
Building the MSR Tool Kaiaulu: Design
Principles and Experiences

Carlos Paradis1,2[0000−0002−3062−7547] and Rick Kazman1,2[0000−0003−0392−2783]

1 University of Hawaii at Manoa, Honolulu HI 96822, USA
2 {cvas,kazman}@hawaii.edu

Abstract. Background: Since Alitheia Core was proposed and subse-
quently retired, tools that support empirical studies of software projects
continue to be proposed, such as Codeface, Codeface4Smells, Grimoire-
Lab and SmartSHARK, but they all make different design choices and
provide overlapping functionality. Aims: We seek to understand the de-
sign decisions adopted by these tools–the good and the bad–along with
their consequences, to understand why their authors reinvented func-
tionality already present in other tools, and to help inform the design
of future tools. Method: We used action research to evaluate the tools,
and to determine a set of principles and anti-patterns to motivate a new
tool design. Results: We identified 7 major design choices among the
tools: 1) Abstraction Debt, 2) the use of Project Configuration Files, 3)
the choice of Batch or Interactive Mode, 4) Minimal Paths to Data, 5)
Familiar Software Abstractions, 6) Licensing and 7) the Perils of Code
Reuse. Building on the observed good and bad design decisions, we cre-
ated our own tool architecture and implemented it as an R package.
Conclusions: Tools should not require onerous setup for users to obtain
data. Authors should consider the conventions and abstractions used by
their chosen language and build upon these instead of redefining them.
Tools should encourage best practices in experiment reproducibility by
leveraging self-contained and readable schemas that are used for tool au-
tomation, and reuse must be done with care to avoid depending on dead
code.

Keywords: mining software repositories · design choices · action re-
search.

1 Introduction

Research into quality dimensions of software project requires the analysis of large
quantities of data. For researchers this typically means mining data from multiple
open source software projects. Pre-processing data, calculating metrics and flaws,
and synthesizing composite results from a large corpus of project artefacts is a
tedious and error prone task lacking immediate scientific value [10]—it is seen
merely as a means to an end. This was the motivation for the Alitheia Core
[10], which was made available in 2009 for the software engineering community.
It provided features for data collection, integration and analysis services and

ar
X

iv
:2

30
4.

14
57

0v
1 

 [
cs

.S
E

] 
 2

8 
A

pr
 2

02
3



2 C. Paradis et al.

emphasized an easy to use extension mechanism. Yet, as of today, Alitheia Core
is a dormant (read-only) project in GitHub3 and several other tools replicate at
least some of its functionality.

What went wrong? Why have many tools re-implemented the same “tedious
and error prone” tasks the Alitheia Core? And do the current tools live up to the
promise of Alitheia Core? In this work, we revisit lessons learned by the Alitheia
Core authors and the design choices made by the other more recent tools using
an action research [8] approach.

Our contributions in this paper are twofold: first, we present a set of key
design decisions derived from an analysis of the aforementioned tools which
either facilitated or hindered reusability, reproducibility, interoperability and
extension of functionality. Second, we present our tool, Kaiaulu4, which builds
upon the design decisions made from these prior tools, and which we believe fills
a gap in the existing mining software repositories ecosystem.

2 Studied Tools and Lessons Learned

The tools that we studied are Codeface [11], Codeface4Smells [23], GrimoireLab
[18,7] SmartSHARK, [25,24] and PyDriller [22]. We now present our observations
regarding the strengths and weaknesses of these tools in terms of their design
choices and note, throughout the work, lessons learned by the authors of Alitheia
Core [10] presented in [16]. Many of these lessons are applicable and worthy of
consideration in new tools with similar intents. We employed an action research
methodology in studying these tools, but do not describe the details of that
research here, due to space limitations.

2.1 Abstraction Debt

We have observed different levels of abstraction employed in the surveyed tools,
ranging from applications that are built as monoliths to those built from smaller
components. This is consistent with what has been noted in machine learning
systems as abstraction debt [21], i.e. a lack of key abstractions to support the
functions and growth of MSR tools.

Codeface was created as a monolithic application, in which an entire project’s
Git log or mailing list is analyzed. It abstracts a complete end-to-end pipeline,
implemented by a command line interface (CLI), and outputs a database dump
of a project. It is therefore difficult for other applications to build on some of
its unique features, for example, using its Git log parser that parses at function
(rather than file) granularity.

Both GrimoireLab and SmartSHARK define several components, each with
its own CLI, but the component abstractions they employ are not the same. To

3 https://github.com/istlab/Alitheia-Core
4 The documentation for the tool can be found at https://github.com/sailuh/

kaiaulu

https://github.com/istlab/Alitheia-Core
https://github.com/sailuh/kaiaulu
https://github.com/sailuh/kaiaulu


Building the MSR Tool Kaiaulu: Design Principles and Experiences 3

provide a point of comparison, Grimoire’s Lab Perceval provides a CLI to ob-
tain data from many data sources (e.g. GitHub, Git, Bugzilla, Jira, mailing lists,
etc), serving as a single interface for data collection. In contrast, SmartSHARK
defines its abstraction per data source type and, in the case of data acquisition,
at a more fine-grained level than Perceval. For example, consider issueShark and
vcsShark, two components of SmartShark. IssueShark defines abstractions for
different types of issues tracker sources, and vcsShark for different types of ver-
sion control systems. SmartSHARK’s abstractions facilitate defining additional
features specific to a data source type, such as separating static vs. dynamic
data in issue trackers (e.g. creation time of the issue vs. comments), regardless
of its underlying implementation (e.g. Jira or Bugzilla)5.

Pydriller is a single component and is smaller in scope as it only abstracts Git
repositories. However it is different from the other tools in that it provides an
API instead of a CLI. Its motivation is also different: it wraps around PythonGit,
which in itself provides a Pythonic API to nearly all features of Git, to provide
an API catered towards mining software repositories only. In providing just a
subset of Git functionality, it exposes functionality catering specifically to the
needs of mining repositories.

The decision between choosing a CLI or API has tradeoffs. An issue with
command line only interfaces occurs when an end-user may be interested in a
different abstraction of the data not preconceived by the authors. However an
API requires the user to be familiar with the programming language the tool
was built on top of, whereas a CLI does not.

From the above we derive the following lessons learned: End-to-end pipelines
such as Codeface’s limit the ability of other researchers to build on top of them.
Defining more specific abstractions per data type, whether via CLI or API as
issueShark and PyDriller do, facilitates building additional functionality specific
to a particular data type, or audience. Moreover, CLIs can be built on top of a
well-defined API, providing the benefit of both interfaces, as we do in Kaiaulu.

2.2 Tool Configuration Files vs Project Configuration Files

In [24], the authors of SmartSHARK noted that one of their goals was to support
replication through the storage of data in a single harmonized schema. Replica-
tion, it is argued, is supported by a common dataset. However, we have observed
that replication is also being done within configuration files in Codeface.

Codeface uses a concept we named project configuration files. These files pro-
vide a single compact source where parameters associated with the acquisition
and manipulation of a dataset can be stored. Project configuration file parame-
ters are required for tool execution, and they are a pragmatic, lightweight and
human-readable way to specify reproducible results. Project configuration files
also save time when a project is re-analyzed in other studies, as some project-
specific information may not be obvious from the dataset alone.

5 https://github.com/smartshark/issueSHARK#introduction

https://github.com/smartshark/issueSHARK#introduction


4 C. Paradis et al.

Of all the tools we have reviewed, only Codeface provides users with a means
to specify project configuration files. This led to a large collection of project con-
figurations that have been versioned in Codeface over time6. This information,
which supports repeatability, may otherwise not have been possible (or at least
easy) to reconstruct if all that was shared was the data.

We note that externalizing parameter choices in data acquisition and ma-
nipulation tasks has been more prominent in machine learning frameworks, for
example to define experiments in configuration files7, which include machine
learning model selection and choice of model hyper-parameters [19].

From the above, we derive the following lessons: integrating configuration
files that are human-readable and leveraged by the tool can enable reproducibility,
without the hurdles of sharing large quantities of primary data.

2.3 Batch Mode, Interactive Mode, and Literate Programming

As we noted before, with the exception of PyDriller, every tool defines a CLI, but
not an API. This means the only way to interact with these tools is batch mode.
Meanwhile, PyDriller does not offer a CLI, only an API, which confers its users
the ability to leverage Python’s interactive mode to explore the data. However,
it does not include a CLI for batch mode processing, for out-of-the-box data
acquisition, processing or data analysis. What we observe then is that existing
tools decide on either CLI or API, but not both. We believe, however, that the
mining of software repositories requires a tool capable of both, supporting an
iterative process of data exploration, and when concluded, a way to enact batch
processing to scale up.

To illustrate our claim—as no existing tool provides both capabilities—we
provide a few examples: in a recent socio-technical study, we needed to do iden-
tity matching, applying heuristics that have been published by other authors
(e.g. [4,27]) to assign identities to developers who use different names and e-
mails in version control systems and mailing lists. Consider the case where we
chose the simplest method, where developers whose name or e-mail match are
assigned the same id. At first glance, this seems like a reasonable assumption.
However, it was due to experimenting interactively with the identity matching
API that we discovered that all core developers, due to the use of an issue track-
ing system, ended up sharing the same e-mail address. We noted this case as a
unit test until a better heuristic could be found, and then examined the data for
other cases until we were satisfied with the results. We then saved the observed
parameters in a project configuration file, and used it to deploy a batch process
to collect various computationally intensive architectural metrics.

We have had similar experience in determining and testing heuristics to filter
files in a repository, or determining the method that developers adopt to annotate

6 See https://github.com/siemens/codeface/tree/master/conf and https:

//github.com/maelstromdat/codeface4smells_TR/tree/master/Configurations

for Codeface and Codeface4Smells respectively
7 https://xnmt.readthedocs.io/en/latest/experiment_config_files.html

https://github.com/siemens/codeface/tree/master/conf
https://github.com/maelstromdat/codeface4smells_TR/tree/master/Configurations
https://github.com/maelstromdat/codeface4smells_TR/tree/master/Configurations
https://xnmt.readthedocs.io/en/latest/experiment_config_files.html


Building the MSR Tool Kaiaulu: Design Principles and Experiences 5

issue numbers in commit messages. Because each project may apply its own
conventions, tools that offer an experimentation capability, and then defer mass
data processing to batch more efficiently support the full workflow of a researcher
in mining software repositories.

The described interactive data explorations could certainly have been done in
a Python or R session, but it is better to leverage literate programming using, for
example, Python or R Notebooks, so that the rationale of the design experiment
is not lost. However, care must be taken to not extensively rely on notebooks
without further refactoring functionality into the code base, leading to dead
experimental code paths [21].

Our learned lessons here were: existing tools choose either APIs or CLIs
(supporting batch or interactive modes). However, making both interfaces avail-
able will better support users in their various research efforts in mining software
repositories. The use of Notebooks to illustrate and explain the API complements
the API, provided functionality is not entirely written in Notebooks. In Kaiaulu,
we leverage both APIs and Notebooks, which is a common practice in R packages,
therefore avoiding abstraction debt.

2.4 Minimal Paths to Data

According to [16, p.233], the effort required to learn how infrastructure code
works has to be proportional to the gains and account for deprecation. We agree
with this observation. Let us look at how existing tools manage this concern.

When using GrimoireLab components (in particular Perceval) the minimal
path to data is surprisingly short. Provided with a Git repository URL, or a
local copy, it will output a JSON file to stdout. Likewise, provided with a URL
to a website mbox or local file, it will also provide a JSON file to stdout. A
developer can easily integrate wrappers to its CLI, and users can easily obtain
data for a project of interest. In this ecosystem, a database is available, but it
is optional: users need not to concern themselves with learning GrimoireLab’s
Elastic Search database to obtain data.

This is in contrast to Codeface and SmartSHARK, both of which require
user familiarity with MySQL and MongoDB respectively, along with their data
model schemas to obtain the equivalent version control system and mailing list
data. The minimal path to data in these cases is much longer, including the
setup overhead and integration with other tools.

When data integration is sought in the database, GrimoireLab retains its
approach of keeping the data closest to source, and not harmonizing it in a
schema that facilitates integration [24]. Codeface’s MySQL and SmartSHARK’s
MongoDB provide a harmonized schema, which makes it easier for users to store
the various types of data.

In the case of PyDriller, which provides an API, the minimal path to data
requires familiarity with the Python programming language. This offers the con-
venience of reshaping the data to the user’s final need, but adds an overhead to
the user for familiarization with the API, instead of just the raw data schema
from the source of interest (which the user is likely already familiar with for



6 C. Paradis et al.

their research purposes). One researcher [9, p.39] who extended Codeface4Smells
identified a problem of Pipeline Jungles [21], due to heavy reliance on a folder
hierarchy and file name conventions.

Our lessons learned here were: databases need not be a requirement to provide
users with various data sources. This also simplifies component reuse by other
tools and decreases the likelihood of reinventing the wheel. Providing a minimal
path does not exclude providing a database for researchers, as Perceval shows.
However providing a harmonized schema can save researchers from having to
re-implement code to integrate the same kinds of infrastructure over and over.
Lastly, providing an API gives some flexibility to users to reshape the data with
the tool. But user familiarity with the programming language and API is a kind
of overhead and this does not seem ideal, as the data could be provided directly
via a CLI leaving a task for the researcher to adapt it in their own programming
language. As such, we believe having available a CLI that outputs the data as
Perceval does, and a harmonized schema as in Codeface and SmartSHARK,
provides the best combination.

2.5 Other Design Decisions

We briefly mention here other (more minor) design decisions that we believe
may cause difficulties in adoption.

Familiar Software Abstractions. Both Perceval and PyDriller leverage a
common interface for end-users. They are both Python libraries, and provide the
expected interactions for CLI and API respectively. In Perceval’s CLI, provided
with a list of parameters and flags, data is output to stdout. PyDriller exposes an
API, an extension to a programmer’s familiar programming paradigm. This is in
contrast to ecosystems that define a different abstraction, such as SmartSHARK,
where detailed instructions must be followed to extend its functionality 8. Ex-
tension instructions are also not available for Perceval or Codeface.

Licensing. Another important consideration in reusing a code component is
how permissive its license is. For example, stringr, an R package to manipulate
strings used by XGBoost, a popular machine learning algorithm, was replaced by
stringi, another R package to manipulate strings, solely based on the difference
in licenses.9 Similar reasoning also led an R package that represents data tables
efficiently to adopt a different license because the existing license “could be
interpreted as preventing closed-source products from using data.table”10. Lack
of clarity on interactions of open source licenses has been reported by [1]. Among
the tools we studied, we have observed the following licenses: Codeface adopts
GPL 2.0, PyDriller Apache 2.0, SmartSHARK Apache 2.0, and Grimoire’s Lab
GPL 3.0 and LGPL 3.0.

Perils of Code Reuse. With the availability of package managers such
as CRAN and PyPi which greatly facilitate code reuse, you can declare de-
pendencies on others’ code instead of copying it into your own project, taking

8 https://smartshark.github.io/plugin/tutorial/python
9 https://github.com/dmlc/xgboost/issues/1338

10 https://github.com/Rdatatable/data.table/pull/2456

https://smartshark.github.io/plugin/tutorial/python
https://github.com/dmlc/xgboost/issues/1338
https://github.com/Rdatatable/data.table/pull/2456


Building the MSR Tool Kaiaulu: Design Principles and Experiences 7

advantage of their functionality without assuming the burden of maintenance.
However code interdependence also poses risks [26], such as dependencies going
extinct [6]. Hence, care has to be taken to avoid dependencies to non-maintained
third-party code.

An interesting example occurs in mecoSHARK11 through a chain of depen-
dencies which exemplifies the concern posed here. mecoSHARK is a compo-
nent that serves as a wrapper for OpenStaticAnalyzer12, with a last commit
date of July 13, 2018. In turn, OpenStaticAnalyzer also wraps several other
dependencies, including FindBugs 13, last released in March 15, 2015. In its
bug tracker14, FindBugs requests for bugs to no longer be reported, noting that
SpotBugs15, FindBugs’ successor, should be used instead. This confirms that
the mecoSHARK wrapper, which provides OpenStaticAnalyzer functionality to
SmartSHARK,is now dependent on dead code, further increasing the burden
of the SmartSHARK ecosystem maintainers. Nonetheless, SmartSHARK’s ap-
proach to wrap black-box packages into common APIs is considered good prac-
tice [21].

As a means to mitigate this risk, relying on and contributing work to open
source communities that more carefully assess the health of projects and try
to maintain them, such as the Apache Software Foundation, ROpenSci16, and
CHAOSS17 may be an important consideration. For example, ROpenSci accepts
R packages via a streamlined peer review process and, for accepted packages,
provides community support, package promotion, and fast-track publication to
journals18.

3 Design Principles in Kaiaulu

In this section, we discuss how our design principles are translated into Kaiaulu’s
specific design decisions. In the following section, we fully flesh out Kaiaulu’s
modules and features.

Batch Mode, Interactive Mode, and Literate Programming in Ka-
iaulu. We chose to use the R language19, due to the familiarity of the authors
with the language and a preference for its package architecture.

Minimally, the structure of an R package consists of the package metadata
and its API. In addition, the R ecosystem encourages and promotes best prac-
tices to include documentation packages called vignettes, which leads R users
to expect an API and R Notebooks when installing packages from CRAN (The

11 https://github.com/smartshark/mecoSHARK
12 https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
13 http://findbugs.sourceforge.net/
14 https://sourceforge.net/p/findbugs/bugs/1487/
15 https://github.com/spotbugs/spotbugs
16 https://ropensci.org/about/
17 https://chaoss.community/
18 https://devguide.ropensci.org/softwarereviewintro.html#whysubmit
19 https://www.r-project.org/

https://github.com/smartshark/mecoSHARK
https://github.com/sed-inf-u-szeged/OpenStaticAnalyzer
http://findbugs.sourceforge.net/
https://sourceforge.net/p/findbugs/bugs/1487/
https://github.com/spotbugs/spotbugs
https://ropensci.org/about/
https://chaoss.community/
https://devguide.ropensci.org/softwarereviewintro.html#whysubmit
https://www.r-project.org/


8 C. Paradis et al.

Comprehensive R Archive Network).20 CRAN treats R Notebooks as first class
citizens in an R package21 showing on each package’s website any R Notebooks
available. Because of R package structure, complying with familiar software ab-
stractions (see Section 2.5) automatically brings the benefits of literate program-
ming (see Section 2.3).

Abstraction Debt in Kaiaulu. R natively supports tables and vectors
as data types, which is a familiar abstraction for data analysts. To capitalize
on this, Kaiaulu’s parse functions map most data sources (Git logs, mailing
lists, file dependencies, software vulnerability feeds, metrics, etc.) as tables with
standardized column naming, which allows for quick identification of what data
can be combined. Kaiaulu also offers various transform to network functions
to represent and interactively visualize these networks22 which in turn enable
more complex socio-technical analyses at different granularities: functions, files,
classes, etc.

Tool Configuration Files vs Project Configuration Files in Kaiaulu.
Following the design choice of Codeface (see Section 2.2), and building on best
practices for machine learning configuration files [21] we implemented project
configuration files using YAML. Because we externalize all parameters in project
configuration files, an important concern is that the file does not grow overly com-
plex, requiring documentation of its own. That is, we do not wish the minimal
path to data to increase as new features are added, as we discuss next.

Minimal Path to Data in Kaiaulu. As discussed in Section 2.4, it is im-
portant that the path to data remains as simple and short as possible. We again
build upon familiar concepts, specifically with the intent of applying the rule of
least surprise [20, Ch.11]23 i.e. ‘do the least surprising thing’. In an R package,
it is expected that R Notebooks provide examples of how to leverage the API to
accomplish a task by combining multiple functions, while individual functions
provide self-contained examples, which can be obtained in the R environment at
any time by preceding a function name with a question mark, e.g. ‘?parse gitlog ’.

To build upon this we: 1) Do not create any dependency between configura-
tion files and the API: functions take, as input, parameters which are familiar to
any programmer; 2) Use project configuration files only in the first code block
in R Notebooks to load the variables required to use the functions of the API,
similar to how best practices in static programming languages encourage vari-
able definitions at the beginning of a program; 3) Create a dependency between
the CLI and the project configuration files, to facilitate batch processing and
reproducibility.

Our intent is that users will first observe the R Notebooks to get a better
understanding of the API for a particular task of interest, and in doing so will

20 https://cran.r-project.org/web/packages/
21 See for example under Vignettes: https://cran.r-project.org/web/packages/

ggplot2/index.html
22 https://github.com/sailuh/kaiaulu/blob/master/R/network.R
23 Also publicly available at: http://www.catb.org/~esr/writings/taoup/html/

ch11s01.html

https://cran.r-project.org/web/packages/
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://github.com/sailuh/kaiaulu/blob/master/R/network.R
http://www.catb.org/~esr/writings/taoup/html/ch11s01.html
http://www.catb.org/~esr/writings/taoup/html/ch11s01.html


Building the MSR Tool Kaiaulu: Design Principles and Experiences 9

familiarize themselves with both the relevant portion of the API and the project
configuration file. If the interest is only, for example, to understand how to parse
Git logs, using for example the Git log R notebook, then users should not be
concerned with specifying the mailing list. When comfortable, users can then use
their newfound understanding to scale the analysis to the entire project using
the configuration file for the CLI, build their own analyses as vignettes, or define
new CLI interfaces. This design is consistent with a mining software reposito-
ries workflow, in which a researcher should first explore the data qualitatively
to assess threats to validity, before scaling up data processing in batch mode
without clarity of what assumptions the tool is making using default parameters
or arbitrary thresholds.

Kaiaulu also further decreases the minimal path to data in terms of how
it handles third party dependencies. Users need only concern themselves with
installing dependencies for their task of interest. For example, if the interest is
only to parse Git logs, they need only set up Perceval, and provide its binary
path as a parameter to Kaiaulu’s parse gitlog to obtain the parsed data. More
generally, the parse API minimizes effort to researchers by transforming various
tool-specific data formats, if the researcher so desires, into tables, and performing
minimal processing on potentially inconsistent fields, such as file paths, to make
them internally consistent.

4 The Kaiaulu R Package

Based on the above observations and lessons learned, we now describe the real-
ized modules and features resulting from the design decisions behind the Kaiaulu
R package.

Mining software repositories often requires the handling of multiple data
sources to analyze a project’s ecosystem. Minimally, a researcher is required to
understand the data source in its native form, acquire it (typically using an
API), and parse and save it (e.g. as a table of data). Overheard is incurred if
a tool needs to be purpose-built to accomplish these steps. In the best case,
the acquisition and parsing steps can be accomplished by using an existing tool.
When designing Kaiaulu, we asked ourselves how to emphasize the minimal path
to data (as discussed in Sec. 2.4). To illustrate our rationale, Figure 1 revisits
some of the tools’ design decisions we discussed earlier.

