Skip to main content

Foundations and Research Agenda for Simulation of Smart Ecosystems Architectures

  • Conference paper
  • First Online:
Software Architecture (ECSA 2021)

Abstract

The expected evolution of software-intensive systems has led to the emergence of complex systems in which smart ecosystems are representative. All life cycle phases of these ecosystems, from requirements engineering to maintenance (particularly the architectural design), are also complex. Approaches to the architecture evaluation of such complex systems are necessary, and simulation can be considered relevant and a good candidate. This work is positioned in this scenario and provides an overview of simulation of smart ecosystems architectures. We present concepts associated with simulation, known simulation technologies, such as DEVS and FERAL, and summarize our experience with the simulation of different ecosystems. Moreover, we observe several difficulties, challenges, and research opportunities that still exist and that should be carried forward to mature the field of smart ecosystems simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ms4systems.com/pages/ms4me.php.

  2. 2.

    https://ww2.inf.ufg.br/mssis/en/index.html.

  3. 3.

    https://omnetpp.org/.

  4. 4.

    https://www.vector.com/int/en/products/products-a-z/software/canoe/simulation/.

References

  1. Antonino, P.O., et al.: Enabling continuous software engineering for embedded systems architectures with virtual prototypes. In: Cuesta, C.E., Garlan, D., Pérez, J. (eds.) Software Architecture, pp. 115–130 (2018)

    Google Scholar 

  2. Antonino, P.O., Schnicke, F., Zhang, Z., Kuhn, T.: Blueprints for architecture drivers and architecture solutions for industry 4.0 shopfloor applications. In: 13th European Conference on Software Architecture (ECSA), vol. 2, pp. 261–268 (2019)

    Google Scholar 

  3. Banks, J.: Introduction to simulation. In: 31st Winter Simulation Conference (WSC), vol. 1, pp. 7–13 (2000)

    Google Scholar 

  4. Barcio, B., Ramaswamy, S., Macfadzean, R., Barber, K.: Object-oriented analysis, modeling, and simulation of a notional air defense system. Simulation 66(1), 5–21 (1996)

    Article  Google Scholar 

  5. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. SEI Series in Software Engineering, 4 edn. (2021)

    Google Scholar 

  6. Bauer, T., Antonino, P., Kuhn, T.: Towards architecting digital twin-pervaded systems. In: IEEE/ACM 7th International Workshop on Software Engineering for Systems-of-Systems (SESoS) and 13th Workshop on Distributed Software Development, Software Ecosystems and Systems-of-Systems (WDES), pp. 66–69 (2019)

    Google Scholar 

  7. Bellifemine, F., Poggi, A., Rimassa, G.: Developing multi-agent systems with JADE. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp. 89–103. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44631-1_7

    Chapter  MATH  Google Scholar 

  8. Bianchi, T., Santos, D.S., Felizardo, K.R.: Quality attributes of systems-of-systems: a systematic literature review. In: 3rd IEEE/ACM International Workshop on Software Engineering for Systems-of-Systems, pp. 23–30 (2015)

    Google Scholar 

  9. Blas, M.J.: An analysis model to evaluate web applications quality using a discrete-event simulation approach. In: 50th Winter Simulation Conference (WSC), pp. 4648–4649 (2017)

    Google Scholar 

  10. Bogado, V., Gonnet, S., Leone, H.: Modeling and simulation of software architecture in discrete event system specification for quality evaluation. Simulation 90(3), 290–319 (2014)

    Article  Google Scholar 

  11. Cadavid, H., Andrikopoulos, V., Avgeriou, P.: Architecting systems of systems: a tertiary study. Inf. Softw. Technol. 118(1), 106202 (2020)

    Article  Google Scholar 

  12. Cavalcante, E., Quilbeuf, J., Traonouez, L., Oquendo, F., Batista, T., Legay, A.: Statistical model checking of dynamic software architectures. In: 10th European Conference on Software Architecture (ECSA), pp. 185–200 (2016)

    Google Scholar 

  13. Combemale, B., DeAntoni, J., Baudry, B., France, R.B., Jézéquel, J.M., Gray, J.: Globalizing modeling languages. Computer 47(6), 68–71 (2014)

    Article  Google Scholar 

  14. Dahmann, J.S., Jr., G.R., Lane, J.A.: Systems engineering for capabilities. CrossTalk. J. J. Defense. Softw. Eng. 21(11), 4–9 (2008)

    Google Scholar 

  15. Delécolle, A., Lima, R., Graciano Neto, V., Buisson, J.: Architectural strategy to enhance the availability quality attribute in system-of-systems architectures: a case study. In: IEEE 15th International Conference of System of Systems Engineering (SoSE), pp. 93–98 (2020)

    Google Scholar 

  16. Dobrica, L., Niemele, E.: A survey on software architecture analysis methods. IEEE Trans. Softw. Eng. 28(7), 638–653 (2002)

    Article  Google Scholar 

  17. Federal Ministry of Education and Research, Germany: Industrie 4.0 platform (2011)

    Google Scholar 

  18. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst. Softw. 123, 176–189 (2017)

