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Abstract. Diffusion MRI imaging and tractography algorithms have
enabled the mapping of the macro-scale connectome of the entire brain.
At the functional level, probably the simplest way to study the dynamics
of macro-scale brain activity is to compute the “activation cascade” that
follows the artificial stimulation of a source region. Such cascades can
be computed using the Linear Threshold model on a weighted graph
representation of the connectome. The question we focus on is: if we
are given such activation cascades for two groups, say A and B (e.g.
Controls versus a mental disorder), what is the smallest set of brain
connectivity (graph edge weight) changes that are sufficient to explain the
observed differences in the activation cascades between the two groups?
We have developed and computationally validated an efficient algorithm,
TRACED, to solve the previous problem. We argue that this approach to
compare the connectomes of two groups, based on activation cascades, is
more insightful than simply identifying ”static” network differences (such
as edges with large weight or centrality differences). We have also applied
the proposed method in the comparison between a Major Depressive
Disorder (MDD) group versus healthy controls and briefly report the
resulting set of connections that cause most of the observed cascade
differences.

Keywords: Connectome · Structural brain networks · Activation cas-
cade · Root-cause analysis.

1 Introduction

Diffusion MRI imaging and tractography algorithms have enabled the mapping
of the macro-scale connectome of the entire brain [23]. This network represen-
tation enables the application of powerful tools from graph theory and graph
algorithms in the study of the brain’s structure and function. Earlier work has
focused on various important network properties of the brain such as small world-
ness [1], presence of hubs [12], modularity [22], etc. These studies have revealed
that seemingly local pathologies in specific regions can have far-reaching global
effects on other parts of the brain [24,19].

Probably the simplest way to study the dynamics of brain activity at the
macro-scale is to compute the “activation cascade” that is generated by the ar-
tificial stimulation of a source region. Activation cascades, represented in the
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form of directed acyclic graphs (DAGs), describe how an activation starting
from one region (i.e., source node) propagates to the rest of the brain, acti-
vating other brain regions along the way. Previous work has applied the Asyn-
chronous Linear Threshold (ALT) model on the mouse meso-scale connectome
to simulate the propagation and integration of sensory signals through activa-
tion cascades [21]. Those modeling results were validated with functional data
from cortical voltage-sensitive dye imaging, showing that the order of node ac-
tivations in the model matches quite well with the empirical activation order
observed experimentally [21].

The question that we focus on in this study is: suppose we are given two
groups with significant differences in the activation cascades generated in their
brain networks. What is the smallest set of brain connectivity (i.e., graph edge
weight) changes that are sufficient to explain the observed differences in the
activation cascades between the two groups? Answering this question can be
valuable in many studies when two groups should be compared, not only in terms
of structural connectome differences, but also in terms of functional dynamics.
For example, we can identify a (generally small) set of brain connectivity changes
that appear to cause the functional activation differences in a given disorder, by
comparing the corresponding activation cascades with healthy controls. Further,
the corresponding connections can be used as possible targets in interventions
and treatments such as deep brain stimulation [26,20].

We have developed an algorithm named TRACED (The Root-cause of Acti-
vation Cascade Differences) to solve the previous problem. TRACED starts by
identifying node membership differences between the two groups (say A and B)
within the activation cascade of each source. Then, for each source, we identify
the smallest set of edges that, if their weights in group A are modified to be
equal to the weights in group B, the corresponding activation cascades will be
the same in both groups. We have computationally validated TRACED across
many test cases. Additionally, we have applied TRACED in the comparison be-
tween a group of patients with major depressive disorder (MDD) and a group
of controls. This paper focuses on the proposed computational method – a more
comprehensive MDD-focused study of the two groups will be presented in a
different article.

Previous work detected significant topological differences in terms of network
metrics such as edge weights and centrality measures for various neurological
disorders, including multiple sclerosis [7,15], Alzheimer’s disease [6], Parkinson’s
disease [27], and schizophrenia [8]. We argue that the activation cascade ap-
proach to comparing the connectomes of two groups is more insightful than sim-
ply identifying such ”static” network differences. The former makes some clear
and simple assumptions about the processing and propagation of information
in the brain, and it creates a causal connection between structural changes and
functional effects. Therefore, the identified abnormalities are more interpretable
and robust to subject variability.
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2 Linear threshold model and activation cascades

Our starting point is a structural macro-scale brain network. In this network
representation, the graph is denoted by G = (V,E), each node in V corresponds
to a brain region, and E contains edges that correspond to connectivity between
brain regions. For DTI-based structural networks, the edges are undirected. Each
edge (x, y) in E is associated with a weight w(x, y) that represents the strength
of the corresponding connection.