In Figure 1, Perceval (left) provides a single CLI interface for acquisition of
various data sources. For example, a project’s issues can be fetched by using the
‘jira’ endpoint, while ‘git’ may be used to parse repositories. Pydriller (center-
left), provides functions via a Python API. Users of these tools gain flexibility
in parsing the data, at the cost of a higher learning curve and familiarity with
the language. SmartShark (center-right) provides similar functionality to Perce-
val, but endpoints such as ‘jira’ and ‘git’ are now realized as entirely separate
tools, orchestrated by another tool. Finally, Codeface (right) provides a single
CLI interface, like Perceval. But most of its functionality is executed in batch
mode and output into a single database dump, offering the least flexibility in



10 C. Paradis et al.

Fig. 1: Conceptual diagram of interface, input, and output of tools showcasing
differences in design.

terms of what analyses to execute. Unique to these tools, Codeface stores project
parameters in reusable configuration files.

Using Figure 1 as a basis for comparison, Kaiaulu’s design is shown in Fig-
ure 2, separated into parts 1) through 4). Kaiaulu borrows from the design of
PyDriller by defining an API and a set of functions (2). The use of configuration
files, inspired by Codeface (3), is done at the R Notebook level (rather than at
the function level). That is, project configuration parameters are read into an
R Notebook, and appropriate parameters are then passed to functions. This al-
lows us to decouple configurations from function signatures, to tell best practice
stories (interspersed with code) of how parameters are used in various analyses
[14,5,4], and offer a reusable end-to-end pipeline for specific exploratory analysis.
For example, the social smells notebook24 emphasizes care in assessing project’s
communication, which are often fragmented over multiple archives. More impor-
tantly, R notebooks enable easy manual inspection of intermediate data, such as
the use of identity match heuristics. We found this use of ‘reusable data stories’
particularly useful to familiarize undergraduate and graduate research assistants
to common pitfalls.

We borrowed the use of CLIs (4) from Perceval and Smartshark. The CLI
serves to accommodate users who are unfamiliar with R; it also supports scaling
analyses defined and prototyped in Notebooks, so that they can be run in batch
mode. To build upon (2), the CLI simply utilizes the defined API behind the
scenes, which simplifies code maintenance. As with the Notebooks (3), the CLI
parses project configuration files, which also facilitate server-side reuse.

Kaiaulu was designed by combining these concepts from (1-4). It was imple-
mented as an R package, building upon familiar software abstractions. Typically
R packages are defined as an API of functions as found in PyDriller and R
Notebooks. By showcasing project configuration files where users are expected
to learn about the package, users can familiarize themselves with project config-
uration files and the command line interface, which is less commonly found in
R packages, and entirely optional. In the following subsections, Kaiaulu’s major
processing elements are discussed.

24 https://github.com/sailuh/kaiaulu/blob/master/vignettes/social_smell_

showcase.Rmd

https://github.com/sailuh/kaiaulu/blob/master/vignettes/social_smell_showcase.Rmd
https://github.com/sailuh/kaiaulu/blob/master/vignettes/social_smell_showcase.Rmd


Building the MSR Tool Kaiaulu: Design Principles and Experiences 11

Fig. 2: Conceptual diagram of interface, input, and output of tools showcasing
how Kaiaulu coompares to the tools.

4.1 Parsers

In the Parsers module, our goal was to minimize a user’s effort, in terms of
acquiring and parsing project source code. These functions were combined into
a single interface with consistent nomenclature.

Each of Kaiaulu’s parsers is defined as a function (e.g. parse mbox, parse gitlog),
which are also accessible via a CLI. We wanted parsers in Kaiaulu to reflect
Perceval’s philosophy of minimal paths to data, with a small learning curve.
That is, given a data source, we would like users to quickly be able to see the
data without spending excessive time on setup. As such, each parser function is
given a single responsibility: to display a data source as a table with a standard-
ized column nomenclature (in case multiple sources referred to the same data
with different names). Unlike Perceval, since an API option is also available,
users can interactively prototype and analyze the data in the R environment.
Having tables as the default output option minimizes the time spent learning
what fields are available in the source. The standardized nomenclature allows
for intuitive joining operations across the outputs of different parsers.

To account for the perils of code reuse, Kaiaulu limits its interface only to
third party software that have CLI interfaces. Parsers with third party depen-
dencies simply contain in their signatures an additional parameter for path to
the required binary. This dependency mechanism allows users to bypass setting
up third party tools which they do not directly need to use. Additionally, users
benefit from using the Kaiaulu function to obtain a tabulated and standardized
data input. For example, the parse gitlog(git repo path,perceval path) function
requires, as input, Perceval’s binary to tabulate its JSON output. In this way



12 C. Paradis et al.

parsers can build upon third party functionality to implement new features. For
example, parse gitlog entity(git repo path,utags path,project git log,kinds) imple-
ments a git log parser capable of tabulating developer changes from git logs at
the granularity of functions rather than files (inspired by Joblin et al [12]). In
addition, the assumptions and threats to validity in the cited work are provided
in the Notebook 25.

While simple in concept, we note that existing tools do not offer this function-
ality. For instance, Codeface [12] offers an implementation of a function-based
git log parser, but since it has an ‘all-in-all-out’ interface, this function can not
be reused elsewhere. The same is true for SmartShark. Perceval, while contain-
ing a shorter path to data, still requires tabulation and standardization of the
collected results. Lastly, PyDriller does not adopt the philosophy used here for
extending functionality based on third party software, as it limits its scope to
Git.

Kaiaulu currently employs a variety of parsers, providing the ability to parse
git logs, mailing list archives (e.g. pipermail, Apache’s mod mbox), issue trackers
(e.g. Jira, GitHub), static parsers (file and function dependencies), evolutionary
parsers (file and function changes), commit hashes (e.g. to identify issue ids
from commit messages), and software vulnerability feeds. Parsers which contain
filepaths also contain optional regular expression filters to whitelist or blacklist
files based on their extensions or naming conventions. For example, we use this
to remove test files from analyses as these files could compromise code metrics.

4.2 Transformers, Graphs and Networks

Kaiaulu’s Transformer, Graph, and Network modules are grounded on the ob-
servation that most software and social metrics are graph-based (e.g. co-change,
fan-in, fan-out, communication). These modules transform the data provided by
various kinds of parsers that parse the raw project data. Transformers reformat
the data provided by parsers into lists of nodes and edges which are then repre-
sented as networks, using graph data structures. In this way we can more easily
visualize and explore the networks of relationships among a software project’s
elements.

