reaction
network. When applied to the reaction network Renz with the same initial con-
centrations than above, this yields the following accessible transition graph:

In this picture, we write S−ε instead of S̊ε. The negative sign S−ε =↘ means
S < ε, and a positive sign S−ε =↗ means S > ε, and S−ε =→ means S = ε.

The proper addition of thresholds, combined with the utilisation of the exact
boolean abstraction algorithm [2] for the set of linear equations of the extended
reaction network, provides a considerably more fine-grained abstract simulation
of the network. For example, with the addition of a further threshold for P in
Renz and an upper bound on the sum of the initial concentrations of S,C, P , the
abstract simulation allows us to conclude that only one final state may be reach-
able during the abstract simulation, where the concentration of S is below the
given threshold, as shown in the appendix in Fig. 12. The automatic application
of the exact boolean abstraction algorithm to the simulation of boolean networks
with thresholds requires however an extension of the algorithm to the inhomoge-
neous case, which is under implementation. For the simulation shown in Fig. 12,
a subset of the inhomogeneous equations was reduced to the homogeneous case
by manual rewriting, so that the original algorithm could be applied.
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Fig. 10: The numerical simulation of B448
projected to species IRins.

Fig. 11: Abstract simulation of
B448

10 Application to Biomodel’s Reaction Networks

Biomodels [11] is a online repository which contains a curated collection of over
a thousand published models about various biological systems [11]. Most of these
were previously published as ODE, but are now provided as reaction networks
in the SBML format [10].

We have implemented a tool chain to perform abstract simulation of reaction
networks given in BioComputings XML format that is described in Section 12
of the appendix. We programmed an XSL stylesheet that can convert SMBL
models to reaction networks in BioComputing’s XML format. In SBML, no x-y-
coordinates are available for placing the species and reactions of the graph. So
we added them semi-automatically. In the graphs, any species that activates a
reaction is connected to the reaction by a dashed arrow with a • head.

We applied abstractly simulation to reaction network B448 of the Biomodels
database at https://www.ebi.ac.uk/biomodels/BIOMD0000000448. It models
insulin signalling in human adipocytes in normal conditions [4]. Once converted
in the BioComputing’s XML format, the network involves 27 species and 34
reactions. Its graph in Fig. 13 covers one full page. See Fig. 15 for its ODEs.
In the initial (concrete) state given in the SBML model, all the species except
IRins start with a concentration strictly above 0. The full numerical simulation
of the 27 species is given in Fig. 14 of the appendix, while Fig. 10 focuses on the
concentration of IRins over time.

The total number of abstract states is 227. However, by starting from the ab-
straction of the initial concentrations in the SBML model (all species are present
except IRins), the state transition graph is reduced to 2 edges between 2 states
(Fig. 11). One of these states being the initial abstract state mentioned above,
and the other is the 1-only bitvector. The latter is an attractor, as its exiting
edge is making a self-loop. This is consistent with the concrete simulation of the
model (Fig. 10) and the steady-state computed numerically, but independent of
the precise initial concentrations chosen in the SBML model.
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11 Conclusion and Future Work

We presented an algorithm that can abstractly simulate a reaction network with-
out exact knowledge on the initial concentrations. We applied it to a real-world
reaction network from the BioModels repository with 27 species and 227 abstract
spaces. Nevertheless, abstract simulation based on finite domain constraint pro-
gramming remains feasible, so the question is how far.

Our algorithm is based on abstract interpretation of logical formulas in the
structure of signs. Therefore, we only obtain an over-approximation of the causal
next relation of a reaction network. Furthermore, the precision of our algorithm
depends on the choice of the formula next spec(varsA) in particular. The more
restrictive variants of this formula, however, may not be applicable to general
reaction networks. One questions is whether one can compute the causal next
relation exactly in some cases, similarly to the exact computation of the boolean
abstraction of linear equation systems from [2]. Another question is whether
more accurate approximations may be possible than those presented here.

Theorem 12 on the soundness of abstract simulation relies on the causal next
relation of the reaction network, rather than on its temporal next relation. The
precise relationship between these two relations is to be elaborated. It seems,
however, that it is related to the irrelevance of approximation errors of Euler’s
numeric simulation algorithm for ODEs.

The next step will be to lift our novel abstract simulation algorithm to re-
action networks for which the kinetic expressions are only partially known. The
most frequent case is that some parameters of the kinetic expressions are un-
known. Alternatively, the form of the kinetic expressions may be known only up
to similarity [13,1]. Such networks cannot even be simulated concretely without
estimating the missing kinetic information from data, so abstract simulation may
provide an interesting alternative for the qualitative analysis of such networks.

We hope that the present work could be of interest to the research community
of boolean networks. We believe that FO-BNNs offer an interesting alternative to
classical boolean networks with deterministic updates. So the classical questions
for boolean networks should be reconsidered for FO-BNNs. Finally, we would like
to notice that we avoided any discussions about the various semantics of classical
boolean networks (synchronous, asynchronous, most permissive, etc). We did so
since we could not see how the traditional boolean networks with deterministic
updates could enable a sound abstraction of the deterministic semantics of a
reaction network. But may be, it is possible to abstract FO-BNNs further to
some classical boolean network with deterministic updates, possibly under some
restrictions.

Acknowledgements. We thank Jun Pang and Löıc Paulevé for the helpful
discussions and references on the relation of reaction and boolean networks, as
well as our colleagues from BioComputing Emilie Allart, Maxime Folschette and
Cédric Lhoussaine.
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12 Implementation

We have implemented a whole tool chain to perform abstract simulation of reac-
tion networks extending on BioComputing Reaction-Network tool. The latter can
analyse reaction networks in BioComputing’s XML format based on a pipeline
of XSL stylesheets. In particular it can draw the graphs reaction networks such
as presentd in the present paper. It can also compute the ODEs ode(R) for any
reaction network R. The ODEs are represented in an XML format too, so that
they can be processed further with XSL stylesheets.

We implemented a new XSL stylesheet for the treatment of thresholds by
adding auxiliary species and reaction to a network. We implemented yet another
XSL stylesheet that eliminates the arithmetic operators − and / in ODEs, so
that they use only the arithmetic operators in Σ = {+, ∗, exp}. Terms with
the derivation operators Ȧ are replaced by variables Å for all species A. We
also wrote a stylesheet that maps any first-order Σ-formula φ to a Minizinc
program [12], by which the solutions of φ over the finite structure of signs can
be computed.

We implemented the compiler from reaction networks R to FO-BNNs bnn(R)
based on ode(R) by yet another XSL stylesheet. It is parameterised by some of
the formulas next speci where i = 1, 2, 3. We implemented our abstract simula-
tion algorithm for FO-BNNs in Python, based on the constraint solver for the
structure of signs. Last but not least, we wrote an XSL stylesheet for drawing
the state transition graph obtained from the solution set of constraint over the
structure S via graphviz. All state transition graphs presented in this paper are
produced in this manner.
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Fig. 12: Abstract simulation for the Renz network with two thresholds and bound
on the initial concentration of S,C, P .
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Fig. 13: The graph of reaction network B448
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Fig. 14: The numeric simulation of B448 with all species.

I̊R = −rv1a − rv1basal + rv1g + rv1r
˚IRp = rv1basal + rv1c − rv1d − rv1g
˚IRins = rv1a − rv1c
˚IRip = rv1d − rv1e

˚IRi = rv1e − rv1r
˚IRS1 = −rv2a + rv2b − rv2basal + rv2g
˚IRS1p = rv2a − rv2b − rv2c + rv2d

˚IRS1p307 = rv2c − rv2d − rv2f
˚IRS1307 = rv2f + rv2basal − rv2g

X̊ = −rv3a + rv3b
X̊p = rv3a − rv3b

˚PKB = −rv4a + rv4b + rv4h
˚PKB308p = rv4a − rv4b − rv4c
˚PKB473p = −rv4e + rv4f − rv4h

˚PKB308p473p = rv4c + rv4e − rv4f
˚mTORC1 = −rv5a + rv5b
˚mTORC1a = rv5a − rv5b
˚mTORC2 = −rv5c + rv5d
˚mTORC2a = rv5c − rv5d