In the linear threshold model, each node can be either active or inactive.
Initially, all nodes are inactive, except a single source node. If a neighbor y of a
node x is active, then we say that x “receives an activation” from y with strength
w(y, x). Node x becomes active if it receives a cumulative activation from all its
active neighbors that is more than a threshold θ.

More formally, a node x at time t is associated with a binary state variable
A(x, t) indicating whether x is active (1) or not (0). For the source node s, we
have that A(s, t = 0) = 1 and for all other nodes:

A(x, t+ 1) = 1 if
∑

y|(y,x)∈E

w(y, x)A(y, t) ≥ θ (1)

for t ≥ 0. If x becomes active in the cascade of source s, ts(x) is the time of its
activation. By convention, ts(x) = ∞ if node x never gets active.

An activation cascade, in the form of a directed acyclic graph (DAG), shows
whether as well as how each node becomes active. The nodes in the activation
cascade of source s form the following set:

U(s) = {x ∈ V | ts(x) < ∞} (2)

The edges in the activation cascade include (x, y) ∈ E if node x becomes ac-
tive before y. So, the presence of this edge in the cascade DAG means that x

participates in the activation of y. Mathematically,

F (s) = {(x, y) ∈ E | ts(y) < ts(x)} (3)

We denote the activation cascade as H(s) = {U(s), F (s)}. In Fig. 1 we show
a simple example illustrating an activation cascade generated in a toy network
using the linear threshold model.

For a given θ, different source nodes may give different cascade sizes. Some
source nodes do not activate any other node giving rise to empty cascades, while
other source nodes may activate every node in the network causing a full cascade.
The third case is that of a partial cascade, which is more likely in practice. It
would be unrealistic to set the threshold θ so high that we get many empty
cascades – that would correspond to a comatose brain! However, it would also
be unrealistic to set θ so low that we get many full cascades. The previous
observations guide us to choose a range of θ values that result in more partial
cascades, across different source nodes.

When comparing the structural brain networks of two subjects, or two groups,
we rely on the membership of each source’s cascade: If a node x is active in the
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Fig. 1. An illustrative example of an activation cascade obtained using the linear
threshold model. Node B is the source of the cascade. The threshold θ = 2. Node
A gets active through the edge (A, B), and node C becomes active after both A and
B are active. The rest of the nodes stay inactive in this cascade.

cascade of source s in one network, is x also active in the corresponding cas-
cade of the other network? The similarity between the node membership of two
cascades is quantified using the Jaccard similarity metric, applied on the set of
active nodes in the two cascades. A small Jaccard similarity represents a large
difference between the two cascades. Therefore, using U(s) and U ′(s) to denote
the set of active nodes in networks G and G′, respectively, after the activation
of source s, the difference between the two cascades is quantified by:

d{U(s), U ′(s)} = 1− J{U(s), U ′(s)} = 1−
|U(s) ∩ U ′(s)|

|U(s) ∪ U ′(s)|
(4)

where J{U(s), U ′(s)} is the Jaccard similarity of the two cascades.

3 TRACED algorithm

We expect that a mental disorder (or any other genuine distinction in the struc-
tural brain networks of a group) would cause cascade membership differences
for several different sources [28,25]. Additionally, it is reasonable to expect that
these cascade membership differences will be caused by a rather small set of
brain connectivity abnormalities (a larger set of abnormalities would probably
be lethal). Under these assumptions, we aim to detect the smallest set of edge
weight changes that can explain the observed cascade membership differences
between the two groups.

The case of a single source node: The problem of finding the root-cause
for the activation cascade differences of a single source s can be formulated as
follows: We are given the cascade of s in the control and the abnormal networks.
Compute the minimum set of edges C in the abnormal network so that, if we

restore the weights of those edges to be equal to the corresponding weights in the

control network, the activation cascade of s will be identical in the two networks.

The C-restored network is created by replacing the weight of edge e (e ∈ C), in
the abnormal network with the weight of e in the control network.
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Fig. 2. Method overview: The abnormal and control networks may have several edges
with different weights. We generate the activation cascade for each source using the
linear threshold model, and identify the cascade membership differences across the two
networks. Then we identify a subset of edges (containing only edge BD in this example)
whose weight change can explain the majority of the observed cascade differences. In
other words, if we restore the weights of this subset of edges in the abnormal network
to be equal to the corresponding weights in the control network, the majority of the
cascade differences between two networks no longer exist.