    Article  Google Scholar 

  19. França, B., Travassos, G.: Are we prepared for simulation based studies in software engineering yet? CLEI. Electron. J. 16(1), 9 (2013)

    Google Scholar 

  20. de França, B.B.N., Ali, N.B.: The role of simulation-based studies in software engineering research. In: Contemporary Empirical Methods in Software Engineering, pp. 263–287. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32489-6_10

    Chapter  Google Scholar 

  21. France, R., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development using UML 2.0: Promises and pitfalls. Computer 39(2), 59–66 (2006)

    Article  Google Scholar 

  22. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: enabling technologies, challenges and open research. IEEE Access 8(1), 108952–108971 (2020)

    Article  Google Scholar 

  23. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: a survey. ACM Comput. Surv. 51(3), 1–33 (2018)

    Article  Google Scholar 

  24. Goncalves, M., Cavalcante, E., Batista, T., Oquendo, F., Nakagawa, E.Y.: Towards a conceptual model for software-intensive system-of-systems. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC 2014), pp. 1605–1610 (2014)

    Google Scholar 

  25. Graciano Neto, V.V., Manzano, W., Antonino, P.O., Nakagawa, E.Y.: Simulation of software architectures of smart ecosystems: theory and practice. In: 15th European Conference on Software Architecture (ECSA 2021), pp. 1–4 (2021)

    Google Scholar 

  26. Graciano Neto, V., et al.: SOB (Save Our Budget) - a simulation-based method for prediction of acquisition costs of constituents of a system-of-systems. iSys - Braz. J. Inf. Syst. 12(4), 6–35 (2019)

    Google Scholar 

  27. Graciano Neto, V., Paes, C., Garcés, L., Guessi, M., Oquendo, F., Nakagawa, E.Y.: Stimuli-SoS: a model-based approach to derive stimuli generators in simulations of software architectures of systems-of-systems. J. Braz. Comput. Soc. 23(1), 13:1–13:22 (2017)

    Google Scholar 

  28. Graciano Neto, V., Paes, C., Rohling, A., Manzano, W., Nakagawa, E.Y.: Modeling & simulation of software architectures of systems-of-systems: an industrial report on the Brazilian space system. In: SpringSim, pp. 1–12 (2019)

    Google Scholar 

  29. Graciano Neto, V.V.: A simulation-driven model-based approach for designing software intensive systems-of-systems architectures. Université de Bretagne Sud; Universidade de São Paulo, Theses (2018)

    Google Scholar 

  30. Graciano Neto, V.V., et al.: ASAS: an approach to support simulation of smart systems. In: 51st Hawaii International Conference on System Sciences (HICSS), pp. 5777–5786 (2018)

    Google Scholar 

  31. Graciano Neto, V.V., Manzano, W., Kassab, M., Nakagawa, E.Y.: Model-based engineering & simulation of software-intensive systems-of-systems: Experience report and lessons learned. In: 12th European Conference on Software Architecture (ECSA). ECSA 2018 (2018)

    Google Scholar 

  32. Graciano Neto, V.V., Teles, R.M., Ivamoto, M., Mello, L.H.S., De Carvalho, C.L.: Um sistema de apoio à decisão baseado em agentes para tratamento de ocorrências no setor elétrico. Rev. Inform. Teór. Apl. 17(2), 1–15 (2010)

    Google Scholar 

  33. Gray, J., Rumpe, B.: Models in simulation. Softw. Syst. Model. 15(3), 605–607 (2016). https://doi.org/10.1007/s10270-016-0544-y

    Article  Google Scholar 

  34. Guessi, M., Graciano Neto, V.V., Bianchi, T., Felizardo, K.R., Oquendo, F., Nakagawa, E.Y.: A systematic literature review on the description of software architectures for systems of systems. In: 30th Symposium On Applied Computing (SAC 2015), pp. 1433–1440 (2015)

    Google Scholar 

  35. Higham, D.J., Higham, N.J.: MATLAB Guide (2000)

    Google Scholar 

  36. INCOSE: The Guide to the Systems Engineering Body of Knowledge (SEBoK) (2016)

    Google Scholar 

  37. ISO: ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471–2000) (2011)

    Google Scholar 

  38. Kruchten, P.: The 4+1 view model of architecture. IEEE Softw. 12(6), 42–50 (1995)

    Article  Google Scholar 

  39. Kuhr, T., Forster, T., Braun, T., Gotzhein, R.: Feral - framework for simulator coupling on requirements and architecture level. In: ACM/IEEE 11th International Conference on Formal Methods and Models for Codesign (MEMOCODE), pp. 11–22 (2013)

    Google Scholar 

  40. Lasi, H., Fettke, P., Kemper, H.G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng. 6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4

    Article  Google Scholar 

  41. Lebtag, B.G., Teixeira, P.G., Santos, R.P., Viana, D., Graciano Neto, V.V.: Strategies to evolve exm notations extracted from a survey with software engineering professionals perspective. J. Softw. Eng. Res. Dev. 9(1), 17:1–17:24 (2022)

