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Preface

This volume contains the papers presented at the 28th Workshop on Logic, Language,
Information and Computation (WoLLIC 2022) held during September 20–23, 2022 at
the Faculty of Computer Science, Alexandru Ioan Cuza University in Iasi, Romania.
The WoLLIC series of workshops started in 1994 with the aim of fostering interdis-
ciplinary research in pure and applied logic. The idea is to have a forum which is large
enough in terms of the number of possible interactions between logic and the sciences
related to information and computation, and yet small enough to allow for concrete and
useful interaction among participants.

For WOLLIC 2022 there were 46 submissions. Each submission was reviewed by at
least two Program Committee members. The committee decided to accept 25 papers.
This volume includes all the accepted papers, together with the abstracts of the invited
speakers at WOLLIC 2022:

– Anupam Das (University of Birmingham, UK),
– John Horty (University of Maryland, USA),
– Marie Kerjean (Université Sorbonne Paris Nord/CNRS, France),
– Dorel Lucanu (Alexandru Ioan Cuza University, Romania), and
– Francesca Poggiolesi (Université Sorbonne/CNRS/IHPST, France).

It also includes abstracts of the invited tutorials given by

– Gabriel Ciobanu (Romanian Academy, Romania),
– Sonia Marin (University of Birmingham, UK), and
– Marija Slavkovik (University of Bergen, Norway).

We would like to thank all the people who contributed to making WOLLIC 2022 a
success. We thank the Program Committee and all additional reviewers for the work
they put into reviewing the submissions. We thank the invited speakers and the tutorial
presenters for their inspiring talks, the Steering Committee and the Advisory Com-
mittee for their advice, and the Local Organizing Committee members (especially
Ștefan Ciobâcă) for their great support. Finally, we thank all the authors for their
excellent contributions.

The help provided by the EasyChair system created by Andrei Voronkov is grate-
fully acknowledged. We also would like to acknowledge the scientific sponsorship
of the following organizations: the Interest Group in Pure and Applied Logics (IGPL),
the Association for Logic, Language and Information (FoLLI), the Association for
Symbolic Logic (ASL), the European Association for Theoretical Computer Science



(EATCS), the European Association for Computer Science Logic (EACSL), and the
Brazilian Logic Society (SBL).

September 2022 Agata Ciabattoni
Elaine Pimentel
Ruy de Queiroz
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On the Proof Theoretic Strength of Circular
Reasoning

Anupam Das

University of Birmingham, UK
a.das@bham.ac.uk

Cyclic and non-wellfounded proofs are now a common technique for demonstrating
metalogical properties of systems incorporating (co)induction, including modal logics,
predicate logics, type systems and algebras. Unlike usual proofs, non-wellfounded
proofs may have infinite branches: they are generated coinductively from a set of
inference rules. Naturally, such ‘proofs’ may admit fallacious reasoning, and so one
typically employs some global correctness condition inspired by x-automaton theory.

A key motivation in cyclic proof theory is the so-called ‘Brotherston-Simpson
conjecture’: are cyclic proofs and inductive proofs equally powerful? Naturally, the
answer depends on how one interprets ‘equally powerful’, e.g. as provability, proof
complexity, logical complexity etc., as well as on the logic at hand. In any case it is
interesting to note that the tools employed in cyclic proof theory are often bespoke to
the underlying logic, yielding a now myriad of techniques at the interface between
several branches of mathematical and computational logic.

In this talk I will discuss a line of work that attempts to understand the expressivity
of cyclic proofs via forms of proof theoretic strength. Namely, I address predicate logic
in the guise of first-order arithmetic, and type systems in the guise of higher-order
primitive recursion, and establish a recurring theme: circular reasoning buys precisely
one level of ‘abstraction’ over inductive reasoning. Along the way we shall see some
of the aforementioned interplays in action, in particular exploiting techniques from
proof theory, reverse mathematics, automaton theory, metamathematics, rewriting
theory and higher-order computability.



Open Texture and Defeasible Semantic
Constraint

John Horty

University of Maryland, USA
horty@umd.edu

The concept of open-texture was introduced in [8], with its importance for legal theory
noted shortly afterward in [2]. Due to the intrinsic interest and practical importance
of the issues surrounding open-textured predicates, a substantial literature on the topic
has evolved within legal theory; some highlights include [1, 5–7]. For the most part,
however, this literature focuses on broader issues in the theory of open texture—the
role of defeasible legal rules, policy arguments concerning the application of these
rules, the impact of open-textured predicates on theories of legal interpretation, con-
nections with philosophy of language very generally. The literature does not provide
anything like a semantic theory of open-textured predicates. In this talk, I will attempt
to supply such a theory.

The talk has four parts. In the first, I will review some of the problems presented by
open-textured predicates, and suggest an explication of the concept according to which:
the predicate P is open-textured just in case, given any description of an object a on the
basis of which we can reasonably apply P to a, it is always possible consistently to
extend this description in such a way that it is no longer reasonable to apply P to a. In
the second, I will sketch an account of constraint in the common law presented in my
own recent work [3, 4]. In the third part, I will show how this account can be adapted to
help us understand open-textured predicates as well. Finally, in the fourth part, I will
talk a bit about the reasoning involved in reaching decisions that satisfy the account of
constraint, and show how this reasoning can be modeled in a simple defeasible logic.

References

1. Baker, G.: Defeasibility and meaning. In: Hacker, P., Raz, J. (eds.) Law, Morality, and
Society: Essays in Honour of H. L. A Hart, pp. 26–57. Oxford University Press (1977)
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@ is for Dialectica

Marie Kerjean1,2 and Pierre-Marie Pédrot3

1 CNRS
2 Université Sorbonne Paris Nord

3 Inria, France
kerjean@lipn.fr,pedrot@inria.fr

Dialectica was originally introduced by Gödel in a famous paper [7] as a way to
constructively interpret an extension of HA [1], but turned out to be a very fertile object
of its own. Judged too complex, it was quickly simplified by Kreisel into the
well-known realizability interpretation that now bears his name. Soon after the
inception of Linear Logic (LL), Dialectica was shown to factorize through Girard’s
embedding of LJ into LL, purveying an expressive technique to build categorical
models of LL [13]. In its logical outfit, Dialectica led to numerous applications and was
tweaked into an unending array of variations in the proof mining community [10].

The modern way to look at Dialectica is however to consider it as a program
translation, or more precisely two mutually defined translations of the k -calculus
exposing intensional information [14].

In a different scientific universe, Automatic Differentiation [8] (AD) is the field that
studies the design and implementation of efficient algorithms computing the differen-
tiation of mathematical expression and numerical programs. Indeed, due to the chain
rule, computing the differential of a sequence of expressions involves a choice, namely
when to compute the value of a given expression and when to compute the value of its
derivative. Two extremal algorithms coexist. On the one hand, forward differentiation
[16] computes functions and their derivatives pairwise in the order they are provided,
while on the other hand reverse differentiation [12] computes all functions first and then
their derivative in reverse order. Depending on the setting, one can behave more
efficiently than the other. Notably, reverse differentiation has been critically used in the
fashionable context of deep learning.

Differentiable programming is a rather new and lively research domain aiming at
expressing automatic differentiation techniques through the prism of the traditional
tools of the programming language theory community. As such, it has been studied
through continuations [15], functoriality [6], and linear types [4]. It led to a myriad of
implementation over rich programming languages, proven correct through semantics of
higher-order differentiable functions [11]. Surprisingly, these various principled
explorations of automatic differentiation are what allows us to draw a link between
Dialectica and differentiation in logic.

The simple, albeit fundamental claim of this talk is that, behind its different logical
avatars, the Dialectica translation is in fact a reverse differentiation algorithm, where
the linearity and involutivity of differentiation have been forgotten. In the domain of
proof theory, differentiation has been very much studied from the point of view of



linear logic. This led to Differential Linear Logic [5] (DiLL), differential categories [3],
or the differential k-calculus. To support our thesis with evidence, we will formally
state a correspondence between each of these objects and the corresponding Dialectica
interpretation.

More generally, Dialectica is known for extracting quantitative information from
proofs [10], and this relates very much with the quantitative point of view that dif-
ferentiation has brought to k-calculus [2]. Herbelin also notices at the end of its paper
realizing Markov’s rule through delimited continuations that this axiom has the type of
a differentiation operator [9]. If time permits, we will explore the possible conse-
quences of formally relating reverse differentiation and Dialectica to proof mining and
Herbelin’s work in the conclusion.
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How to Define Domain Specific Logics using
Matching Logic

Dorel Lucanu

Alexandru Ioan Cuza University, Iaşi, Romania
dorel.lucanu@gmail.com

Matching logic [2–4] is a logic that allows to uniformly specify and reason about
programming languages and properties of their programs. The syntax of matching logic
is simple and compact:

u ::¼ x j X j r j u1u2 j ? j u1 ! u2 j 9 � xu j lX � u
These eigth syntax constructs build matching logic formulas, called patterns,

which, semantically speaking, can be matched by a set of elements. Patterns can match
structures that are of certain shapes, satisfy certain dynamic properties, or meet certain
logical constraints, usually all of these together.

The matching logic is endowed with a proof system that defines the provability
relation, written C‘ML u , which means that u is formally derivable from the axioms
in C, using the matching logic (Hilbert-style) proof system [2].

Many important logics and/or formal systems have been shown to be definable in
matching logic as logical theories. In this we consider a different approach: starting
from a matching logic theory specifying a domain D, we derive a logic (proof system)
‘D that can be used independently to reason within D.

Next we present two matching logic theories: DEF and NAT. DEF introduces a
new symbol def, called the definedness symbol, and defines the (Definedness) axiom.
This symbol and its axioms is all it is needed to define predicates, its possible values
being ? or T � : ?. Then, the equality, the inclusion, and the membership are
introduced as notations for patterns using the new symbol.



The theory NAT specifies the natural numbers up to an isomorphism [1]. Note the
1–1 correspondence between the NAT axioms and the Peano axioms (see, e.g., https://
www.britannica.com/science/Peano-axioms).

From the theory DEF we may derive the following the following inference system
that can be used to reason about the equality and the membership:

The derived inference system for NAT imports ‘DEF (the first rule), includes the
axioms of NAT as rules (the next four rules), and rules for inductive reasoning (the last
three rules), obtained using the (PreFixPoint) and (Knaster-Tarski) from the matching
logic proof system [2]:

We obviously have ‘DEF u implies DEF ‘ML u and ‘NAT u implies DEF ‘ML u.
We start with a gentle introduction of matching logic, including its proof system,

and then we use several canonical examples of domains specified in matching logic to
show how we can derive their specific logics. These examples will involve both the
inductive and coinductive reasoning.

References
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The Value of Normal Derivations in the Realm
of Explanations

Francesca Poggiolesi

IHPST, UMR 8590 CNRS, Université Paris 1 Panthéon-Sorbonne

Abstract. The concept of explanation is and has long been the object of deep
and wide philosophical debates; in particular it is the notion of causal expla-
nation that has for decades dominated the general attention, e.g. see [11]. Beside
the debate on causal explanation, in recent years another type of explanation has
gained attention, namely mathematical explanation. The expression mathe-
matical explanations is an umbrella term that indicates several different phe-
nomena; in this context, we use it to refer to those mathematical proofs that not
only show the theorem they prove to be true, but that they also reveal the
reasons why the theorem it true. The idea that certain mathematical proofs have
an explanatory power has been shown to be widespread amongst mathemati-
cians (e.g. see [4]) and to have a long and illustrious philosophical pedigree (e.g.
see [3] and [9]). Moreover it is a type of mathematical explanations that has been
having a central role in the recent literature on the subject. To date there has
been a tendency to approach the topic of mathematical explanations by inves-
tigating the distinction between explanatory and non-explanatory proofs. This is
very natural since it is widely acknowledge that some proofs are explanatory
whilst other are not. [1, p. 3]
In the attempt of better understanding mathematical explanatory proofs, some

scholars have drawn an analogy with normalized derivations in natural deduc-
tion calculi, e.g. see [2, 8]. This analogy rests on a feature that both mathe-
matical explanatory proofs and normalized derivations share, namely a
complexity’s increase from the assumptions to the conclusion of
proofs/derivations. On the one hand, one of the main features of explanatory
proofs amounts to the fact that they explain the theorem they prove by providing
grounds or reasons that are simpler than the theorem they prove. On the other
hand, normalized proofs typically satisfy the subformula property1 and the
subformula property can be seen as the formalization of this idea of complex-
ity’s increase from the premisses to the conclusion (e.g. see [10]). Although, for
several reasons,2 normalized derivations cannot be considered as a proper for-
malization of explanatory mathematical proofs, they nevertheless represent a
first step towards this direction.
In this talk, the main aim is to deepen the analysis on the relationships

between mathematical explanatory proofs and normal derivations; we will do
that by proposing a novel model for mathematical explanations according to
which when a mathematical proof is (thought of as) explanatory, then there

1 At least under certain conditions.
2 E.g. see [6].



exists a way to formalize it with a normal derivation where the undischarged
assumptions are less complex than the conclusion. This modeling of explanatory
proofs will involve the use of theorems or mathematical definitions (that occur
in the mathematical proof in key positions) as rules of the derivation (e.g. see
[5]), as well as the extension of the notion of logical complexity to the level of
concepts (e.g. see [7]).
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Cardinalities, Infinities and Choice Principles
for Finitely Supported Sets

Andrei Alexandru1 and Gabriel Ciobanu1,2

1 Romanian Academy, Institute of Computer Science, Iaşi
andrei.alexandru@iit.academiaromana-is.ro

2 Alexandru Ioan Cuza University, Iaşi, Romania
gabriel@info.uaic.ro

Finitely supported sets are standard sets equipped with actions of a group of permu-
tations of some basic elements (atoms) whose internal structure is ignored, sets satis-
fying a finite support requirement. They allow a discrete (finitary) representation of
possibly infinite structures containing enough symmetries to be concisely handled. The
results presented in this tutorial deal with three topics:

Results Regarding Choice. The choice principles HP (Hausdorff maximal principle)
ZL (Zorn lemma), DC (principle of dependent choice), CC (principle of countable
choice), PCC (principle of partial countable choice), AC(fin) (axiom of choice for
finite sets), Fin (principle of Dedekind finiteness), PIT (prime ideal theorem), UFT
(ultrafilter theorem), OP (total ordering principle), KW (Kinna-Wagner selection
principle), SIP (principle of existence of right inverses for surjections), FPE (finite
powerset equipollence principle) and GCH (generalized continuum hypothesis) fail in
the framework of finitely supported sets.

Results Regarding Cardinalities. Two finitely supported sets X and Y have the same
cardinality (i.e., jXj ¼ jY j) if and only if there exists a finitely supported bijection
f : X ! Y . While some arithmetic properties of cardinalities (regarding sums, products
and exponents) are naturally translated from the non-atomic framework, there are also
some specific atomic properties. Let us consider:

• � given by jXj � jY j iff there is a finitely supported injection f : X ! Y ;
• � � given by jXj � �jY j iff there is a finitely supported surjection g : Y ! X.

We prove that the relation � is equivariant, reflexive, anti-symmetric and transi-
tive, but it is not total, while the relation � � is equivariant, reflexive and transitive, but
it is not anti-symmetric, nor total.

Results Regarding Infinities. We present relationships between various pairwise
non-equivalent forms of infinity defined below. Let X be a finitely supported set.

1. X is called classic infinite if it can be represented in the form fx1; . . .; xng.
2. X is covering infinite if there is a finitely supported directed family F of finitely

supported sets with the property that X is contained in the union of the members of
F , but there does not exist Z 2 F such that X�Z.

3. X is called Tarski I infinite (TI i) if jXj ¼ jX � Xj.



4. X is called Tarski II infinite (TII i) if there exists a finitely supported totally ordered
family of finitely supported subsets of X having no maximal element.

5. X is called Tarski III infinite (TIII i) if jXj ¼ jXþXj.
6. X is called Mostowski infinite (M i) if there exists an infinite finitely supported

totally ordered subset of X.
7. X is called Dedekind infinite (D i) if there exists a finitely supported one-to-one

mapping of X onto a finitely supported proper subset of X (or equivalently, iff there
exists a finitely supported one-to-one mapping f : N ! X).

8. X is called ascending infinite (Asc i) if there is a finitely supported increasing
countable chain of finitely supported sets X0�X1�. . .�Xn�. . . with X�[Xn, but
there does not exist n 2 N such that X�Xn.

9. X is called non-amorphous (N-am) if X contains two disjoint, infinite, finitely
supported subsets.

Relationships between several forms of infinity; the ‘ultra thick arrows’ indicate
strict implications, the ‘thin dashed arrows’ indicate implications for which we did not
prove yet if they are strict or not, and the ‘thick bidirectional arrows’ indicate
equivalences.

Examples of finitely supported sets satisfying various forms of infinity:

xxiv A. Alexandru and G. Ciobanu
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Intuitionistic Modal Proof Theory
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Intuitionistic modal logic, despite more than seventy years of investigation [4], still
partly escapes our comprehension.

Already answering what is the intuitionistic variant of normal modal logic K is not
obvious. Lacking De Morgan duality, there are several variants of the normal k axiom
that are classically but not intuitionistically equivalent. Five axioms have been con-
sidered as primitives in the literature. An intuitionistic variant of K can then be obtained
from intuitionistic propositional logic IPL by

– adding the necessitation rule: h A is a theorem if A is a theorem; and
– adding a subset of the following five axioms:

Structural proof theoretic accounts of intuitionistic modal logic have adopted either
the paradigm of labelled deduction in the form of labelled natural deduction and
sequent systems [6], or the one of unlabelled deduction in the form of sequent [2] or
nested sequent systems [1, 7]. In this tutorial, we would like to give an overview of the
current landscape of intuitionistic modal proof theory and illustrate how “old and new”
approaches can complement each other.

We will review ordinary sequent calculi, which are adequate to treat logics based
on a subset of k1, k2, k3 and k5, as well as labelled and nested sequents, which have
been used to give deductive systems for the logics that cannot seem to be handled in
ordinary sequent calculi, i.e., the ones that include k4.

Both of these approaches (labelled and unlabelled) are still under active investi-
gation. A framework for fragments of intuitionistic modal logics was recently designed,
based on unlabelled sequents but related to a new intuitionistic version of neigh-
bourhood semantics [3]. Another one proposes a refined labelled approach taking full
advantage of the more standard birelational semantics [5]. As these allow for a
fine-grained account of intuitionistic modal logic, we hope they will help shed some
light on the intricacte world of intuitionistic modal logics.
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Automating Moral Reasoning
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Abstract.Machine ethics has, as its topic of research, the behaviour of machines
towards humans and other machines. One aspect of that research problem is
enabling machines to reason about right and wrong. The automation of moral
reasoning is on one end the field of dreams and speculative fiction, but on the
other it is a very real need to ensure that the artificial intelligence used to
automate various tasks that require intelligence does not neglect the ethical and
value impact this ‘replacement’ of man with machine has. This tutorial intro-
duces the problem of making moral decisions and gives a general overview of
how a computational agent can be constructed to make moral decisions.

Keywords: Machine ethics � Artificial morality � Computational agency

What is Machine Ethics? Artificial intelligence (AI) is concerned with the problem of
using computation to automate tasks that require intelligence [3]. In a society, we all
affect each other with our activities and decisions. Ethics (or moral philosophy) is
concerned with understanding and recommending right and wrong behaviours and
decisions [6]. The right decisions being characterised by taking into consideration not
only ones own interest, but also the interest of others [7]. The more computationally
automated tasks are used to complement or replace people’s tasks, the more concerns
we have to ensure that the resulting actions and choices are not only correct and
rational, but also do not have a negative ethical impact on society.

One way to ensure that AI has a non-negative ethical impact on society is to
consider that moral reasoning is itself a cognitive task that we can consider automating.
Machine ethics, or artificial morality, is a sub-field in AI that is researching this
approach. The problem of automating moral reasoning can be considered as a problem
of moral philosophy, whereas one is interested in questions such as: should machines
be enabled with ethical reasoning [5], which norms should machines follow [8], can
machines ever be moral agents [4], etc. As a problem of computer science, machine
ethics focuses on the question of how to automate moral reasoning [2, 9].

Here we are concerned with the question of how to automate moral reasoning.
Although this problem, and machine ethics in general, have been raised since 2006 [1],
it is an extremely difficult problem that requires a lot of improvement in the state of the
art in AI and moral philosophy. We discuss the basic approaches in machine ethics, the
advantages and challenges of each. These lecture notes are structured as follows.

A longer version of this abstract can be found at https://drops.dagstuhl.de/opus/volltexte/2022/16004/

https://orcid.org/0000-0003-2548-8623
https://drops.dagstuhl.de/opus/volltexte/2022/16004/


Tutorial Overview. In this tutorial, first we discuss what is decision making and how
decision-making is distinguished from moral decision-making. Decisions are made by
an agent. Next we discuss what computational agents are, what does it mean for a
computational agent to be autonomous and what kind of moral agents can computa-
tional agents be. One way to automate moral reasoning is to follow a specific moral
theory. We give a very quick overview of what is a moral theory and some of the more
known moral theories from moral philosophy. Next, In we discuss two general
approaches to building artificial moral agents, we discuss open research problems and
challenges.

Tutorial Scope. In this tutorial we do discussed specific examples of artificial moral
agents. This tutorial is not intended to be a systematic review of implemented machine
ethics systems. A very practical reason for avoiding discussing implementations of
artificial agents here is that these implementations vary vastly in the approaches they
use and considerable background knowledge in various reasoning and learning
methods would be necessary to understand the implementations. However, references
are given to these specific systems and the interested reader can follow them and
explore them for learning more.
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