Kaiaulu represents the socio-technical network for each snapshot as a graph
Gst = (V,E), where the set of nodes V = Va ∪ Vf ∪ Vt comprises authors Va,
source files Vf and e-mail threads Vt. The set of edges E = Ecomm ∪Echg mod-
els communication and collaboration between authors, where communication
is done via Ecomm ⊆ Va × Vt, and file changes via Echg ⊆ Va × Vf . Observe
by this construction, the socio-technical network is in fact two bi-modal bipar-
tite networks Gst = Gchg ∪ Gcomm. Both Gchg and Gcomm are also weighted
(representing an author’s count of changes to a file within a user specified time
window (e.g. 3 months), and the number of replies submitted to an e-mail thread
respectively), and undirected (the direction is irrelevant in this case because it

25 https://github.com/sailuh/kaiaulu/blob/master/vignettes/blamed_line_

types_showcase.Rmd

https://github.com/sailuh/kaiaulu/blob/master/vignettes/blamed_line_types_showcase.Rmd
https://github.com/sailuh/kaiaulu/blob/master/vignettes/blamed_line_types_showcase.Rmd


Building the MSR Tool Kaiaulu: Design Principles and Experiences 13

could only go in one direction in each bipartite network). Likewise, the CVE
and File Networks are weighted, undirected, bipartite graphs. The definition of
various transformations are encapsulated separately in functions, consistent to
the overall architecture.

Projection Transformations. Familiar software engineering metrics can
be derived from graph projections. Intuitively, a graph projection operation
eliminates one set of the ‘colored’ nodes in a bipartite graph, and connects the
adjacent black nodes together, where the resulting edge weight is the sum of the
eliminated edges. For instance, in a bipartite network represented by file and
commit nodes, eliminating the commit nodes would result in a file’s co-change
metric, revealing indirect collaboration. For example, if five authors modified the
same file within a given time period, then the projection operation shows that
all five authors indirectly collaborated, irrespective of the order of their changes
(note that the derived uni-modal networks are undirected). We define this as the
projection transformation to go from bi-modal to uni-modal networks.

Temporal Transformations. Let us now consider a second approach to
obtain uni-modal networks. In [12], the authors define one method to construct
uni-modal networks from the same data by defining indirect collaboration using
the notion of incremental contributions through the timestamps on commits.
For example, if author A modifies a file, and very next change to the same file
is performed by author B, then B is said to have indirectly collaborated with
A. A similar intuition and transformation could be used to categorize e-mail
replies. We define this method, to go from the bipartite network to the uni-modal
network, a temporal transformation (as it relies on the timestamps). Observe in
this case that the derived uni-modal networks will be directed graphs (which
indicate the flow of time). The edge’s weight is defined as the sum of lines of
code added by both developers in their respective file changes.

Which method to derive uni-modal networks should we choose? This decision
is encapsulated in Kaiaulu by the choice of functions. By swapping projection
and temporal transformation functions, users can experiment with, and visualize,
their various implications.

An example of both projection and temporal networks is shown in figure 5
(the name of each node’s developer has been blurred). In the projection network,
developers are connected if in a given time window they modified any file in com-
mon. In the temporal network, the direction displays which developers changed
files after which in the given time window. For example, a bidirectional arrow
means two developers change the same file together. A uni-directional arrow
suggests another developer may have “taken over” during that time window. In
both cases, we could derive hypothesis of the nature of collaboration, and derive
hypothesis to be tested in the exploratory analysis.

File, Functions, and Entities. Another consideration encapsulated in Ka-
iaulu’s functions is which entities are analyzed to derive indirect collaboration.
For example, consider Figure 4. As we can see, the choice of granularity will
also affect the number of edges generated, where a file granularity generates
more edges than function granularity. A larger number of edges, in turn, may



14 C. Paradis et al.

Fig. 3: Temporal vs Projection Networks, format adapted from [13].
.

impact the social smell metrics, as the existence of connections between devel-
opers in one network, and the absence of edges in another network, may inflate
the count of metrics, such as social smells (which we define in the next section).
The authors in [12] used a combination of temporal transformation and function
granularity. In Kaiaulu, we implemented both the file granularity, and general-
ized the function granularity to entities, where an sub-file unit can be any source
code block region of interest (e.g. functions, classes, or language specific features
like structs in C).

4.3 Identity

A critical component of conducting socio-technical analysis in open source com-
munities is assigning a consistent identity to users who may employ multiple
variants of their name and e-mail addresses in their project interactions. Sev-
eral approaches to match identities have been proposed (e.g. [4], [27]). Exact
name matching (either names or e-mails) or partial matching (e.g. based on edit
distance) are two commonly used schemes.



Building the MSR Tool Kaiaulu: Design Principles and Experiences 15

Fig. 4: File vs Sub-file (e.g. Function) Networks, adapted from [13].
.

Our identity matching was designed as a 3 step pipeline: formatting, name-
email separation and pair-wise matching. Formatting includes the removal of
symbols such as ‘< >’, commas or replacing ‘at’ with ‘@’, while avoiding mod-
ifying a name, such as Matt. Name and e-mail separation handles cases where
first or last or both names are not provided, multiple word names, etc. Finally,
pair-wise matching handles comparisons of name and e-mail, or reversed names.
In total, the steps of formatting, name separation, and name matching amounted
to 31 test cases, which were successfully implemented. At the end of this step,
users in the version control system, issue tracker, and mailing list who matched
via the tests we implemented were assigned an appropriate ID. Thus, given the
name, and optionally the e-mail, other information sources can be matched.

An example of the utility of identity matching is shown in figure 6. Here,
project communication occurs in parallel in both the Jira issue tracker and the
project’s mailing list. We fuse these information sources into a single “Reply
Network”.