    Google Scholar 

  42. Lima, R., Kassab, M., Neto, V.: Discussing the availability quality attribute in systems-of-systems architectures based on a simulation experiment, pp. 416–421 (2021)

    Google Scholar 

  43. Lopes, V.C., et al.: A systematic mapping study on software testing for systems-of-systems. In: Proceedings of the 5th Brazilian Symposium on Systematic and Automated Software Testing, pp. 88–97. SAST 2020, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3425174.3425216

  44. Maier, M.: Architecting principles for systems-of-systems. Syst. Eng. 1(4), 267–284 (1998)

    Article  Google Scholar 

  45. Manzano, W., Graciano Neto, V., Nakagawa, E.Y.: Dynamic-SoS: an approach for the simulation of systems-of-systems dynamic architectures. Comput. J. 63(5), 709–731 (2020)

    Article  Google Scholar 

  46. Mellor, S.J., Balcer, M., Jacobson, I.: Executable UML: a foundation for model-driven architecture (2002)

    Google Scholar 

  47. Morgan, J., Halton, M., Qiao, Y., Breslin, J.G.: Industry 4.0 smart reconfigurable manufacturing machines. J. Manuf. Syst. 59, 481–506 (2021)

    Google Scholar 

  48. Nakagawa, E.Y., Goncalves, M., Guessi, M., Oliveira, L., Oquendo, F.: The state of the art and future perspectives in systems of systems software architectures. In: 1st International Workshop on Software Engineering for Systems-of-Systems (SESoS), pp. 13–20 (2013)

    Google Scholar 

  49. Nielsen, C.B., Larsen, P.G., Fitzgerald, J., Woodcock, J., Peleska, J.: Systems of systems engineering: basic concepts, model-based techniques, and research directions. ACM Comput. Surv. 48(2), 18:1–18:41 (2015)

    Google Scholar 

  50. Oquendo, F.: Software architecture challenges and emerging research in software-intensive systems-of-systems. In: 10th European Conference on Software Architecture (ECSA), pp. 3–21 (2016)

    Google Scholar 

  51. Piroumian, V.: Digital twins: universal interoperability for the digital age. Computer 54(01), 61–69 (2021)

    Article  Google Scholar 

  52. Radziwon, A., Bilberg, A., Bogers, M., Madsen, E.S.: The smart factory: exploring adaptive and flexible manufacturing solutions. Proc. Eng. 69, 1184–1190 (2014)

    Article  Google Scholar 

  53. Santos, D.S., Oliveira, B.R.N., Kazman, R., Nakagawa, E.Y.: Evaluation of systems-of-systems software architectures: state of the art and future perspectives. ACM Comput. Surv. (2022)

    Google Scholar 

  54. Santos, D.S., Oliveira, B.R.N., Duran, A., Nakagawa, E.Y.: Reporting an experience on the establishment of a quality model for systems-of-systems. In: The 27th International Conference on Software Engineering and Knowledge Engineering (SEKE 2015), pp. 304–309 (2015)

    Google Scholar 

  55. Schnicke, F., Kuhn, T., Antonino, P.O.: Enabling industry 4.0 service-oriented architecture through digital twins. In: Muccini, H., et al. (eds.) ECSA 2020. CCIS, vol. 1269, pp. 490–503. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59155-7_35

    Chapter  Google Scholar 

  56. Teixeira, P.G., et al.: Constituent system design: a software architecture approach. In: IEEE International Conference on Software Architecture Companion (ICSA-C), pp. 218–225 (2020)

    Google Scholar 

  57. Tisue, S., Wilensky, U.: Netlogo: a simple environment for modeling complexity. In: In International Conference on Complex Systems, pp. 16–21 (2004)

    Google Scholar 

  58. Ustundag, Alp, Cevikcan, Emre: Industry 4.0: Managing The Digital Transformation. SSAM, 1st edn. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57870-5

    Book  Google Scholar 

  59. Zeigler, B., Sarjoughian, H.S., Duboz, R., Souli, J.C.: Guide to Modeling and Simulation of Systems of Systems. Springer Briefs in Computer Science, 1st edn. Springer, London (2012). https://doi.org/10.1007/978-1-4471-4570-7

    Book  Google Scholar 

  60. Zeigler, B.P., Mittal, S., Traore, M.K.: MBSE with/out simulation: State of the art and way forward. Systems 6(4), 40 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financed by CNPq (Grant No.: 313245/2021-5, 133436/2020-9), and FAPESP (Grant No.: 2015/24144-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valdemar Vicente Graciano Neto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Graciano Neto, V.V., Manzano, W., Antonino, P.O., Nakagawa, E.Y. (2022). Foundations and Research Agenda for Simulation of Smart Ecosystems Architectures. In: Scandurra, P., Galster, M., Mirandola, R., Weyns, D. (eds) Software Architecture. ECSA 2021. Lecture Notes in Computer Science, vol 13365. Springer, Cham. https://doi.org/10.1007/978-3-031-15116-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15116-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15115-6

  • Online ISBN: 978-3-031-15116-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics