
Obfuscating the Hierarchy of a Digital IP

Giorgi Basiashvili[0000−0002−6021−6706], Zail Ul Abideen[0000−0002−8865−9402],
and Samuel Pagliarini[0000−0002−5294−0606]

Centre for Hardware Security, Tallinn University of Technology (TalTech), Estonia
{gibasi,zain.abideen,samuel.pagliarini}@taltech.ee

Abstract. Numerous security threats are emerging from untrusted play-
ers in the integrated circuit (IC) ecosystem. Among them, reverse engi-
neering practices with the intent to counterfeit, overproduce, or modify
an IC are worrying. In recent years, various techniques have been pro-
posed to mitigate the aforementioned threats but no technique seems to
be adequate to hide the hierarchy of a design. Such ability to obfuscate
the hierarchy is particularly important for designs that contain repeated
modules. In this paper, we propose a novel way to obfuscate such designs
by leveraging conventional logic synthesis. We exploit multiple optimiza-
tions that are available in the synthesis tool to create design diversity.
Our security analysis, performed by using the DANA reverse engineering
tool, confirms the significant impact of these optimizations on obfusca-
tion. Among the many considered obfuscated design instances, users can
find options that incur very small overheads while still confusing the
work of a reverse engineer.

Keywords: Obfuscation · Hardware intellectual property · ASIC · Logic
synthesis.

1 Introduction

Security has emerged as a prime design criterion for modern integrated circuits
(ICs). Alongside the continuous miniaturization trend that ICs have benefited
from for decades, new security threats have emerged and are now frequently
studied. Among them, the theft of intellectual property (IP) has been the target
of many studies [4,5,7,9,10,11,12].

The range of studied threats that ICs are susceptible to is quite large. Even
before ICs undergo fabrication, the chips (or byproducts of the IC design process,
e.g., netlists) can be maliciously modified, a threat that is usually termed a
hardware backdoor or a hardware trojan [2]. During fabrication, an adversary
located at an untrusted foundry may proceed to analyze the IC or its components
in order to gain reverse engineering knowledge [7]. Thus, this adversary would
be able to reproduce the IP for his/her own malicious purposes. This threat can
take the form of a simple IP theft or IC overproduction, i.e., when the entire
IC is produced beyond the contracted amount. To a large extent, the security
threats herein described are due to the globalized nature of the IC supply chain;
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in some cases, the end-user is also considered untrusted and is assumed to be
adversarial.

Many attempts have been made to counter the reverse engineering capabili-
ties of adversaries. Approaches anchored on partial trusted fabrication have been
proposed [9] but have not been adopted by the industry. Logic locking [10] stud-
ies have received a fair amount of attention and many derivatives of the original
concept have emerged [12]. However, powerful attacks against logic locking are
continuously proposed. SATisfiability-based attacks [11], in particular, have been
very effective at breaking security assumptions of logic locking schemes.

In this paper, however, we perform a study on how to obfuscate the hierarchy
of a system as not to give hints to an adversary about the intent of the system.
The ability of ‘hiding’ the hierarchy is particularly important for systems that
instantiate the same module repeated times.

2 Proposed Approach

2.1 Motivation and Background

There are multiple examples of designs that repeatedly instantiate the same
module. For instance, in the hardware implementation of neural networks, neu-
rons that contain multiply-and-accumulate type of functions are instantiated
hundreds to thousands of times [3]. This common design style is also seen in
cryptographic hardware accelerators that are round-based, such as the AES [6].
A generic representation of such type of system is shown in Fig. 1 (top panel),
where a notion of a shared bus that connects all the repeated elements is also
introduced.
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Fig. 1: Approaches to obfuscate a hierarchical design, from locking to design
diversity.

Next, assuming the system is an IP that is worth protecting against reverse
engineering threats, one could take a state-of-the-art locking approach [5] and
apply it to a single module (second panel). While this approach seems interesting
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at first – it would withstand known attacks such as SAT – a capable adversary
would bypass the problem entirely by replacing the obfuscated module with one
of the transparent ones. It follows then that all instances have to be obfuscated
under a key-based approach (third panel). However, even if the approach appears
to have merit, once a single module is broken, they may all be broken. It is also
important to notice that logic locking approaches are not overhead-free, the cost
to obfuscate all N modules can be rather large [4].

Generally speaking, the complete reverse engineering process is quite hard
and time consuming. The process is specially hard if the adversary only has
access to a finalized chip and proceeds to delaminate it, take ‘pictures’ in steps of
units of micrometers, and finally stitch them together to make sense of the design.
The process is also known to be imperfect, suffering from misalignment and
resolution issues. This process requires a skilled person, automation, equipment,
and time. However, as said earlier, for designs that consist of N number of
repeated modules, the vulnerability is higher. A small part/module of the design
could leak information which prompts as a full exposure of the design to the
adversary. Even if one of the submodules is poorly processed and has alignment
issues, the adversary would still successfully recover a correct netlist by simply
matching subnetlists of the same chip.

The illustrative example depicted in Fig. 1 is an attempt to demonstrate
that current obfuscation practices have not sufficiently tried to hide the design
hierarchy. In the next subsection, we introduce a synthesis-based approach to
achieve slightly modified designs in a way that would make it harder from an
adversary to notice the repeated instances. The different colors on the bottom
panel of the image try to convey this concept of design diversity.

2.2 Hierarchical Obfuscation

The implementation part of the ASIC design flow can be divided into two phases:
logic synthesis and physical synthesis. In this work, we propose to obfuscate the
hierarchy of a design during logic synthesis. In other words, we will introduce
obfuscation during the process of translating an RTL description into a mapped
netlist of standard cells.

To this end, we make use of Cadence Genus. It is well know that the con-
straints applied during synthesis, as well as the composition of the standard cell
library, play a vital role in the synthesis process. But there are many other ‘knobs’
of the synthesis process that selectively enable certain optimization strategies.
We exploit these optimization strategies to create design diversity, thus eliminat-
ing obvious regularity in a design. Furthermore, the RTL of the original design
remains unchanged; users are not required to redesign their logic to make it look
different.

There are many parameters and options to define/select when performing
logic synthesis, so it ought to be studied if the chosen options indeed generate
different netlists. Based on the findings of [8], we apply the following optimization
techniques:
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1. Clock gating
2. Ungrouping
3. Datapath analytical
4. Bubble pushing
5. Tighten max transition
6. Retiming for delay
7. Retiming for area
8. Clock gating + retiming for delay
9. Bubble pushing + retiming for area

The optimization techniques are not enabled by default, they are enabled
with different attributes1. Most optimizations are enabled with a true/false set-
ting. Exceptions are optimization 3 (it has multiple levels, from basic to extreme)
and optimization 5 (it takes a time interval in picoseconds).

Even if these are classic circuit optimization techniques, we offer a short ex-
planation for each as follows. Clock gating reduces the dynamic power of the
design. It determines non-enabled behavior of the registers and prevents clock
from propagating to them. Therefore, these registers are clock gated using an
enable signal. This technique incurs a small increase in area due to the gating
logic. Synthesis tools are responsible to infer enable signals automatically. Un-
grouping allows the synthesis tool to flatten the design hierarchy and consider
optimizations that traverse boundaries. This optimization typically saves area
and improves timing. Datapath analytical performs aggressive datapath opti-
mization that compromises area for timing. When bubble sort is enabled, it
pushes the inverters between in/out pins of flip-flops. This technique is also re-
ferred to as an inversion of sequential (output) cells. Tighten max transition
is related with the transition time, it is a longest time required to change the
logic state. Tightening max transition results in buffers being placed on the sig-
nals with slow transitions, even for paths where this phenomenon would cause no
timing violation. Max transition (clock or data) is the maximum slew, it comes
either from the library or the designer manually can target in the constrained file.
This helps to achieve the timing closure. Retiming repositions combinational
cells with respect to flip-flops, from one stage to another stage. It is typically
targeted for delay. It can also be issued to target area but never at the cost of
delay, that is, delay remains the primary optimization target.

In most experiments reported later on, one and only one optimization is
enabled at a time. For optimizations 8 and 9, two optimizations are exploited
concurrently, thus we utilize a plus sign and label them “opt_A + opt_B.”. For
all experiments, the synthesis effort was kept medium for fairness.

Fig. 2 illustrates our methodology that exploits the aforementioned tech-
niques during the logic synthesis to evaluate the obfuscation of the design’s
hierarchy. The complete process is fully automated and scripted to enable a

1 For Cadence Genus, these attributes are lp_insert_clock_gating, auto_ungroup,
dp_analytical_opt, br_seq_in_out_phase_opto, max_transition and retime
–min_delay, retime –min_area
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push-button analysis. We provide RTL description (i.e., Verilog or VHDL), tim-
ing constraint and standard cell library of the targeted technology. We use the
Nangate 15nm library of standard cells throughout the evaluation.

Once the input files are provided to the commercial synthesis tool, then it gen-
erates the gate-level netlists. More precisely, the logic synthesis internally does a
bit more, it synthesizes, optimizes and maps the netlist. The gate-level netlist is
the mapped one exported from the synthesis tool. This process is straightforward
and the Tcl script helps to achieve the automation. During the synthesis process,
a part of optimization is targeted with a custom parameter as highlighted in the
center of Fig 2. The working principle of utilized optimization techniques and
their corresponding parameters are reported in the previous section. We enable
one optimization at a time (opt_A) and then we combine another technique
(opt_A + opt_B) in the synthesis tool.
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Fig. 2: The methodology to evaluate the hierarchy of design in the context of
reverse engineering.

Besides this, we exploit another technique that also transforms the structure
of the design. We force the synthesis tool, with the help of set_dont_use com-
mand, to avoid a given cell. Hence, the composition of the standard cell library
is changed. Concerning the set_dont_use command, we highlight that the Nan-
gate library contains 67 cells. One by one, we force the synthesis not to use a
single cell, synthesize the design, and export a netlist. For instance, in the first
run, we prevent the AND2_X1 (2-input AND with a driving strength of 1) cell
from being used. In simple words, the synthesis tool will explore other available
cells from the library to make a functionally equivalent AND2_X1. The use
of standard cells with different drive strengths or completely different cells will
lead to changes in area, power, and possibly timing of the design. We repeat this
process for all the cells, available in the library. By using this technique, every
design will be functionally equivalent but marginally different (or distinct) from



6 G. Basiashvili et al.

the previous one. First, this process was done without any optimizations, then
it was repeated for the previously mentioned optimizations and their combina-
tions. Next, we use the set_dont_use technique to explore the synthesis space
of the design. The complete process generates 603 netlists which we calculate
with the number of cells multiplied by optimization techniques (67× 9).

However, in some cases, this difference might not be enough to alter the design
significantly enough. Accordingly, we have to check every design and verify its
characteristics, such as area, power and delay of the critical path to eliminate
the duplicate designs. This is achieved with a custom script that shrinks the
netlist and keeps only unique instances.

In the next step, we exploit an open-source tool named DANA to analyze
the design [1]. DANA stands for Dataflow Analysis for Gate-Level Netlist Re-
verse Engineering. DANA is a fully automated, technology-agnostic data flow
methodology for gate-level netlists. It analyses the individual FFs and groups
them into high-level registers. It provides an easily readable summary, such that
the user of tool can make sense of a netlist that a priori looks like a sea of gates.
We perform data flow analysis for each individual netlist and export a report.
We repeated this process for all the unique netlists to conclude the analysis.
For collecting final results and statistics of this analysis, we use another custom
script which we present in the next section.

3 Results

This section reports the results of our proposed methodology. Recalling again,
the objective was to develop a key-less and structural obfuscation methodology
that will apply to circuits that have modules instantiated multiple times.

To evaluate our methodology, we have selected a representative design that
displays such pattern. We have selected a Global Positioning System (GPS)
correlator, which is one of the integral parts of a GPS-capable hardware. A
correlator attempts to identify to which satellite of the GPS constellation it is
talking too. A system with multiple correlators executes this tasks in parallel,
yielding in faster signal acquisition and therefore short sync time.

We used the RTL description of the GPS correlator and generated the results
for the a single design. We did not change the RTL of the design throughout the
analysis for fairness. We note the number of unique netlists that are generated
by optimization techniques. A total of 509 unique designs were generated. With
set_dont_use cell, it was able to generate 55 designs. Clock gating, datapath
analytical and bubble pushing generates 50, 56 and 53 designs each. Most of the
unique designs were generated by tightening max transition (62), retiming for
the delay (61), and its combination with clock gating (62). However, it should
be noted that ungrouping was not able to generate a single unique design. Re-
timing for area and its combination with bubble pushing generates 53 and 57
designs. Nevertheless, the number of duplicate designs varies depending on the
optimization strategy.
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3.1 Power-Performance-Area evaluations

Our proposed obfuscation is key-less and infers almost a little overhead or al-
most zero. The performance does not impact the optimization techniques. But,
the area and power vary therefore it should be investigated. We have used a
very relaxed clock frequency in order to allow the synthesis tool to make less
constrained decisions. Table 1 shows the minimum and maximum values for the
area and power trade-offs with respect to changes in the applied optimization
technique. The first column list the applied optimization technique, columns two
to three for the minimum and maximum values of the area, columns four to five
for the minimum and maximum values of the leakage power and the last two
columns list the values for the dynamic power.