˚AS160 = −rv6f1 + rv6b1
˚AS160p = rv6f1 − rv6b1
˚GLUT4m = rv7f − rv7b

˚GLUT4 = −rv7f + rv7b
˚S6K = −rv9f1 + rv9b1
˚S6Kp = rv9f1 − rv9b1

S̊6 = −rv9f2 + rv9b2
S̊6p = rv9f2 − rv9b2
rv1a = IR 0.6331 10
rv1basal = 0.03683IR
rv1c = IRins 0.8768
rv1d = IRp 31.01
rv1e = IRip 1840Xp

rv1g = IRp 1944
rv1r = IRi 0.5471
rv2a = IRS1 3.227IRip
rv2b = IRS1p 3424
rv2c = IRS1p 5759mTORC1a
rv2d = IRS1p307 280.8
rv2f = IRS1p307 2.913
rv2basal = IRS1 0.04228
rv2g = IRS1307 0.2671
rv3a = X 0.001377IRS1p
rv3b = Xp 0.09876
rv5a = mTORC1 (1.842PKB308p473p +
0.05506PKB308p)
rv5b = mTORC1a 24.83
rv5c = mTORC2 0.08575IRip
rv5d = 1.06mTORC2a
rv4a = 5790PKB IRS1p
rv4b = 34.8PKB308p
rv4c = 4.456PKB308p mTORC2a
rv4e = 42.84PKB473p IRS1p307
rv4f = 143.6PKB308p473p
rv4h = 0.5361PKB473p
rv6f1 = AS160 (2.652PKB308p473p +

36.93 (PKB473p)2.137

(30.54)2.137+(PKB473p)2.137
)

rv6b1 = AS160p 65.18
rv7f = GLUT4 50.98AS160p
rv7b = GLUT4m 2286

rv9f1 = S6K 0.1298 (mTORC1a)0.9855

(5873)0.9855+(mTORC1a)0.9855

rv9b1 = S6Kp 0.04441
rv9f2 = S6 3.329S6Kp
rv9b2 = S6p 31

Fig. 15: The ODEs of reaction network B448.

20



A Proofs for Section 7 (Abstract Interpretation of Logic
Formulas)

Theorem 10 John’s Soundness Theorem [1,13,9]. For any homomor-
phism h : S → ∆ between Σ-structures and any negation-free formula φ ∈
FΣ(V): h ◦ solS(φ) ⊆ sol∆(φ).

We only give a sketch of the proof. Let α : V → dom(S). For any expression
e ∈ EΣ(V) such that fv(e) ⊆ V we can show that h(JeKα,S) = JeKh◦α,∆ by
induction on the structure of e. It then follows for any positive formula φ ∈
FΣ(V) with fv(φ) ⊆ V that JφKα,S ≤ JφKh◦α,∆. This is equivalent to that:
{h ◦ α | α ∈ solSV (φ)} ⊆ sol∆V (φ) and thus h ◦ solSV (φ) ⊆ sol∆V (φ).

Lemma 11. If (γ1, γ2) ∈ next φ̊ then {γ1, γ2} ⊆ solS(φ) and if (γ1, γ2) ∈ ˚cnextode(R)

then {γ1, γ2} ⊆ solS(ode(R)).

Proof. The definition of nextφ shows that any pair (γ1, γ2) ∈ nextφ has the
form (hS ◦ α1, hS ◦ α2) for some α1, α2 ∈ solR(φ). John’s Soundness Theo-
rem for abstract interpretation of logic formulas (Theorem 10) implies hS ◦
solR(φ) ⊆ solS(φ) and thus {γ1, γ2} ⊆ solS(φ). If (γ1, γ2) ∈ ˚cnextode(R) then

γ2 ∈ solS( ˚ode(R)) by definition. Furthermore there exists γ′2 such that (γ1, γ
′
2) ∈

next ˚ode(R)
. The first property shows that γ1 ∈ solS( ˚ode(R)) too.

B Proofs for Section 8 (Abstract Simulation of Reaction
Networks)

Theorem 12 Soundness. cnextode(R) ⊆ trans ◦ solS(bnn(R)).

Proof. Let (γ1, γ2) ∈ cnextode(R). Then there exists (γ′1, γ
′
2) ∈ ˚cnextode(R) such

that γ′1 = γ1|S and γ′2 = γ2|S . By assumption on next spec(varsA), this implies

for all A ∈ S that γ′1 ∪
−→
γ′2 ∈ solS(

∧n
A∈S next spec(varsA)). Lemma 11 shows

that γ′1, γ
′
2 ∈ solS( ˚ode(R)) so that

−→
γ′2 ∈ solS(

˚
ode(
−→
R )). By definition of bnn(R)

we obtain γ′1|S ∪
−−→
γ′2|S ∈ solS(bnn(R)). Hence, (γ1, γ2) = (γ′1|S , γ

′
2|S) ∈ trans ◦

solS(bnn(R)) as stated by the theorem.
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