The mathematical formulation of the previous problem is:

Ĉ = argmin
C∈{E∪E′}

|C| s.t. U ′
C(s) = U(s) (5)
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where the set of active nodes in the control cascade of s is denoted by U(s), the
set of active nodes in the abnormal cascade of s is U ′(s), and the set of active
nodes in the C-restored network of s is U ′

C(s). By convention, we take the weight
of any edges that are not present as 0.

A naive algorithm would be to search among all 2m solutions (m = |E ∪E′|)
but that would be computationally infeasible for the scale of structural brain
networks.

Instead, the TRACED algorithm starts from an empty set C and gradually
“grows” the solution by adding one edge at a time. The original empty set C

can grow into m different sets, each with a distinct edge. In the next step, each
of these m sets can include one of the remaining m − 1 edges, creating a total
of m(m − 1) sets with two edges each. This way, when Ĉ is found, the number
of candidate solutions is mk, where k = |Ĉ|. Since we are adding edges step
by step following an approach similar to breadth-first-search, the solution is
guaranteed to be optimal. Note that even though the run-time of this approach
grows exponentially with the solution size k, we expect (as previously mentioned)
that k will be small in practice.

The run-time of the algorithm can be improved however based on the follow-
ing observation. Let us define as “candidate edges” the edges that point from
U(s) ∩ U ′

C(s) (nodes active in both cascades) to U(s)△U ′
C(s) (nodes active in

one cascade but not the other). We know that at each “growth” step at least
one of the candidate edges should be added to the solution. Otherwise, it is im-
possible to change the activation status of the nodes in U(s)△U ′

C(s). Therefore,
in each step we only consider candidate edges, and thus limit the number of new
possible solutions created. If b is an upper bound on the number of candidate
edges, the number of total solutions generated during the search is at most bk.

Fig. 3 illustrates the execution of the TRACED algorithm with a small ex-
ample. We start with an empty solution C and with the two activation cascades
(control and abnormal) for a single source s. Then, we identify the candidate
edges between the two cascades. For each candidate edge we “grow” a new branch
of the solution tree. We repeat these steps until U(s) = U ′

C(s). TRACED has
a time complexity of O(bk(|V |+ |E′|)) because it iterates through bk candidate
solutions and executes the linear threshold model once for each possible solution.

In Section A.1 we introduce an improvement that further reduces the average
run-time and allows multiple optimal solutions to be found, by adding more
than one edge into a candidate solution at each step. That improvement does
not change the algorithm’s main idea or its worst-case run time.

To computationally validate the correctness of the algorithm, we created
pairs of small-scale graphs for which we know the edges that cause activation
cascade differences between the two networks. These examples are designed so
that they vary in several factors: they can have one or multiple optimal solutions,
only one edge or multiple edges in one solution, and edges in a solution that are
dependent on each other (i.e. an edge included in the cascades only when the
weight of another edge is restored). TRACED results in the correct results in all
cases, identifying one or multiple optimal solutions correctly.
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Fig. 3. Illustration of TRACED: The tree structure shows how the solution is gradually
computed one edge at a time – different branches of the tree can lead to different
solutions. The final solutions are marked in red. Along with each candidate solution
C, we present the corresponding cascade H

′

C(s). In this example, two solutions can
explain equally well the observed differences between the two cascades that originate
from source C.

Aggregation across different source nodes: The previous algorithm may
produce different sets of edges for different source nodes. Some of these edges
may be the result of noise in the data or other artifacts. We select a subset
of these edges based on the following argument: if TRACED identifies a certain
edge as causal, not only for one source but for multiple, it is likely that that edge
represents a genuine and important difference between the control and abnormal
networks.

We use the coverage metric to measure the number of sources for which
an edge e has been identified as causal for the cascade membership differences.
Edges with higher coverage play a more central role in the observed differences
between the two networks.
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To test if the coverage of an edge is significant or not, we construct a null

hypothesis that all edges in the network have the same probability ( |Ĉ(s)|
|E| , where

Ĉ(s) refers to the set of edges identified to be causal to cascade membership
differences with source node s) to be reported as causal for source s. Under that
assumption, the coverage metric follows a binomial distribution:

coverage′(e) ∼ B(
∑

s

|Ĉ(s)|,
1

|E|
) (6)

So, the final output of TRACED is the set of edges for which the coverage

value is much higher than expected based on chance (p < 0.05 in the binomial
distribution).

This final step makes the TRACED algorithm heuristic - the set of edges that
we finally report is no longer guaranteed to explain all differences in the acti-
vation cascades of all sources. Nevertheless, the result captures edges that have
influenced the activation cascades across many source nodes, and is therefore
more reliable.

4 A case study on major depressive disorder

The focus of this paper is on the analysis method presented in the previous sec-
tion, rather than a specific application. To illustrate one potential application of
this method, however, we summarize here the results of a comparison between
a group of severe MDD patients and a group of healthy controls. The DTI data
for this comparison was provided to us by Dr. Helen Mayberg’s group and they
were originally used in the PReDICT study [3,4]. The PReDICT study was ap-
proved by Emory’s Institutional Review Board and the Grady Hospital Research
Oversight Committee. We constructed structural brain networks applying prob-
abilistic tractography on diffusion MRI scans of 90 MDD patients and 18 control
subjects. The brain was parcellated into 396 regions (198 regions for each hemi-
sphere) using the multi-modal cortical parcellation of Glasser et al. [9], and the
Brainnetome Atlas [5] for sub-cortical regions. We applied the linear threshold
model and generated an activation cascade for each source node, and measured
the cascade membership differences between the two groups. The threshold that
we used ranges from 0.1 to 0.3 among different source nodes, and is determined
for each source node as the one associated with most significant cascade mem-
bership differences. We then applied TRACED to identify the minimal set of
connections that can explain the observed cascade differences.

Table 1 lists the connections that we identified as causal for the cascade
membership differences between the two groups. These connections have a sig-
nificant overlap with findings of earlier studies reporting MDD-related struc-
tural/functional changes. The connections identified as causal are adjacent to
parts of Brodmann area 24 [14], area 32 [10], area 9 [13], area 10 [16], and the
orbitofrontal region [18]. All of these regions have been reported to be patholog-
ically relevant for MDD in earlier studies. Some of the reported connections are
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also in the default mode network (DMN), which has been shown to be heavily
affected by MDD [14], with increased functional connectivity [11]. We are going
to further analyze this dataset and also compare our findings with those of other
network analysis methods in a follow-up MDD-specific article.

Table 1. The connections that can explain the cascade differences between a group
of MDD patients and a group of Controls. The name of each node is based on the
parcellation of Glasser et al. [9], followed with a brief description of the location of
that region (L: left hemisphere, R: right hemisphere).

Node 1 description – Node 2 description

p24 (L) area-24 posterior – a24 (L) area-24 anterior
10v (L) area-10 ventral – 10pp (L) medial polar area-10
a24 (L) area-24 anterior – 9m (L) area-9 medial
Pir (L) piriform olfactory cortex – pOFC (L) posterior OFC
13l (L) area-13 lateral – OFC (L) orbital frontal complex
p32 (L) area-32 posterior – 10d (L) area-10 dorsal
p32 (L) area-32 posterior – 9m (L) area-9 medial
10v (R) area-10 ventral – 10pp (R) polar 10p
pOFC (L) posterior OFC – 13l (L) area-13 larteral
10pp (L) medial polar area-10 – OFC (L) orbital frontal complex
p32 (L) area-32 posterior – 10pp (L) medial polar area-10

5 Discussion

Various network analysis metrics and methods have been proposed in the past
to compare structural brain networks. For instance, earlier work has investi-
gated the differences between brain networks in terms of small-worldness [1],
efficiency [2], and modularity [22]. At the node level, the clustering coefficient,
participant coefficient, and different node centrality metrics (especially the be-
tweenness centrality) have been widely adopted [17,29]. At the edge level, re-
searchers have investigated the edges with significant weight differences and the
subnetwork they form [14].

TRACED falls in the spectrum of the edge-level analysis, and the resulting
set of connections is a subset of edges that have significant weight differences
between the two groups. Additionally however TRACED also incorporates the
information flow across the entire network in varied paths (because of all the
source nodes considered). We aggregate this topological information across the
entire network to describe the role that a specific network element (node or edge)
plays in the network, and how that role is different between the two groups.

Fig. 4 illustrates typical node-level and edge-level network analysis metrics
and compares them with TRACED. Compared to identifying solely edges with
significant weight changes, TRACED associates a structural change (i.e., restor-
ing the weight of a connection to its value in the other group) with functional
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Fig. 4. Earlier work has mostly focused on brain connectivity differences using graph-
theoretic metrics (e.g. node centrality metrics). TRACED associates connectivity
changes with their impact on information transfer in the brain. It measures the impact
of such changes on activation cascade differences, and identifies the specific connections
that cause these differences through root-cause analysis.

changes (the node membership of the corresponding activation cascades). This
is favorable for two reasons: it makes the results more interpretable, and less
sensitive to variability across subjects. A significant difference in the weight of a
connection between two networks may be simply due to subject variability. With
TRACED, a connection is identified as causal not only based on its weight but
also based on the topological role of that edge in the propagation of information
(activation cascades) from different source nodes.

Compared to node-level analysis metrics, TRACED can provide higher spa-
tial resolution because it identifies specific connections instead of entire brain
regions. Additionally, some network analysis metrics often make implicit as-
sumptions about information transfer in the brain (e.g. the betweenness cen-
trality metric assumes that information travels through shortest paths, while
the communicability metric assumes that information follows random-walks).
These assumptions may not be realistic (e.g. shortest path routing requires in-
formation about the complete network stored in every node). It is also harder
to interpret these metrics in terms of their associated localities in the brain (e.g.
a node may have much lower communicability in one group but what is the
corresponding set of affected information pathways?). TRACED makes an ex-
plicit assumption about information transfer, namely activation cascades based
on the linear threshold model, and it associates structural connectivity changes
with corresponding functional changes, making the results more transparent and
informative.
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A Appendix

A.1 Optimization of TRACED

A key observation is that if adding a single edge (x, y) into a solution set does not
change the activation status of node y, we will inevitably need to add additional
edges pointing to y to build a final solution. Otherwise, for a solution C with
(x, y), we can always find a better solution C′ = C − {(x, y)} with U ′

C(s) =
U ′
C′(s).
Therefore, we can improve the original TRACED algorithm, by adding a

collection of edges in each iteration, so that U ′
C(s) changes when we create a

new partial solution. This way we can reduce the number of partial solutions
that we create during the search for the optimal solution. How do we find the
collection of edges that can cause the change in UC(s)? We know that we focus
on change of activation status of nodes in U ′

C(s)△U(s), and so we can discuss
the case of nodes U(s) \ U ′

C(s) and U ′
C(s) \ U(s) separately.

1. For each node v in U(s)\U ′
C(s), we can check if there is an ensemble of edges

from U(s) ∩ U ′
C(s) pointing to this node, so that if we include the ensemble

into the solution, v would be active in the updated U ′
C(s). It is guaranteed

that we can find at least one such collection of edges. Otherwise, we cannot
explain why this v could be active in U(s).

2. For nodes in U ′
C(s)\U(s), we can further find its subset TC(s) so that for each

node v ∈ TC(s),
∑

u∈U(s)∩U ′

C
(s) w(u, v) ≥ θ. We can prove that U ′

C(s) \U(s)

will no longer be in U ′
C(s) if and only if we add an ensemble of edges for

each node in TC(s) into C. If for a node v in TC(s) we do not add edges
connecting to v into C, v will remain active and present in U ′

C(s). If we
add edges connecting to v for every node v in TC(s), none of the nodes in
U ′
C(s) \ U(s) receive an activation more than θ, so that they will no longer

be active.

With this modification, each partial solution C corresponds to a state U ′
C(s),

and it is guaranteed that there are no edges that can be removed from C without
changing that state. Therefore, all partial solutions corresponding to one state
are equivalent, in terms of the edges that need to be added to the solution to
reach another state. Therefore, we can construct a graph of solutions, where
each node x corresponds to a state, and each edge (x, y, {e1, . . . }) corresponds
to an ensemble of edges {e1, . . . } needed to be added into the partial solutions
corresponding to state x so that the new solution leads to state y. Such an
edge is also weighted, with a weight that is equal to the number of edges in
the collection. Notice that there can be multiple edges between two nodes, each
corresponding to one collection of edges and may have a different weight different
than other edges.

With such a graph of solutions, our goal is equivalent to finding the weighted
shortest path between the initial state U ′(s) and the final state U = U ′

Ĉ
(s) in

the graph. This is because the sum of the weights of edges along a path in the
graph of solutions would be the number of actual edges we include in the final
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solution. We can find the shortest path using Dijkstra’s algorithm since we have
only positive weights. The major benefit of having this graph of solutions is that
we can deal with the case of multiple optimal solutions more explicitly. They
will be represented as multiple shortest paths from the initial state to the final
state.
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