In summary, the transformer API provides users with flexibility with respect
to both temporal assumptions and sub-file granularity. Because all networks are
annotated graphs, community detection algorithms in Kaiaulu can be used to



16 C. Paradis et al.

(a) CVE and File Network. (b) Projection Network. Nodes indicate de-
velopers. Edges represent common changed
files.

Fig. 5: Temporal Network. Nodes indicate developers. Edges represent common
changed files. The edge direction indicates the temporal order of change.

identify important patterns. For example, if applied to a file-commit network
over a fixed period of time, co-changed file clusters can be identified. Similarly,
if the file network is derived from file to file dependencies, clusters related to
modularity measures can be derived. Developer networks can be used to detect
communities.

In figure 7, we apply community detection to a temporal network such as
the one illustrated in figure 5. The result is displayed by re-coloring the black
nodes. Darker blue and lighter blue nodes represent two communities of develop-
ers as determined by the files that they changed in common. Developers in black
represent boundary nodes, which participate of both communities. In the inter-
active format, researchers can “zoom in” on these nodes to identify who are the
common developers, and can use this information to draw further hypotheses.

4.4 Metrics

In the metrics module, we define some commonly used metrics, such as number
of bugs, churn, LOC, as well as the less well-known social metrics. Demographics
are also provided to help contextualize the previously presented social networks,
such as the number of developers modifying files and exchanging e-mails, number
of files, threads, and different timezones26.

26 For a full analysis with the metrics, see: http://itm0.shidler.hawaii.

edu/kaiaulu/articles/social_smell_showcase.html. The source code can be

http://itm0.shidler.hawaii.edu/kaiaulu/articles/social_smell_showcase.html
http://itm0.shidler.hawaii.edu/kaiaulu/articles/social_smell_showcase.html


Building the MSR Tool Kaiaulu: Design Principles and Experiences 17

Fig. 6: Reply networks combine communication networks. Here dark blue nodes
are issue comments, light blue nodes are mailing list comments, and black nodes
are developers. Red nodes are developers who communicate in both the mailing
list and the issue tracker.



18 C. Paradis et al.

Fig. 7: Community detection applied to temporal projection.
.

For bug counts, rather than simply interpreting these as metrics, we make
it easy for users to observe their topology. This is evident in figure 8, where a
single issue is associated with multiple files (top right). While some other files
may have a lower count of issues, more complex structure (such as we can observe
at the bottom left of the figure) would be missed if only metrics were employed.
Furthermore, feature issues can be discerned from bugs by examining the issue
labels.

We devote this section to briefly discuss the social metrics as they leverage
the previously discussed modules. For the social metrics, we adopt the defini-
tions of social smells defined by [23]. Social smells reflect recurring sub-optimal
organizational structure patterns connected to organizational behavior patterns,
e.g., sub-optimal knowledge sharing, recurrent sharing delays, misguided collab-
oration and more. We chose to integrate three of these smells—Organizational
Silo, Missing Link and Radio Silence—and two related metrics: socio-technical
congruence and missing communicability [23]. Here we explain one of the social
smells; additional details about these metrics can be found in [23].

found on https://github.com/sailuh/kaiaulu/blob/master/vignettes/social_

smell_showcase.Rmd

https://github.com/sailuh/kaiaulu/blob/master/vignettes/social_smell_showcase.Rmd
https://github.com/sailuh/kaiaulu/blob/master/vignettes/social_smell_showcase.Rmd


Building the MSR Tool Kaiaulu: Design Principles and Experiences 19

Fig. 8: Issue Network. Blue nodes represent issues, and yellow nodes files
.

In Figure 9, the collaboration network projection is shown in green to the
left. The communication network is shown in blue to the right. The intent behind
developer networks is to capture developers who modified the same file in a given
snapshot, and also communicated via a common e-mail thread in a user-specified
time window (e.g. 3 months). In this example, we can see to the left highlighted
in red that developers (A,B), (B,E), (B,G), and (D,G) collaborated (i.e. they
have a red edge in the green graph), but do not communicate (they do not have
an edge in the blue graph). Therefore, the missing link social smell is counted 4
times for this snapshot.

4.5 Configuration

Currently, the configuration module is minimal and exists embedded in R Note-
books. As noted at the start of this section, we borrowed from Codeface the idea
of project configuration files. And we include more parameters in the configura-
tion file as compared to Codeface. For example, Codeface hardcodes the set of
acceptable file extensions, whereas Kaiaulu defers this choice to the user in the
project configuration file.



20 C. Paradis et al.

Fig. 9: Missing Link Social Smell [15]

More generally, we adopt the philosophy that project configuration files
should serve as a distilled representation of assumptions and analysis choices.
Rather than just serving as a repository of configuration choices for reproducibil-
ity, it is readable as plain text, and so can be easily exchanged and discussed. In
Kaiaulu, a project configuration file is written in YAML. An example of project
configuration file can be found in the public tool repository ‘conf‘ folder27.

As with every design decision in Kaiaulu, the full project configuration file
needs not be specified. Indeed, every R Notebook, at the beginning, clarifies
which parameters are required. In future work, we plan to expand the Con-
figuration module to tabulate multiple configuration files. For example, it is
often common in software engineering literature to analyze multiple projects
and present a summary statistics table of the projects to assess generalization of
results. Such tables could be generated on the fly from the files. Ideally, project
configuration files should suffice as supplementary material, alongside Kaiaulu’s
version for full reproducibility.

5 Conclusions and Future Work

In this paper, through an action research approach, we have determined a set of
key design decisions mined from existing tools. Based on these lessons learned
we iteratively developed Kaiaulu, an R package for mining software repositories.
Our goal in creating Kaiaulu was to simplify most of the boring, repetitive, and
error-prone tasks in mining software repositories, leaving the user free to focus
on the true goals of their research.

In Kaiaulu we have implemented and released a comprehensive set of capabil-
ities to mine, analyze, and visualize software repositories, including social smells
[23], architecture smells and metrics [17], and bug timelines based on prior work
by other authors. Kaiaulu is licensed under MPL 2.0.