Optimization technique Area (µm2) Cells Leakage power (mW ) Dynamic power (mW )
Min Max Min Max Min Max Min Max

Baseline 432.9 461.6 762 845 0.012 0.013 2.368 2.414
Clock Gating 432.7 462.2 750 810 0.012 0.013 0.600 0.935
Ungrouping 432.9 461.6 762 845 0.012 0.013 2.368 2.414
Datapath Analytical 433.2 458.8 750 821 0.012 0.013 2.368 2.431
Bubble Pushing 437.1 459.1 758 840 0.012 0.013 2.293 2.469
Tightening max transition 598.8 990.3 1168 1644 0.022 0.062 0.706 2.091
Retiming for Delay 440.9 600.9 737 1047 0.012 0.018 2.944 4.398
Retiming for Area 434.7 458.8 767 840 0.012 0.013 2.399 2.460
Clock Gating + Retiming for Delay 425.2 560.9 711 966 0.012 0.018 1.084 1.562
Bubble Pushing + Retiming for Area 440.0 460.3 755 842 0.012 0.013 2.350 2.537

Table 1: Minimum and Maximum values of area, number of cells, leakage and
dynamic power of the generated designs

Fig. 3 illustrates the probability distribution function (PDF) for the unique
netlist. Panels (a), (b), (c) and (d) highlight the PDFs for the area, number of
cells, leakage power and dynamic power, respectively. The red dot represents the
location of the baseline design, and gives us an idea about the overall results.
The data of the distinct netlists shows the perfect fit for the normal distribution
curves. The distribution of the leakage power is a little bit different but still
faces variance. Thus, we have a wide range of variety which indicates that there
are significantly different designs from one another. Concerning panel (a), the
baseline design is approximately closer to the mean value. Almost half of the
designs have less area as compared to the baseline design. The same case is
for the number of cells as seen in panel (b). Similarly, the leakage power of
the baseline design is closer to the mean value. More than half of the designs
consume more leakage power as compared to the baseline design. Regarding
the dynamic power, the baseline design is far from the mean value and a large
number of designs consume higher power as compared to the baseline design. It
is noteworthy, that we observe the change in the hierarchy of the structure and
the effect of the variation is reflected in the area, number of cells, leakage power
and dynamic power.

Next, we are going to observe the percentage increase and decrease of the
area, number of cells, leakage power and dynamic power. Table 2 lists the anal-
ysis of different overheads for their corresponding techniques. The first col-
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Fig. 3: PDFs in terms of area, number of cells, leakage and dynamic power for
unique designs.

umn list the optimization technique, the second column shows the percent-
age increase/decrease in the area, the third column shows the percentage in-
crease/decrease in the number of cells, last two column represents the leakage
and dynamic power.

We note that clock gating offers a significant decrease in the dynamic power.
Datapath analytical lowers area, cells and dynamic power between 1-3%. The
same is happening for the bubble pushing. Tighten max transition has a signifi-
cant impact on area, cells and leakage power. But it shows a remarkable decrease
in the dynamic power (84.3%). We should note that a large number of distinct
designs were generated from this technique. The retiming for delay also has a
similar behavior for area and cells (20.18% and 12.71% increase) but it also
shows an increase in the leakage and dynamic power. The combination of clock
gating and retiming for delay shows an increase in every parameter except dy-
namic power, analogous to tighten max transition. The combination of bubble
pushing and retiming for the area also shows a little increase/decrease in the
parameters. In a nutshell, all the techniques have little impact on the area, cells
and power consumption except tighten max transition, retiming for delay and a
combination of clock gating & retiming for delay.
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Optimization technique Area (%) Cells (%) Dynamic Power (%) Leakage Power
Clock gating -0.3 -0.7 -119.4 0
Ungrouping 0 0 0 0
Datapath analytical -1.4 -2.9 -0.4 0
Bubble pushing -0.5 -0.7 -2.7 0
Tighten max transition +69.8 +60.1 -84.3 +131.4
Retiming for delay +20.1 +12.7 +51.3 +28.5
Retiming for area -0.5 -0.3 +0.7 0
Clock gating + Retiming for delay +18.9 +13.6 -66.5 +34.4
Bubble pushing + Retiming for area +0.4 -2.1 +4.5 0

Table 2: Percent increase/decrease in the baseline design and a variants generated
with the corresponding optimization technique

3.2 Security analysis

This section details the security analysis with DANA. The tool analyses the
dataflow between flip-flops to structure the registers. From the abstraction level,
the entire design contains flip-flops, connections to their respective sequential
successors and predecessors. The constructed relationship between flip-flops helps
the adversary to accomplish his/hers reverse engineering goals. DANA offers
two modes: (a) Normal Mode and (b) Steered Mode. In Normal Mode, DANA
autonomously analyzes the given netlist, without any prioritization. Using the
Steered Mode, the analyst can alternatively take care of extra information to
virtually “steer” the algorithms. This includes prioritizing DANA for the specific
register sizes, i.e., a reverse engineer learns different information from datasheets.
Furthermore, If the reverse engineer already has a clue that the design under
analysis is, for instance, a 16-bit CPU, he would hope to observe multiple 16-bit
register and thus steer DANA towards said size.

Evaluation method To accomplish the patterns for the reverse engineering, we
first executed DANA in a normal model and then in the steered mode. We run
DANA on a a machine equipped with 32 processors (Intel(R) Xeon(R) Platinum
8356H CPU @ 3.90GHz). After running DANA twice, we compare the results
with the baseline design to analyze how the hierarchy is varying with respect to
the applied technique. Fig 4 shows the register groups for the baseline and various
optimization techniques. The figure in panel (a) shows the baseline design that
includes different sizes of registers. Blue bubbles show the registers, straight lines
are connections between different registers, and circular lines are connections
from a register to itself. Concerning the size of registers, the larger the bubble is,
the larger the size of the register. From the graph, it is clear that it shows two
10-bit registers and other sizes of registers. This hierarchy shows the internal
register size and connectivity of the registers. This is straight forward clue for
the adversary to restructure the registers and its connected circuitry.

Now, we investigate how optimization changes the characteristics of the de-
sign. The figure in panel (b) shows the synthesized design where we enabled clock
gating optimization in commercial synthesis tool. We can see different 10-bit reg-
isters. A large number of register are diminished and we only see few registers
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Fig. 4: Graphs of the register group for various optimization techniques).

with a variety of sizes. It allows us to clearly see distinctions between different
groupings. In these unrolled designs, the sizes of register does not correspond
to the correct sizes declared in the RTL code. Panel (c) of Fig. 4 shows the
graph for the synthesized design with retiming for delay. Here, we can analyze
that complete graph consists of a large number of register and we still can see
a 10-bit register. This also offers a unique structure of the design and DANA is
unable to map it in the same way. In the next example, shown in panel (d), we
exploit two different optimizations (clock-gating and retiming for delay) at the
same time. Again, we obtain a distinct graph. To summarize these results, we can
confidently state that a design composed of many instances of the same module
but each instance is synthesized differently, will present itself as a challenge to
a reverse engineering adversary.

All these experiments presented so far were executed in the normal mode
of DANA. Now, we exploit the steer mode of DANA with the register size of
10-bits as shown in Fig. 5. It is a fair assumption that from non-steered mode,
and adversary might reach the conclusion that 10-bit registers are present. We
can see that the structure of the design is explicitly different from the previ-
ous ones. DANA still is unable to highlights clues even in steering mode. This
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Fig. 5: Graph of the register group for the clock-gating and retiming (delay) with
steered mode (Register size 10).

implied the high level of obfuscation for the design. The adversary make use of
the different reverse engineering tools along with high skills but still it requires
an additional effort to correctly identify the design. Our applied optimization
techniques perfectly modifies the structure of the design. This places barriers
for DANA’s clustering algorithm which incorrectly identifies the register group.
This is the case for every optimization technique.

Remarks The optimizations techniques are contributing towards obfuscation,
to confuse the adversary to understand the architecture of design. It is note-
worthy that the combination of two different optimizations has a large impact
on the hierarchy of the design (see Fig. 4, panels (c) and (d)). On the other
hand, if the design goal is keep the overheads under control, then tighten max
transition and retiming for delay are excluded for the list. However, many other
optimizations still remain attractive solutions.

4 Conclusion

Numerous designs consist of repeated modules or multiple copies for a specific
part of the design. These designs are highly vulnerable to reverse engineering.
In this paper, we have presented a unique obfuscation by leveraging the logic
synthesis and different optimizations techniques. Our methodology specifically
targets these types of designs. Our proposed flow is beneficial as the crucial initial
step for security analysis. Our flow for the obfuscation is completely automated
and does not incur high overheads, nor RTL changes. Our extensive analysis
of a large number of designs reveals that optimization techniques partially or
completely modify the structural representation of the design, thus creating a
challenge for reverse engineering.
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