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Abstract. We present an integrated approach to locomotion and bal-
ancing of humanoid robots based on direct centroidal control. Our method
uses a five-mass description of a humanoid. It generates whole-body mo-
tions from desired foot trajectories and centroidal parameters of the
robot. A set of simplified models is used to formulate general and in-
tuitive control laws, which are then applied in real-time for estimating
and regulating the center of mass position and orientation of the multi-
body’s principal axes of inertia. The combination of proposed algorithms
produces a stretched-leg gait with naturally looking upper body mo-
tions. As only a 6-axis IMU and joint encoders are necessary for the
implementation, the portability between robots is high. Our method has
been experimentally verified using an igusr Humanoid Open Platform,
demonstrating whole-body locomotion and push rejection capabilities.

Keywords: humanoid robotics, whole-body locomotion, balancing

1 Introduction

Dynamic control of humanoid robots has been an active research area for several
years. The high-dimensionality and underactuation of the system, coupled with
environment unpredictability, signal noise, and non-deterministic actuation has
led to the development of numerous approaches. When real-time control poses
no issue, task-based optimal control methods are capable of producing motion
plans exploiting the full dynamics with constraint awareness [1,19].

Supporting online application has been possible by utilising models capable
of generalising a core part of the dynamics. For humanoid walking and balancing,
a substantial line of work is based on tracking Center of Mass (CoM) and Zero
Moment Point (ZMP) trajectories, generated with the Linear Inverted Pendulum
Model (LIPM). Given desired ZMP locations, a CoM trajectory can be generated
using preview control [16] and tracked in a state-space setting [18]. Computing
optimal control gains—or even the complete trajectories over long horizons—can
be done in a Linear-Quadratic Regulator (LQR) setting [28]. Another approach
involves using Model Predictive Control (MPC) [31,8], also capable of handling
large perturbations. Alternatively, some works build the control around the Cap-
ture Point (CP), reducing the system dynamics to first order [10,9].
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Fig. 1. Direct centroidal control, including CoM and CAM regulation with step size
and timing adjustment. Our approach achieves walking with straight legs and angular
momentum regulation using the tilt and yaw of the inertia principal axes. Five masses
are combined into three dumbbels, whose relative movement translates between the
full humanoid kinematics and its centroidal model.

The LIPM, while extremely useful, has two limitations which can hinder
walking performance. The first one is constraining the CoM to move on a hori-
zontal plane, which requires it’s controllability in the vertical axis. Ensuring this
usually results in the well-known, bent-knee walking to avoid kinematic singulari-
ties. Improving this issue has been the aim of multiple research works [20,13,15].
The second limitation stems from the assumption of zero angular momentum
around the CoM. This is not an issue for generating the CoM motion, as hu-
mans are known to regulate the Centroidal Angular Momentum (CAM) close to
zero when walking [26]. This ability however, needs to be included in the control
and has led to the flywheel-extended LIPM [27]. The legs are then often assumed
to be massless, while the torso acts as the flywheel [30]. This approximation is
favored as so far there has been no clear and intuitive angular counterpart to the
linear CoM motion. To the best of our knowledge, only angular excursions from
whole body angular velocities so far have been used [26]. Simultaneous control of
linear and angular momenta has been tackled also in more general approaches.
Examples include the Resolved Momentum Control framework [17] and Whole-
Body Control (WBC) for motion generation using centroidal dynamics [25], with
improving online application being an active research topic [7,29].