While we have derived the principles for Kaiaulu from our action research,
our future work is to take a more disciplined approach to Kaiaulu’s design,
based on the quality attributes that represent its architectural drivers. Following
the approach outlined in [2] and [3] we can, in the future, attempt to more

27 https://github.com/sailuh/kaiaulu/tree/master/conf

https://github.com/sailuh/kaiaulu/tree/master/conf


Building the MSR Tool Kaiaulu: Design Principles and Experiences 21

systematically collect architectural drivers, make reasoned design decisions, and
support these decisions with well-established design rationale.

References

1. Almeida, D.A., Murphy, G.C., Wilson, G., Hoye, M.: Do software developers un-
derstand open source licenses? In: IEEE/ACM 25th International Conference on
Program Comprehension. pp. 1–11 (2017)

2. Bass, L., Clements, P., Kazman, R.: Software architecture in practice. Tech. rep.
(2021)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, 4 edn. (2021)

4. Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email
social networks. In: Proc. International Workshop on Mining Software Repositories.
p. 137–143. ACM (2006)

5. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu,
P.: The promises and perils of mining git. In: 2009 6th IEEE Interna-
tional Working Conference on Mining Software Repositories. pp. 1–10 (2009).
https://doi.org/10.1109/MSR.2009.5069475

6. Coelho, J., Valente, M.: Why modern open source projects fail. In: Proc. 11th Joint
Meeting on Foundations of Software Engineering. p. 186–196. ACM (2017)

7. Dueñas, S., Cosentino, V., Robles, G., Gonzalez-Barahona, J.M.: Perceval: software
project data at your will. In: Proc. 40th International Conference on Software
Engineering: Companion Proceeedings. pp. 1–4. ACM (2018)

8. Easterbrook, S., Singer, J., Storey, M.A., Damian, D.: Selecting Empirical Methods
for Software Engineering Research. Springer (2008)

9. Giarola, F.: Detecting code and community smells in open-source: an automated
approach. Master’s thesis, Politecnico di Milano (2016)

10. Gousios, G., Spinellis, D.: Alitheia core: An extensible software quality monitoring
platform. In: 2009 IEEE 31st International Conference on Software Engineering.
pp. 579–582 (2009)

11. Joblin, M., Apel, S., Hunsen, C., Mauerer, W.: Classifying developers into core
and peripheral: An empirical study on count and network metrics. In: IEEE/ACM
39th International Conference on Software Engineering. pp. 164–174 (2017)

12. Joblin, M., Mauerer, W., Apel, S., Siegmund, J., Riehle, D.: From developer net-
works to verified communities: A fine-grained approach. In: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering. vol. 1, pp. 563–573 (2015)

13. Joblin, M.: Structural and Evolutionary Analysis of Developer Networks. Ph.D.
thesis, Universitat Passau (2017)

14. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M.,
Damian, D.: The promises and perils of mining github. In: Proceed-
ings of the 11th Working Conference on Mining Software Repositories. p.
92–101. MSR 2014, Association for Computing Machinery, New York, NY,
USA (2014). https://doi.org/10.1145/2597073.2597074, https://doi.org/10.

1145/2597073.2597074

15. Magnoni, S.: An approach to measure Community Smells in software development
communities. Ph.D. thesis, Politecnico Milano (2016)

16. Menzies, T., Williams, L., Zimmermann, T.: Perspectives on Data Science for Soft-
ware Engineering. Morgan Kaufmann Publishers Inc., 1st edn. (2016)

https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074


22 C. Paradis et al.

17. Mo, R., Cai, Y., Kazman, R., Xiao, L., Feng, Q.: Architecture anti-patterns: Auto-
matically detectable violations of design principles. IEEE Transactions on Software
Engineering (2019)

18. Moreno, D., Dueñas, S., Cosentino, V., Fernandez, M.A., Zerouali, A., Robles, G.,
Gonzalez-Barahona, J.M.: Sortinghat: Wizardry on software project members. In:
IEEE/ACM 41st International Conference on Software Engineering: Companion
Proceedings. pp. 51–54 (2019)

19. Neubig, G., et al.: XNMT: The extensible neural machine translation toolkit.
In: Conference of the Association for Machine Translation in the Americas Open
Source Software Showcase (2018)

20. Raymond, E.S.: The Art of UNIX Programming. Pearson Education (2003)
21. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: Proc.

28th International Conference on Neural Information Processing Systems - Volume
2. p. 2503–2511. NIPS’15, MIT Press, Cambridge, MA, USA (2015)

22. Spadini, D., Aniche, M., Bacchelli, A.: PyDriller: Python framework for mining
software repositories. In: Proc. 26th ACM Joint Proceedings of ESEC/FSE. pp.
908–911. ACM Press (2018)

23. Tamburri, D., Palomba, F., Kazman, R.: Exploring community smells in open-
source: An automated approach. IEEE Transactions on Software Engineering
pp. 1–1 (02 2019)

24. Trautsch, A., Trautsch, F., Herbold, S., Ledel, B., Grabowski, J.: The smartshark
ecosystem for software repository mining. arXiv preprint arXiv:2001.01606 (2020)

25. Trautsch, F., Herbold, S., Makedonski, P., Grabowski, J.: Addressing problems
with replicability and validity of repository mining studies through a smart data
platform. Empirical Software Engineering 23(2) (2018)

26. Valiev, M., Vasilescu, B., Herbsleb, J.: Ecosystem-level determinants of sustained
activity in open-source projects: A case study of the pypi ecosystem. In: Proc. 26th
ACM Joint Proceedings of ESEC/FSE. p. 644–655. ACM (2018)

27. Zhu, J., Wei, J.: An empirical study of multiple names and email addresses in
oss version control repositories. In: IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). pp. 409–420 (2019)


	Building the MSR Tool Kaiaulu: Design Principles and Experiences

