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Abstract—Using huge training datasets can be costly and
inconvenient. This article explores various data distillation tech-
niques that can reduce the amount of data required to success-
fully train deep networks. Inspired by recent ideas, we suggest
new data distillation techniques based on generative teaching
networks, gradient matching, and the Implicit Function Theorem.
Experiments with the MNIST image classification problem show
that the new methods are computationally more efficient than
previous ones and allow to increase the performance of models
trained on distilled data.

Index Terms—data distillation, gradient matching, implicit
differentiation, generative teaching network.

I. INTRODUCTION

In machine learning, the purpose of data distillation [1]
is to compress the original dataset while maintaining the
performance of the models trained on it. Generalizability is
also needed: the ability of the dataset to train models of
architectures that were not involved in the distillation process.
Since training with less data is usually faster, distillation can
be useful in practice. For example, it can be used to speed
up a neural architecture search (NAS) task. Acceleration is
achieved through the faster training of candidates.

In many recent works [1], [3], [5], [6], [7], distillation
is formulated as an optimization problem with the objects
of a new dataset as parameters for optimization. Therefore,
to distill the dataset for an image classification task, pixels
of images have to be optimized. First, all new objects are
initialized with random noise, then these objects are used
to train the student (randomly selected network). Then the
student misclassification loss is calculated on real data. Finally,
a gradient descent step is used to update the synthetic objects.
Gradients can be calculated by backpropagating the error
through the entire student’s learning process. The step of
this procedure can be very time-consuming and memory-
intensive, so there is a need for an alternative. In [2], the
authors use the implicit function theorem to solve the memory
consumption problem. In [3], the data distillation problem has
been reformulated to use gradient matching loss and speed
up the optimization of synthetic objects and reduce memory
usage.

There is an alternative to optimizing the pixels of synthetic
data. In [4], the authors suggest to optimize parameters of
the generator model (generative teaching network or GTN) to

produce synthetic data from noise and labels. This creates a
dataset that provides better performance for models trained
with it. The disadvantage is that the authors used backpropa-
gation through the learning process for optimization. Inspired
by recent ideas in the field of data distillation, we propose
replacing it with gradient matching or with implicit differentia-
tion to make the procedure less computationally expensive. We
have found that this allows not only to reduce memory costs
but also to create more efficient and generalizable datasets.
In addition, we investigate the use of augmentation in the
distillation procedure and in models’ learning on distilled data.

The rest of the paper is divided into 8 sections. We first
overview the related work in section II and give a general
formulation of the data distillation problem in III. We then
analyse the first data distillation algorithm [1] and discuss its
problems in section IV. A brief description of the algorithms
for implicit differentiation [2] and gradient matching [3] can be
found in sections V and VI. VII presents the generative teach-
ing network architecture that we use in our work. The VIII
section contains the results of experiments with the MNIST
image classification benchmark. In VIII-A we compare the
results of all the described distillation methods, limiting the
distillation time to a constant. In VIII-B and VIII-C we
show results of new distillation techniques when training a
generator with gradient matching and implicit differentiation,
respectively. In VIII-D we study the use of augmentation by
distillation, and in VIII-E we check the generalization of the
data obtained with the new methods. Finally, we present our
findings in section IX. All code can be found in our GitHub
page1.

II. RELATED WORK

The general idea behind data distillation is to optimize
hyperparameters (pixels of synthetic images are hyperparam-
eters in an image classification problem) using gradients (also
called hypergradients). The use of backpropagation [8] to
optimize hyperparameters has been suggested in [9] and [10].
Backpropagation through L-BFGS [11] and SGD with mo-
mentum [12] has been introduced in [7]. Because of the great
spatial complexity of this backpropagation, a more efficient

1https://github.com/dm-medvedev/EfficientDistillation
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one has been proposed in [5]. There were also the results of
data optimization experiments.

The successful distillation of the MNIST dataset [16] was
shown in [1]. Leaving only 10 examples (one for each class),
and thus reducing the dataset volume by 600 times, the LeNet
model [6] trained on compressed dataset showed an accuracy
close to that of training on the original dataset. The authors
also mentioned the distilled data generalization problem and
suggested using a fixed distribution to initialize the network.

In [6], the authors show a way to distill both objects and
their labels. Their experiments show that such distillation in-
creases accuracy for multiple image classification benchmarks
and allows distilled datasets to consist of fewer samples than
number of classes. Despite this, recent works [3], [4] do not
use label distillation, because joint optimization complicates
the problem since labels depend on objects, and vice versa.

It is important to note that most of the works in data
distillation were inspired by network distillation [16], that is
the transfer of knowledge from an ensemble of well-trained
models into a single compact one.

III. GENERAL FORMULATION

Let λ be teacher parameters. These can be either GTN
network’s parameters, or synthetic objects’ parameters (e.g.
pixels of synthetic images). To update λ, we must first train
the student network θ on synthetic data, minimizing the task
specific loss LS (e.g. cross-entropy), and then get the loss
on real data LT . To take care of generalizability, student’s
initialization goes from preset distribution p(θ0). Afterall, the
optimization problem for λ can be formulated as follows:

λ∗ := argmin
λ

Eθ0∼p(θ0)L
∗
T , where (1)

L∗T :=LT (θ∗(λ)), θ∗(λ) := argmin
θ
LS(λ, θ).

To resolve the (1) problem we can calculate gradient of LT
with respect to λ to do the gradient descent step:

∂L∗T
∂λ

=
∂LT
∂λ

+
∂LT
∂θ
· ∂θ

∗

∂λ
=
∂LT
∂θ

∂θ∗

∂λ
. (2)

In this work we use cross-entropy loss as LT and there is an
explicit dependence only on θ and parameters of real data, so
∂LT
∂λ = 0. Thus, the main part is the calculation of ∂θ

∗

∂λ . Where
the dependence of θ∗ on λ comes from student’s training
procedure. In our work, we use two methods of calculating (2):
backpropagation through the student’s learning process [1] and
implicit differentiation [2]. Such a gradient can also be called
hypergradient, since it is a gradient with respect to λ, which
is a set of hyperparameters in the original student learning
problem.

IV. BACKPROPAGATION THROUGH THE STUDENT’S
LEARNING PROCESS

This data distillation algorithm was suggested in [1] and it
is based on the assumption that the student’s learning proce-
dure is differentiable. This means that we can backpropogate

1: Input: teacher’s parameters λ, student’s initialization dis-
tribution p(θ0), number of distillation epochs K, number
of student’s learning steps N , real data T , learning rate
η.

2: for k = 1, ...,K do:
3: BT ∼ T , θ0 ∼ p(θ0) . sample batch and weights
4: Memory ← θ0 . store initial weights
5: for n = 0, ...N − 1 do:
6: gn = η ∂LS(λ,θn)∂θn
7: θn+1 = θn − gn
8: Memory ← gn, θn+1 . store graph and weights.
9: LT = ClassificationLoss(BT , θN (λ))

10: ∇λLT ← hypergradunroll(Memory,LT ) . Fig. 2
11: Update(λ,∇λLT ) . update with any optimizer
12: Output: λ

Fig. 1. Backpropagation through the learning process.

1: Input: loss on real data LT , computational graph and
weights Memory.

2: θN ←Memory, v = ∂LT
∂θN

, ∇λLT = 0
3: for n = N − 1, ...0 do:
4: gn, θn ←Memory
5: ∇λLT −= grad

(
func = gn,wrt = λ, vec = v

)
6: v −= grad

(
func = gn,wrt = θn, vec = v

)
7: Output: ∇λLT

Fig. 2. hypergradunroll(Memory,LT ).

gradient through it. We will denote it as unroll. Let θi be the
student’s parameters obtained at the i-th step of the training
procedure, BT be a batch of original data, and η be the
learning rate, then:

θ0 ∼ p(θ0);

θn+1 = θn − η∇θLS(λ, θn); k = 0, ..., N − 1; (3)

LT = ClassificationLoss(BT , θN (λ))→ min
λ
.

The learning rate η can be optimized in the same way as
λ, but in [3] and [7] it was found that this leads to overfitting
of the synthetic dataset to the architecture of student used in
distillaion process. To write out the desired derivative ∂θ∗(λ)

∂λ ,
we can unroll the learning procedure (see full derivation
in [2]):

∂θ∗(λ)

∂λ
=

∑
1≤j≤N

[ ∏
1≤k<j

(
I − η ∂

2LS(λ, θN−k)

∂θ2

)]
· (4)

· ∂
2LS(λ, θN−j)

∂θ∂λ
· (−1).

The resulting algorithm (see Fig. 1 and 2) can be im-
plemented using the Higher library [17]. Note that Higher
allows to backporopogate through many optimizers besides
simple gradient descent. In our paper we use SGD with



momentum [12]. Note that grad in Fig. 1 and 2 denotes Vector
Jacobian product.

This distillation method is both time and space consuming.
To perform a single step of updating λ it is necessary to
perform N (see Fig. 1) student optimization steps, while
all intermediate results (copies of the student weights) must
be stored in memory. Considering that usually a student’s
training can take many optimization steps, the efficiency
problem become the main one. There is also a problem with
the generalization of resulting syntetic dataset, which can be
solved by sampling student’s initialization and architecture. In
our work we only randomly sample initializations.

Note that the procedure of student’s training on the resulting
synthetic dataset can be carried out in different ways. New
data, parameterized with λ, can be used as single large batch
or it can be split into several smaller ones. This split can
be useful to reduce memory consumption per training step.
Instead of randomly sample distilled objects, the authors of
the original work propose to attach each of them to a specific
batch. These batches can have a certain order in an epoch.
In our paper, we use the same schemes, and in addition, we
choose K (see Fig. 1) to stay within the particular time limit.
Let ic (input count) be the number of batches of the synthetic
dataset, note that it must be divisor of N . In our experiments
we try ic = 1 and ic = 10.

V. IMPLICIT DIFFERENTIATION

This method suggested in [2] is based on implicit function
theorem:

Theorem 1 (Cauchy, Implicit Function Theorem):
Let ∂LS∂θ (λ, θ) : Λ×Θ→ Θ, be a continuously differentiable

function. Fix a point (λ
′
, θ
′
) with ∂LS

∂θ (λ
′
, θ
′
) = 0. If the

Jacobian matrix ∂2LS
∂θ2 is invertible, then there exists an open

set λ : U ⊆ Λ containing λ
′

such that there exists a unique
continuously differentiable function θ∗ : U → Θ, such that:

θ∗(λ
′
) = θ

′
and ∀λ ∈ U, ∂LS

∂θ
(λ, θ∗(λ)) = 0.

Moreover, the partial derivatives of θ∗ in U are given by the
matrix product:

∂θ∗

∂λ
(λ) = −

[
∂2LS
∂θ2

(λ, θ∗(λ))

]−1
∂2LS
∂θ∂λ

(λ, θ∗(λ)). (5)

So, if there was an efficient way to invert the matrix, we
would simply use (5), after the student θ has reached a local
minimum, assuming ∂LS

∂θ (λ, θ∗(λ)) ≈ 0. But the inversion
operation is time costly, so the authors used the approximation
by the Neumann series:

[
∂2LS
∂θ2

(λ, θ∗(λ))

]−1
= (6)

= lim
i→∞

i∑
j=0

[
I − ∂2LS

∂θ2
(λ, θ∗(λ))

]j
.

1: Input: teacher’s parameters λ, student’s initialization dis-
tribution p(θ0), number of distillation epochs K, number
of student’s learning steps ζθ, real data T , learning rate
η.

2: for k = 1, ...,K do
3: BT ∼ T , θ ∼ p(θ0)
4: for n = 1, ..., ζθ do
5: θ −= η ∂LS(λ,θ)∂θ

6: LT = ClassificationLoss(BT , θ)
7: ∇λLT = hypergradIFT(LT ,LS , λ, θ) . see Fig. 4
8: Update(λ,∇λLT ) . update with any optimizer

return λ

Fig. 3. Distillation with implicit differentiation.

1: Input: loss on real data LT , loss on synthetic data LS ,
teacher’s parameters λ, student’s parameters θ.

2: p = v = ∂LT
∂θ

3: for j = 1, ..., N do . N — number of elements in (6)
4: v −= α · grad

(
func = ∂LS

∂θ ,wrt = θ, vec = v
)

5: p += v

6: return −α · grad
(
func = ∂LS

∂θ ,wrt = λ, vec = p
)

Fig. 4. hypergradIFT(LT ,LS , λ, θ).

To approximate the desired derivative, we just need to
take the first few elements of the (6) series. To ensure the
convergence of the series, the maximum absolute eigenvalue
of the matrix must be less than one. Therefore, the authors
used the additional hyperparameter α:

[
∂2LS
∂θ2

(λ, θ∗(λ))

]−1
≈ (7)

≈ α
N∑
j=0

[
I − α∂

2LS
∂θ2

(λ, θ∗(λ))

]j
.

The resulting algorithm (see Fig. 3 and 4) has no problems
with memory consumption since there is no need to store
copies of the student θ. And, despite the many approximations
in calculations, the experimental results show that method has
a competitive performance (see Table IV).

Another interesting detail of this method is that there is no
dependence on which optimizer is used to train the student,
and on the order (curriculum) of batches of synthetic data.
So, in our paper we only use single large batch of synthetic
data. The original work [2] lacks a detailed description of
the experimental results, so it can be found in our paper (see
section VIII-C). We used the open-source code2 as the basis
for the implementing the method.

VI. GRADIENT MATCHING

The gradient matching method (GM) was proposed in [3],
and it solves a different problem than the general one (see

2https://github.com/AvivNavon/AuxiLearn
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section III). The main difference is that we want not only
to train the student θ to achieve a good performance on real
data but also to get such a solution as if it was trained on
real data. To formulate this let D(θ1, θ2) be the function of
how close one student’s parameters are to another. Let θS and
θT be parameters obtained by training on distilled and real
data, respectively. ζS and ζT are the number of steps to train
the student on synthetic and real data. The optimization of
student is done with optθ (it can be any known optimization
algorithm), then:

λ∗ = argmin
λ

Eθ0∼pθ0
[ N∑
n=1

D(θSn , θ
T
n )
]
, where: (8)

θSt = optθ(LS(λ, θSt−1), ζS), θTt = optθ(LT (θTt−1), ζT ).

Let D(θSt−1, θ
T
t−1) ≈ 0, such assumption is true if we are

close to the problem solution. Note that θn = θn−1 −∇θLS ,
then:

λ∗ = argmin
λ

Eθ0∼Pθ0
[N−1∑
n=1

D
(
∇θLS(λ, θn), (9)

∇θLT (θn)
)]
.

The distance function D is just the sum (in our paper for
GTN experiments we used the mean) of the cosine distance
functions for each student layer θl. Let A and B be gradient
tensors with respect to layer parameters. Let i be the index of
the output axis (e.g. for a convolutional layer this is the index
of the output channel). Let Ai and Bi be flat gradient vectors
corresponding to each output element indexed by i then:

D(∇θLS ,∇θLT ) =

L∑
l=1

d(∇θlLS ,∇θlLT ), where (10)

d(A,B) =

dim(A)∑
i=1

(
1− Ai ·Bi
‖Ai‖‖Bi‖

)
.

The most interesting detail here is that the authors suggest
to update λ after each step of student optimization, so now we
don’t need to wait until it reaches a local minimum, as it was
before. The authors also propose not to store student copies
and to minimize D

(
∇θLS(λ, θt−1),∇θLT (θt−1)

)
for each

step separately. So there is no backpropagation through optθ.
Both of these proposals make the gradient matching method
very computational effective.

The peculiarity of this loss function is that the gradient
of one synthetic object depends on other objects from the
same batch, because of a normalization operation in the d
equation (10). It makes the optimization problem harder and
can cause negative effects (see Table II). So authors decided
to distill objects separately for each class.

Note that gradient matching is independent of the student
training optimization algorithm. There is only one assumption
that the direction should be based on the gradient. Another

1: Input: teacher’s parameters λ and synthetic objects S(λ),
student’s initialization distribution p(θ0), number of dis-
tillation epochs K, number of student’s learning steps ζθ,
real data T , learning rate ηθ, number of inner loop steps
N .

2: for k = 0, ...,K − 1 do
3: θ0 ∼ pθ0
4: for n = 0, ..., N − 1 do
5: BT ∼ T , BS ∼ S(λ)
6: LT = ClassificationLoss(BT , θn)
7: LS = ClassificationLoss(BS , θn)
8: L(λ) = D(∇θLS(λ, θn),∇θLT (θn))
9: Update(λ,∇λL(λ))

10: θn+1 ← optθ(LS(λ, θn), ζθ, ηθ)

11: Output: λ

Fig. 5. Gradient matching.

detail is that the curriculum (the order of the synthetic batches
in the student’s learning procedure) can be learned with
this distillation method. We used open-source code3 as the
implementation of this method.

VII. GENERATIVE TEACHING NETWORK

The idea first appeared in [4], where authors suggested to
use the generator as the teacher λ. The input of the generator
is a concatenation of noise and one hot encoded label (for
conditional generation). In the original paper, the authors use
backpropagation through the student’s learning process to train
the generator, which is inconvenient for practical use due to
high memory consumption, so in our paper, we show that the
same or even better results can be achieved more effectively
by using gradient matching or implicit differentiation.

Experimental results in [4] show that using a generator
can help improve student performance. The best results were
achieved with the learned curriculum. This was done by
treating the generator input as teacher parameters and fixing
their order. Thus, the generator produces only a finite number
of synthetic objects and gives them for training the student
as batches in a fixed order. This makes sense since the use
of a generator can be seen as a more general case of usual
distillation (when the parameters of objects are optimized).

If the generator input is synthetic images and the gener-
ation operation is the product of the images and generator
parameters, which are the identity matrix, then there will be
the usual data distillation. In our paper, we check if we can
improve distillation performance using larger generators.

Note that the size in our experiments is controlled by the
k hyperparameter (see Fig. 6). The generator consists of two
linear layers and two convolutional layers. The output size of
the first layer is k. And bk/2c × (width) × height of picture
is the output size of the second layer. bk/4c is the number of
output channels of the first convolution.

3https://github.com/VICO-UoE/DatasetCondensation

https://github.com/VICO-UoE/DatasetCondensation


noiselabel

Linear (d, k)

Linear (k, k/2 * width * hight)

Conv2d (k/2, k/4)

Conv2d (k/4, 1)

LeakyRelu

LeakyRelu

LeakyRelu

Tanh

Fig. 6. Generator’s architecture. k — hyperparameter to control network’s
size. d = 64 — generator’s input.

Hereinafter, unless otherwise indicated, we use the follow-
ing notation: DD (data distillation) — distillation, when the
parameters of the teacher λ are pixels of synthetic images,
and GTN — for distillation using a generator. Note that the
generator has two modes: GTN-rnd — generator with random
noise as input, (GTN-lrn) — generator with learned input.

VIII. EXPERIMENTS

A. Distillation with time limit

The neural architecture search (NAS) is one of the most
promising areas for distillation and it is important to note that
the time spent on distillation should be added to the time spent
on the NAS, this idea was also mentioned in review4 of [4].
So, in this section, we check the performance of all known
distillation methods. We think that it is fair to distill the data by
all methods for the same limited time. We have chosen a time
limit of ≈ 15 minutes, and it is based on common sense and
NAS time spent in similar experiments [3]. Note that this limit
may not be accurate, as distillation takes an integer number
of steps, and each step may take slightly different times.

To check the performance we use the following scheme.
First we train teacher λ with three restarts. The number of
steps is determined by the time limit indicated above. Then, to
get the final results we train five randomly initialized students
θ for each of the three teachers. Each student’s training takes
1000 optimization steps.

In our work we use the MNIST [14] benchmark and make
the same preparations as in [4]. We extract part of the training
data for validation (10 thousands of images) and use it to
get the best teacher hyperparameters. We use |BT | = 256
batch size of training data. For most of our experiments we
use ConvNet [19] as a student. As student’s optimizer we use
SGD with momentum with the same parameters as suggested
in [3]. We use the same teacher optimizers as in the original
papers [1], [3], [4]. The volume of synthetic data can be
controlled by ipc (images per class) parameter. For each table
in this paper, the largest numbers in the column are shown in
bold.

4https://openreview.net/forum?id=HJg ECEKDr

TABLE I
MEAN AND STANDARD DEVIATION OF TEST ACCURACY FOR DIFFERENT

DISTILLATION ALGORITHMS.

Method + Teacher Accuracy Params GPU (MiB)
GM + DD (K = 60, 94.9 ± 0.1 78.4 K ≈ 2390

ζθ = 50)
unroll + DD (ic = 1) 88.4± 0.3 78.4 K ≈ 4432
unroll + DD (ic = 10) 79.2± 0.7 784 K ≈ 4426
unroll + GTN-lrn 92.0± 0.3 1.646 M ≈ 4480
(ic = 1)
unroll + GTN-lrn 91.6± 0.5 1.704 M ≈ 4480
(ic = 10)
unroll + GTN-rnd 91.7± 0.3 1.640 M ≈ 4480

Table I shows mean and standard deviation of test accuracy,
reached by students trained on distilled data. Note that there
is only one difference from previous works, we use time
limit for each distillation procedure, so there is degradation in
performance. For this experiment, we use K = 1000, N = 10
as default hyperparameters values.

To check the memory consumption we use a special tool5,
which can measure the GPU memory usage. Note that using of
the unroll distillation procedure consumes the most memory.
The second column shows the number of teacher parameters,
and although GTN (k = 64) is twice as large as DD, there is
not much difference in memory usage.

B. Training generator with gradient matching

In this section we explore the use of gradient matching
to train teacher generator. We first check the hyperparam-
eters for this distillation method. N controls frequency of
student’s reinitialization, ζθ controls the speed at which teacher
parameters are updated. Fig. 7 (a-d) shows the non-trivial
relationship between performance and hyperparameter choice.
We assume that such a dependence can be caused by the
time limit and the fact that increasing the values of these
hyperparameters may cause longer convergence. Note that in
previous works [1], [3], [4] where no time limit was used,
increasing ipc always resulted in better performance.

Fig.7.e shows that fixation the generator input is really
important for gradient matching distillation because teacher λ
training diverges when using random input. Another important
detail mentioned above is that the gradient must be calculated
per class. Table II shows the results for per class case and not.
It seems that per class distillation gives significantly better
results.

Fig. 7.f shows the accuracy achieved with data distilled with
generators of different sizes (marked with different k), and
without a generator (DD). This plot depicts the dependency
between the number of synthetic images per class (ipc) and
student’s performance on test. It seems that the correct size
selection for the generator allows to get better performance.
More detailed results can be found in Tables II and III. For
experiment in Table II, we use ipc = 10, ic = 1, N =
10, K = 110, ζθ = 10 and k = 64 for GTN as default

5https://pytorch.org/docs/stable/cuda.html#torch.cuda.max memory
reserved

https://openreview.net/forum?id=HJg_ECEKDr
https://pytorch.org/docs/stable/cuda.html#torch.cuda.max_memory_reserved
https://pytorch.org/docs/stable/cuda.html#torch.cuda.max_memory_reserved


10 50 100
images per class: ipc

0.9525

0.9550

0.9575

0.9600

0.9625

0.9650

ac
cu

ra
cy

learned input

a)

5 10 50
student's learning steps: 

0.92

0.93

0.94

0.95

ac
cu

ra
cy

learned input

b)

5 10 50
teacher's learning steps: N

0.935

0.940

0.945

0.950

ac
cu

ra
cy

learned input

c)

1 5 10
input count: ic

0.952

0.953

0.954

0.955

0.956

0.957

ac
cu

ra
cy

learned input

d)

10 50 100
images per class: ipc

0.15

0.20

0.25

0.30

ac
cu

ra
cy

random input

e)

10 50 100
images per class: ipc

0.93

0.94

0.95

0.96

0.97

ac
cu

ra
cy

dd
k=16
k=32
k=64
k=128

f)

Fig. 7. Dependence of student’s performance and hyperparameters of distil-
lation procedure. Next parameters used as default: ipc = 10, ic = 1, N =
10, ζθ = 10, k = 64.

TABLE II
MEAN AND STANDARD DEVIATION OF TEST ACCURACY FOR DIFFERENT

DISTILLATION ALGORITHMS.

Method + Teacher Accuracy Params GPU (MiB)
GM + DD 95.6 ± 0.1 78.4 K ≈ 2390
GM + DD 86.9± 1.5 78.4 K ≈ 2370
(not per class)
GM + GTN-lrn 95.2 ± 0.1 1.646 M ≈ 2454
GM + GTN-lrn 93.4± 0.3 1.646 M ≈ 2434
(not per class)

hyperparameters values. For experiment in Table III, we use
k = 64, ipc = 50,K = 35, N = 10, ζθ = 10.

TABLE III
MEAN AND STANDARD DEVIATION OF TEST ACCURACY FOR DIFFERENT

DISTILLATION ALGORITHMS.

Method + Teacher Accuracy Params GPU (MiB)
GM + GTN-lrn 94.2± 0.4 172.2 K ≈ 4192
(k = 16, ipc = 100)
GM + GTN-lrn 95.9± 0.2 449.7 K ≈ 3610
(k = 32,K = 50)
GM + GTN-lrn 96.4± 0.1 1.672 M ≈ 3640
(K = 50)
GM + GTN-lrn 96.8 ± 0.1 6.533 M ≈ 3770
(k = 128,K = 50)
GM + GTN-rnd 29.0± 6.1 1.640 M ≈ 2454
(ipc = 10,K = 110)

Tables II and III show the GPU memory usage. It seems that
ipc has a greater impact on memory usage than k, which is
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Fig. 8. relation of distillation method’s hyperparameters and test performance.
We use as default: ipc = 10, N = 10, ζθ = 10, k = 64.

another benefit of using GTN. Note that memory usage can be
reduced by changing the ic value to optimize more synthetic
images using smaller batches. Note that such change can slow
down convergence.

C. Distillation with implicit differentiation

This method was proposed in [2], and we will abbreviate it
as IFT (implicit function theorem). As mentioned above (see
section V), there is no detailed description of the results in
the original paper, so they can be found in this section. Fig. 8
(a-c) shows the relationship between the hyperparameters of
the distillation method and the student’s performance on the
test. We assume that these results can be explained by the fact
that increasing the values of these hyperparameters decreases
frequency of λ update, which negatively affects performance.
The only exception is ζθ.

Fig. 8.d shows results for distillation using generator with
random input (GTN-rnd). Such a generator can produce as
much data as we need, but it can’t converge when trained
with gradient matching. It seems that such distillation becomes
possible using implicit differentiation.

Table IV shows the best results for each method. For this
experiment, we use K = 1080, ζθ = 50, ipc = 10, N = 10
as default hyperparameters values. The performance seems
to be the same or even better compared to backpropagation
through the training procedure unroll (see. Table I). Note
the difference in memory usage in both tables. Note that the
implicit differentiation distillation is inferior to the gradient
matching distillation. We think this may be connected with
the difference in frequency of λ update. To do one update
using IFT, we first have to train the student, which is not
needed in case of GM. It is also important to note that this
method is very sensitive to α and ζθ, and in some DD cases it
starts to diverge after several iterations. Meanwhile the use of
GTN makes the procedure more stable and allows for a more
generalizable dataset (see Table VI).
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Fig. 9. Synthetic images for MNIST classification task obtained with different
distillation methods: a) GM+DD, b) IFT+DD, c) GM+GTN-lrn, d) IFT+GTN-
lrn, e) GM+GTN-rnd, f) IFT+GTN-rnd. We use the same hyperparameters as
mentioned in table V. Hyperparameters for GM+GTN-rnd are described in
caption of table IV.

TABLE IV
MEAN AND STANDARD DEVIATION OF TEST ACCURACY FOR DIFFERENT

DISTILLATION ALGORITHMS.

Method + Teacher Accuracy Params GPU (MiB)
IFT + DD (K = 500) 93.5 ± 0.5 78.4 K ≈ 2726
IFT + GTN-lrn (ζθ = 10) 92.4± 0.2 1.646 M ≈ 2726
IFT + GTN-rnd (ζθ = 10) 90.9± 0.3 1.640 M ≈ 2726

Fig. 9 shows part of the final synthetic dataset for GM
(see a, c, e) and IFT (see b, d, f). The greatest difference
is obtained when data distilled without a generator (see a, b).
Synthetic data obtained using implicit differentiation looks less
realistic and therefore can be used for federative learning [20].
Also note that the images distilled using generator have more
contrast.

D. Distillation with augmentation

In previous works, augmentation has been used in different
ways. In [4] it takes place during distillation (let’s call it train
augmentation) by applying transformations to real images BT .
In [1], [3] it is used when teaching student on synthetic data
(let’s call it test augmentation). In our study, we decided to
compare augmentation techniques. Table V shows the test per-
formance for various distillation and augmentation techniques.
It seems that for the MNIST classification problem only test
augmentation gives improvement (see tables II, III, IV). To
augment images we use random crop and rotation. For this
experiment, we use K = 1080, ipc = 10, ζθ = 10, N = 10
as default hyperparameters values.

TABLE V
MEAN AND STANDARD DEVIATION OF TEST ACCURACY FOR DIFFERENT

DISTILLATION ALGORITHMS AND DIFFERENT AUGMENTATIONS.

Method + Test Aug. Train Aug. Test +
Teacher Train Aug.
GM+DD (ic = 1, 96.1± 0.4 94.8± 0.1 93.9± 0.5

K = 110)
GM+GTN-lrn 97.4 ± 0.1 96.2 ± 0.2 95.5 ± 0.4
(k = 128, ipc = 50,
K = 50)
IFT+DD (ζθ = 50, 92.3± 0.9 91.4± 0.5 89.2± 1.5

K = 500)
IFT+GTN-lrn 93.0± 0.2 91.4± 0.3 91.4± 0.4
IFT+GTN-rnd 92.2± 0.3 89.7± 0.3 90.9± 0.6

TABLE VI
MEAN AND STANDARD DEVIATION OF TEST ACCURACY FOR DIFFERENT

DISTILLATION ALGORITHMS AND STUDENT’S ARCHITECTURES.

Method + LeNet AlexNet VGG11 MLP
Teacher
GM+DD 94.1± 0.6 95.0± 0.2 95.8± 0.3 88.6

±0.4
GM+ 95.5 ± 0.3 96.7 ± 0.2 97.4 ± 0.1 86.8
GTN-lrn ±0.3
IFT+DD 74.0± 7.8 68.6± 8.9 86.5± 1.6 50.9

±8.3
IFT+ 91.5± 1.0 82.5± 14.9 93.0± 0.4 79.9
GTN-lrn ±0.6
IFT+ 88.3± 2.3 85.3± 3.9 92.1± 0.4 74.4
GTN-rnd ±1.1

E. Generalizability

The generalization problem of distilled data was first men-
tioned in [1] and then studied in [4] and [7]. The problem
is that such data can’t guarantee convergence for students
which didn’t participate in the distillation procedure. And
this problem is of great importance, since the main practical
use of synthetic data is NAS. For this experiment, we use
K = 1080, ipc = 10, ζθ = 10, N = 10 as default
hyperparameters values.

Table VI shows the results of students with different archi-
tectures trained on data distilled with different methods. For
distillation we used ConvNet student’s architecture, all results
were obtained with test augmentation. It seems that the best
generalizability can be obtained using GTN and GM use. For
a comparison with ConvNet see the first column of Table V.

IX. CONCLUSION

This work explores all the latest ideas in dataset distillation
field suggested in [1], [2], [3], [4]. We honestly compared
the performance of all known methods, limiting their running
time. We also proposed new methods based on the joint use of
generators and memory efficient methods. Experiments with
the MNIST benchmark show that selecting the correct size for
the generator allows to achieve better performance for gradient
matching distillation, and improves the generalizability of
implicit differentiation distillation. This paper also presents
the results of augmentation impact on distillation. We also
provide a detailed description of the experimental results for
implicit differentiation distillation, as we didn’t find them in



the original work [2]. As future work, we want to experiment
with much more diverse datasets and architectures. We also
want to improve the distilled data generalizing ability using
stochastic depth networks [18]. We are also interested in
experiments with bringing the distribution of synthetic objects
closer to the original one.
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