A separate consideration to the control method is the capability of the hard-
ware to execute these motion plans. On the hardware layer, this is often realized
with backlash-free reducers and a high gain setting, to assure joint tracking per-
formance. In lower-quality hardware, the limited joint torque and presence of
compliance, backlash, and latency render many of these methods unapplicable.
Also, ground contact and stability assessment is often assumed as given with
force and/or torque sensors, which is not always the case [22]. In this regard,
there exists a whole ZMP-less category of methods, which are designed around
biologically-inspired Central Pattern Generators (CPG) [24]. As the trajectories
are manually designed to produce a self-stable, open-loop gait, no precise mod-
elling or foot sensors are required. Push rejection can be implemented on the
joint level [3] or by modifying gait commands to alter the step parameters [23].
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The contribution of this paper is an approach to whole-body humanoid robot
locomotion by generating motion frames approximating the Composite Rigid
Body (CRB) Inertia with five masses. To improve tracking performance, knee
torque is limited through the inclusion of a straight-support-leg constraint. Ref-
erence CoM and ZMP values are combined with foot trajectories to determine
reference orientations of the principle axes of inertia RI, which we introduce as
an angular position equivalent to enhance the walking capabilities through CAM
regulation. Control laws are then extended to track the centroidal parameters
for both the linear and angular movement. Additionally, step size and timing
feedback is developed using a closed-form prediction of the end-of-step state. As
the approach requires only a 6-axis IMU and joint position feedback, it can be
applied to a wide variety of robots.

2 Five-Mass Centroidal Description of a Humanoid

As shown in Fig. 1, our description of a humanoid robot is based on a non-
uniform five-mass distribution model, where each limb and the torso are repre-
sented by their respective point mass. The torso mass is offset from the center
of the pelvis, assumed to be the floating base of the robot ΣB . Each limb mass
is attached to the torso and parameterised through a triangle approximation,
which ties in the kinematics and mass placement with a one-to-one mapping.
The relative movement of these five masses shapes the system centroidal proper-
ties, e.g. it’s CoM and system inertia IR, which we used to develop a whole-body
motion generator in [12]. Our method can be thought of as a forward and inverse
kinematics approach to whole-body humanoid control, where both the CoM and
system inertia can be altered to achieve desired dynamic effects, e.g. concurrent
linear and angular momentum regulation.

We compute the joint configuration q by providing CoM-relative foot frames
ΣFL, ΣFR, constrained by set inertia principal moments IPA and axes orienta-
tion RI (Fig. 1, on the right). The upper body and lower body (leg) masses mu,
ml form a dumbbell, which tilts around the CoM. A virtual single leg evalu-
ates the placement of the base frame from ml with respect to mu reachability.
Having confirmed a viable dumbbell (inertia) tilt zI, the trunk is placed with
its mass pointing towards mu and aligned with the set inertia yaw angle ψI .
This completes the trunk orientation Rt for ΣB , which in conjunction with ΣFL
and ΣFR specifies the leg configuration. The leg masses form a dumbbell, which
rotates around ml with a yaw angle ψl. A similar dumbbell is put at mu, yawing
with ψu. Both of these dumbbells work to realise the set yaw rotation ψI . This
top-down approach introduces more detail on each step of the pose generation
scheme, which naturally resolves the upper body movement to satisfy the con-
straints driven by the feet. For a full description on the pose generation scheme,
please refer to [12].

During the typical bent-knee walking, the majority of the weight is put on
the supporting knee joint. Most tracking errors arrise at this point due to the
accumulation of non-negligible joint compliance, backlash, and limited torque.
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Fig. 2. Interaction between the framework modules.

We work around this issue by extending our pose generator [12] by including
a straight-support-leg constraint. After computing the initial torso orientation
and hip origins, we evaluate the distance to the supporting leg’s ankle. If it is
shorter than the sum of both leg links, the base frame position is shifted from
the virtual leg origin by that difference. By doing so, the motion generator will
resolve the CoM and inertia placement with a recomputed torso orientation Rt

′.
The pose generation continues with Σ′B , which allows to maintain control over
the CoM in the vertical axis by adjusting the upper body and arms.

3 Control Approach

Fig. 2 gives an overview of our approach. For brevity, we limit the majority of
the equation derivations to the planar case, three-dimensional coordinates are
provided only when necessary.

3.1 Reference Trajectory Generation

Generating a frame of motion with the five-mass model from Section 2 requires
specifying desired foot frames ΣFL, ΣFR relative to the CoM and desired system
inertia IR composed of the principal axes orientation RI and moments IPA. In
scenarios with plain single or double support balancing, the reference CoM and
ZMP stay constant—unlike in walking—which requires specifying trajectories
due to contact point exchange. In this regard, we follow the approach of Ka-
jita [14] with the well-known planar Linear Inverted Pendulum Model (LIPM)
dynamics and its analytical solution:

ẍ = ω2(x− pz), ω =
√
g/h

x(t) = x0 cosh(ωt) + ẋ0
1

ω
sinh(ωt),

ẋ(t) = x0ω sinh(ωt) + ẋ0 cosh(ωt),

(1)

where h is the constant CoM height, g is gravity, while x and pz are the hor-
izontal CoM and ZMP positions, respectively. Given a set of initial conditions
(x0, ẋ0), we can compute the state (x, ẋ) with respect to elapsed time t. Two
independently generated planar solutions are combined into a three-dimensional
ground-relative CoM coordinate c. A given velocity vrefg can be achieved through
multiple combinations of step size and applied gait frequency fg. By setting a
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nominal frequency, we control the walking speed with stride length. The step
progression is expressed by µ:

µ ∈ [0, 1), µ[n+ 1] = µ[n] + fg∆t, (2)

where ∆t is the time step arising from the system control frequency. We let µ
wrap around when crossing its border values, which triggers a sign flip of the
supporting leg sign ι : {L = −1,R = 1}. We compute the next initial step si
coordinates xs, ys and heading ψs as follows:

si


xs = vrefg,x /fg

ys = ιsw + sy =

ψs = vrefg,ψ/fg

{
2vrefg,y /fg if ι = sgn(vrefg,y )

0 otherwise
, (3)

which is then refined into the applied footstep s by slight position adjustments to
produce a single continuous trajectory according to [14]. When moving sideways,
we first take a larger step, and then a trailing one with nominal step width sw.
Only three steps are necessary to be stored at any given time. The supporting
foot stays at the current foothold s[k] while the swing leg travels from the pre-
vious footstep location s[k − 1] to the next one s[k + 1], reaching a step height
of sh with:

ΣF


f =


xf = (1− µ)sx[k − 1] + µsx[k + 1]

yf = (1− µ)sy[k − 1] + µsy[k + 1]

zf = sh sin(µ ∗ π)
ψf = (1− µ)sψ[k − 1] + µsψ[k + 1].

(4)

For simplicity, the roll φf and pitch θf are set to zero to keep the feet parallel
to the ground. When a foothold has been reached, the queue of steps with their
coordinates are shifted, and a new step is generated. As the footholds are in
reference to the ground, the final foot frame positions are offset by the set CoM
position, to conform with the whole body pose generator. The final components
required to define a whole body pose are the inertial properties IR. The definition
for the inertia orientation Rref

I is obtained with Rodrigues’ axis-angle formula
from the inertia z-axis tilt zrefI and the rotation angle around it ψI . A continuous
neutral tilt trajectory of zrefI should not result in generating CAM. This is
achieved when the torque of a flywheel attached to a pendulum is zero, e.g. it
does not rotate with respect to it. We therefore align zrefI with the robot tilt
defined as the vector originating at the feet of the robot, pointing towards the
CoM and set ψI to align with the step progression µ:

zrefI = −(fl + fr)/2, ψI = (1− µ)sψ[k] + µsψ[k + 1]. (5)

With this we keep CAM mostly independent from CoM and foot placement.
Finally, nominal principal moments IrefPA are kept constant and computed from
an upright standing pose, with the pose generator adjusting their values to satisfy
other constraints.
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3.2 State Estimation

Estimating the robot’s state is a necessity when it comes to precise control in-
volving system dynamics. To maintain generality and a wide applicability, we
require only joint encoders and a 6-axis IMU in the trunk to reconstruct the nec-
essary state variables. The IMU is used to provide the torso (base) orientation
Rt of ΣB with an attitude estimator of choice [2,21,6]. In combination with the
measured joint angles q, we compute the foot frames ΣFL, ΣFR and the posi-
tions of the five masses. These are then used to reconstruct the system CoM and
inertial properties IR, IPA. For synchronising the measured and control state we
use a common reference ground frame ΣG. This frame is laterally offset from the
supporting foot by half of the step width from the last step taken (see Fig. 1).
The supporting foot is chosen as the lower one of the two with a hysteresis ap-
plied to disable rapid switching of the frames, within which the robot is assumed
to be in semi double support. By keeping track of every support exchange, we
update the robot’s odometry. To provide the robot with a notion of balance, a
stability criterion is required. As we base our control around the LIPM concept,
we use the ZMP which is a linear combination of the CoM position x and accel-
eration ẍ as seen in (1). We use a Kalman filter to estimate the complete state
vector x =

[
x ẋ ẍ

]
. Unlike work mentioned in [22], we do not explicitly use the

LIPM state transition matrix in the filter design to not enforce it’s dynamics in
the estimation. Instead we use the linear mass model. Although the five-mass
approximation does

provide accurate x measurements, relying solely on them does not provide
satisfactory acceleration estimates. ZMP estimates p̂z will be inoperative due to
the non-negligible time delay before ̂̈x converges in response to actual changes in
ẍ. We supplement the measurement model zk with the unrotated and unbiased
for gravity g trunk acceleration Gẍt:GẍtGÿt

Gz̈t

 =

T ẍtT ÿt
T z̈t

Rt −

00
g

 , zk =

1 0
0 0
0 1

[ x
Gẍt

]
+ vk (6)

Having sources stemming from two different state variable measurements allows
for low-delay, robust estimation of x. Even though Gẍt only roughly coincides
with ẍt only when CAM is zero, its fusion with CoM measurements provides a
refined estimate x̂ with fast ẍ convergence. The ZMP estimate p̂z is then simply:

p̂z = x̂− ẑ

g
̂̈x. (7)

A second Kalman filter is used for the angular motion, where angles θ of the
inertia orientation RI are provided to estimate θ̇ and θ̈ of the multibody.

3.3 Center of Mass Controller

We start off with the control law proposed by Choi et al. [5], which realizes
input-to-state stability by adjusting the velocity to steer the CoM x back to
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follow the nominal velocity ẋref and ZMP prefz in the presence of errors:

ẋ = ẋref + ẋctrl, ẋctrl = ẋzmp + ẋcom,

ẋzmp = Kzmp(p
ref
z − pz), ẋcom = Kcom(xref − x).

(8)

We integrate its output to work with our position-based motion generator. We
substitute the integral of ẋref with xref , while integrating ẋctrl with a leaky
integrator to produce the sum xi. The output position is then:

xset = xref + xi, xi[n] = ẋctrl[n]∆t+ (1− α)xi[n− 1], α ∈ [0, 1] (9)

with α being an exponential decay factor. This approach already provides two
benefits over a non-leaky integration approach. The first one being the ability to
forget past errors, which propagate during walking from one footstep to another,
while the second being a more aggresive tuning of theKzmp andKcom gains. In a
non-leaky integrator, using low gain values is necessary to prevent velocity build-
up and overshooting, at the expense of insufficient error rejection capabilities and
a long settling time. With the leaky integration however, the CoM velocity does
not wind-up to levels which would first require the controller to slow it down.

This version of the controller is already capable of tracking CoM-ZMP tra-
jectories with limited push rejection capabilities. However, the nature of pertur-
bations during walking is erratic with concurrent impulse and constant forces
acting on the robot, which disrupt the rhythm of the gait. To sustain a nominal
gait cycle, we introduce two additional velocity terms ẋeos and ẋvel into ẋctrl
from (8):

ẋvel = Kvel(ẋ
ref − ẋ),

ẋeos = Keos(x
ref
eos − xeos).

(10)

The reasoning behind the ẋvel component is to maintain the reference velocity
across the whole step. In standing or walking-on-the-spot situations this term
mostly contributes to decreasing the settling time of a transient response to a
push. The second term ẋeos uses the LIPM equations (1) with the remaining
step time tr = (1− µ)/fg to compute reference and expected end-of-step (EOS)
states. Given the currently estimated state and confining the ZMP to the sup-
port polygon, the computed ẋeos steadily steers the CoM towards the nominal
EOS position in preparation for the next support exchange, essentially provid-
ing the controller with predictive capabilities. While the CoM-ZMP regulator is
responsible for instantaneous adjustments and keeping the ZMP within stabil-
ity margins as per the definition in [5], the introduction of extra terms assures
consistent long-term behaviour of the system. The final form of the extended
control law, which steers the CoM position to stability is:

ẋctrl = ẋcom + ẋzmp + ẋvel + ẋeos. (11)

3.4 Inertia Controller

The reference generator and position controller are designed around the Linear
Inverted Pendulum (1) concept, with dynamics that make use of two assump-
tions: constant CoM height, and lack of Angular Momentum around the CoM.
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In practice, this leads to making assumptions that a fixed torso height and orien-
tation leads to zero Angular Momentum. Building control around this discards
a set of dynamics, which—if properly utilised—can increase the stability region
and performance of the system. There is no guarantee that the torso keeps still,
especially with high joint compliance, backlash and external disturbances. Our
inertia-based whole-body pose generation is designed to accomodate for this,
along with foot swinging allowing for unified regulation of the centroiudal sys-
tem description.

The purpose of the inertia controller is to actively control the principle axes
of inertia orientation RI to maintain nominal CoM-ZMP trajectories. We do this
by computing a complementary rotation Rc to the neutral one (5):

Rset
I = RcR

ref
I . (12)

For this, we utilise the concept of augmented CoM (ACoM) x̃ introduced in [30].
The premise of the augmented CoM is to combine the linear and angular move-
ment of the mass x and flywheel θf of a Linear Inverted Pendulum Plus Flywheel
Model (LIPFM) within a single state variable, and control it with respect to an
Augmented ZMP p̃z, putting the LIPFM dynamics into LIPM form:

x̃ = x+
Iθf
mh

, p̃z = pz +
Iθf
mh

, ¨̃x =
g

h
(x̃− p̃z), (13)

where m and h are the system mass weight and height, respectively, I is the
inertia moment, and θf the flywheel angle around the perpendicular axis. Our
aim is to maintain zero angular velocities of the flywheel, by regulating its orien-
tation to zero. To achieve this, we use a similar control law as in (8), and set the
reference ACoM position to align with the output of the CoM-ZMP controller:

˙̃xctrl = ˙̃xzmp + ˙̃xcom,

˙̃xzmp = Kaug
zmp(p̃

ref
z − p̃z), ˙̃xcom = Kaug

com(x̃ref − x̃).
(14)

With the desired orientation kept at zero, the augmented and set state coin-
cide (x̃ref ' xset), as well as the references for the regular and augmented
ZMP (p̃refz ' prefz ). Due to working in the space of the augmented CoM and
its derivatives, the θ̈ term of the Centroidal Moment Pivot (CMP) gets hidden
within ¨̃x. This benefits our control scheme by enabling regulation of the CMP
towards the ZMP, without having to measure or estimate θ̈ of our abstract fly-
wheel. The control velocity ˙̃xctrl is then integrated as in (9) into x̃i, which holds
the inertia rotation angles for Rc:

x̃i =
Iθf
mh
⇒ θf =

x̃imh

I
. (15)

The rotation Rc can be expressed with any favorable representation. We use
projected angles to avoid gimbal lock and maintain a set angle on two axes
independently [11].
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3.5 Stepping Controller

Conceptually, the LIPM assumes the dynamics can be split into two indepen-
dent planar components. In reality, they are coupled by the cyclic nature of the
gait. The lateral pendulum oscillations produced by instantaneous support foot
exchanges define the rhythm of the gait. A wrongly timed foot exchange can
quickly lead to balance loss. We introduce timing feedback, based on the nomi-
nal yrefeos and expected EOS yeos lateral CoM error, by using the remaining step
time with (1):

f̃g = fg +Kt(y
ref
eos − yeos). (16)

The timing adjusts the rate of step progression with f̃g in (2). Intuitively, if the
CoM is on a trajectory to cross the lateral apex point, the progression will slow
down and provide more time to both balance controllers to bring the CoM back.
Similarly, overshooting towards the swing leg will speed-up the step exchange to
maintain the nominal cycle.

The sagittal motion is less sensitive in the timing, as the velocity is set
through the step size, and known frequency (3). However, its location needs to
be set accordingly, given that with the current velocity it is possible to return
to a nominal trajectory in a finite number of steps. The active next foothold
s[k + 1] distance x is constantly recalculated (3) in response to the current step
EOS CoM error, smoothly adapting the foot trajectory and walking speed:

xs[k+1] = vrefg,x /fg −Ks(x
ref
eos − xeos). (17)

4 Experimental Results

Verification of the proposed controller was performed on a 90 cm tall, igusr Hu-
manoid Open Platform robot [4] possessing 20 position-controlled joints. The
complete control pipeline was executed using the robot’s on-board computer to
produce the reference and stabilising motions. A single passthrough of the whole
control loop with computing joint targets took on average 143 µs. As the control
rate is limited to 100Hz by the actuators, we are still left with more than 98%
of idle time, to be spent on higher-layer tasks.

For the following experiments, we set the gait frequency fg to 2.6Hz which is
quite high, but the underpowered ankles necessitate making smaller step sizes.
The integration decay factor α of all controllers was set to 0.03, corresponding
to a decay half time of roughly half the step time. The regular and augmented
CoM-ZMP gains Kzmp, Kcom, Kaug

zmp, Kaug
com were set according to [5], but with

quite high gains due to the leaky integration. We have found that the long-
term behaviour gains supplemented the controller best when set to Kvel = 0.5,
Keos = 0.5Kcom, as the output would then equally mediate between the long
and short-term control goals. Step timing and adjustment were set to Kt = 10fg,
Ks = 1, making a 10 cm EOS error in the lateral plane fully slow down, or
double the gait progression. A similar error in the sagittal direction would result
in adjusting the foot placement by 10 cm.
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Table 1. Influence of the developed control techniques on walking quality. Control
components are gradually added and tuned to achieve the best possible performance.
The assessment is performed at highest achievable stable velocities with integral square
errors of CoM, ZMP and velocity tracking, normalized by walking time and velocity.

Control Mode vrefg,x [ms ] vg,x[ms ] ec ez ev

Open-Loop 0.025 0.1304 5.3877 9.3537 76.734
Straight leg constraint 0.050 0.0970 2.3155 4.3287 18.473
Closed-Loop 0.005 0.0583 35.722 56.002 214.34
Leaky integration 0.125 0.2162 0.6266 1.2438 11.886
Extended control terms 0.350 0.4403 0.3921 1.0304 5.8843
Inertia orientation control 0.400 0.4916 0.2925 0.8572 3.9287
Step timing regulation 0.400 0.5166 0.4269 0.9225 4.8888
Step size adjustment 0.485 0.5292 0.1895 0.7522 1.8463
Without inertia control 0.350 0.3972 0.2676 0.7988 3.0245

To display the influence and justify the usage of each proposed component,
we perform a series of tests where a highest achievable, stable and constant
walking velocity is requested. The quality is assessed in each run by comparing
the integral square errors of the relevant variable vector v normalized by a
representatively sufficient walking time tw and requested forward velocity vrefg,x :

e∗ =
1

vrefg,x tw

∫ tw

0

(vref − v)2dt, ∗ :


c |v = [x y]

z |v = [pzx pzy ]

v |v = [ẋ ẏ]

 , (18)

as higher velocities are much harder to maintain. The results of this assess-
ment can be seen in Table 1. Due to the limited torque in the joints, coupled with
backlash and compliance, the trajectories can barely be executed with frequent
falls during open-loop walking. The straight-support-leg constraint reduced the
necessary torque on the knees significantly to allow for better, more uniform
operation. Closing the loop with a non-leaky integrator resulted in inoperability,
where only a few steps caused a fall from self-excited instability. Introducing
leaky integration provided a substantial gain in the control capabilities to the
point where omnidirectional walking with varying velocities became possible. At
moderate speeds, the walking velocity would fluctuate in a sinusoidal manner,
eventually leading to a fall. The additional control terms solved this issue, in-
creased the accuracy and more than doubled the maximum speed. Reaching the
limits of CoM-ZMP control, regulating the inertia orientation provided another
substantial increase in performance. The continuous adjustments to the torso
and arm positioning generated sufficient angular momentum to complement and
relieve the CoM-ZMP controller, increased the stability margin and allowed for
higher walking speeds. Finally, step size and timing adjustments made the gait
more accomodating against sudden slips and stumbles while also compensating
for visible velocity overshooting with a significant ev reduction. Although often
omitted in typical LIPM control scenarios, here we can clearly notice the influ-
ence that angular momentum has on walking performance. Turning off CAM
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Fig. 3. Phase plots displaying the stability of open and closed-loop performance in the
sagittal and lateral direction. Blue and red dots represent stable and unstable trajectory
points respectively.

regulation while keeping the step adaptation resulted in difficulties in maintain-
ing higher velocities, where constant gait adjustment was necessary.

We assess the push recovery performance of the presented unified control
scheme by aggregating several pushes into phase plots in Fig. 3, with examples
of robot performance shown in Fig. 4. The Open-Loop system has a tendency to
sag towards the front of the feet and innately dampened pushes of unsignificant
strength in the sagittal direction. Closing the loop corrected the sagging and
typically responded to a push with both leaning and stepping in it’s direction.
Here, an undesired coupling was observed for pushes coming from the front,
where rotating the trunk would limit the leg touchdown towards the back due to
kinematic limits. Laterally, a push on the open-loop system lead to desynchro-
nising the gait or tipping over the outer edge of the supporting foot. Enabling
feedback smoothly adapted the gait progression to allow the CoM and inertia

Fig. 4. A time evolution of the robot performing push recovery with the developed
controllers. Left: using the controller while standing. Right: while walking.
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Table 2. Number of Withstood Simulated Pushes out of 20

Impulse [Ns] 1.2 1.5 1.8 2.0 2.2 2.4 2.6 2.8
Ours 20 20 20 18 17 15 13 10

Allgeuer [3] 20 20 17 16 14 9 7 4

controllers to bring the state back onto the nominal trajectory with a combi-
nation of CoM shifting and corrective inertia roll angle. A substantial stability
increase in both directions is clearly visible.

We have also evaluated the controller quantitatively in a Gazebo simulator.
We compare our results to [3], which tackles balanced walking with a model-free,
CPG-based gait. It is also the most recent work using the same robot and simu-
lator for the evaluation. We replicate the benchmarking scenario of performing
sets of 20 pushes from a random direction with increasing push strength. The
result of this experiment is shown in Table 2, with a video available1. Our con-
trol over the centroidal state and step feedback produces clearly better push
rejection capabilities than [3]. When measuring forward velocities, a maximum
mean of 49.3 cm/s was achieved, which is also an improvement when compared
to 45.7 cm/s from [3]. Not only is the robot able to walk faster, but is twice as
likely to sustain a relatively strong push.

5 Conclusions

We presented a unified control approach to whole-body locomotion and balanc-
ing of humanoid robots and verified it experimentally. While state-of-the-art
methods using simplified models are known to work, they require sufficient sens-
ing, joint torque and tracking capabilities which lower quality hardware cannot
guarantee. We have shown that such methods are also capable of operating on
such hardware, given that supplementary measures are taken. Furthermore, we
have increased the capability of an existing CoM-ZMP controller with additional
feedback terms that operate on closed-form solutions. This provides the control
with predictive capabilities and greatly increases performance in both gait speed
and stability. Unlike in MPC, our scheme easily handles on-the-fly CoM height
changes, as no preview matrices need to be computed. The Augmented CoM
concept has been employed to control the orientation of the whole-body inertia
principal axes, which proved to be a meaningful representation for centroidal an-
gular momentum regulation. By employing a reduced five-mass description of a
humanoid robot, we achieved a direct feedback control scheme on the centroidal
parameters of the system with a relatively small and intuitive set of gains. This is
in contrast to current state-of-the-art optimisation-based approaches. By adopt-
ing minimal sensing and the centroidal system, our approach can be applied to
a wide range of humanoids, even with existing hardware imperfections.

In future work, we would like to tackle issues that currently limit the hard-
ware performance, such as performing the control on a latency-predicted state,

1https://youtu.be/MRQXE4ig0yA

https://youtu.be/MRQXE4ig0yA
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anticipating kinematic limits, and modifying the swing foot trajectories to allow
for more angular momentum compensation during a push.
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