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Abstract. Binary classifiers are traditionally studied by propositional
logic (PL). PL can only represent them as white boxes, under the as-
sumption that the underlying Boolean function is fully known. Binary
classifiers used in practical applications and trained by machine learn-
ing are however opaque. They are usually described as black boxes. In
this paper, we provide a product modal logic called PLC (Product modal
Logic for binary input Classifier) in which the notion of “black box” is
interpreted as the uncertainty over a set of classifiers. We give results
about axiomatics and complexity of satisfiability checking for our logic.
Moreover, we present a dynamic extension in which the process of ac-
quiring new information about the actual classifier can be represented.

1 Introduction

The notions of explanation and explainability have been extensively investigated
by philosophers [10,13] and are key aspects of AI-based systems given the impor-
tance of explaining the behavior and prediction of an artificial intelligent system.
A variety of notions of explanation for classifier systems have been discussed in
the area of explainable AI (XAI). Since systems trained by machine learning
are increasingly opaque, instead of studying specific models, the model-agnostic
approach comes into focus. Namely, given a black box system or algorithm, we
know nothing about how it works inside. Without opening the black box, we can
query some (but not all) inputs and have some partial information about the
system. Initially there were global model-agnostic explanations like partial de-
pendence plots and global surrogate models. Recently LIME [20] and its followers
e.g. SHAP [15] and Anchors [21] have raised a local model-agnostic explanation
approach, namely explaining why a given input is classified in a certain way. For
a comprehensive overview of the research in this area see, e.g., [17].

At the mathematical level, a binary classifier can be viewed as a Boolean
function and is traditionally studied by propositional logic. Recent years have
witnessed several logic-based approaches to local explanation of classifier systems
[22,6,12,11,2], e.g., computing prime implicants and abductive explanations of a
given classification, and detecting biases in the classification process by means
of the notion counterfactual explanation. But, all these logic-based approaches
deal with “white box” classifiers, i.e., specific transparent models representable
by propositional formulas. A limitation is that given a Boolean function f and a
propositional formula ϕ, ϕ either fully expresses f or does not express f at all.

http://arxiv.org/abs/2210.07161v2


2 Xinghan Liu and Emiliano Lorini

This all-or-nothing nature makes it impossible to give a partial description of f ,
which is a natural way to represent a black box classifier.

The central idea of this paper is that a product modal logic is the proper
way to represent a “black box” classifier. As we have shown in [14], it is natural
to think of a classifier with binary inputs as a partition of an S5 Kripke model,
where each possible state stands for an input instance. However, this only repre-
sents “white box” classifiers. We extend this semantics with a second dimension
universally ranging over a set of possible classifiers, which results in a proper
extension of the product modal logic S5 × S5 = S52 [7] we call PLC (Product
modal Logic of binary-input Classifiers). The notion of black box is interpreted
as an agent’s uncertainty among those (white box) classifiers, as illustrated in
Figure 1.

f0

f1

f2

s0 s1 s2

f3

s3

f := ?
f(s0) = green

f(s3) = green

Fig. 1. A classifier associating color labels in {red, yellow, green} to input instances.
We do not know its Boolean formula, since f0, f1, f2, f3 are all compatible with our
partial knowledge of it. However, we know that the two input instances s0 and s3 are
both classified as green.

The paper is structured as follows. Section 2 introduces the modal language
and semantic model of PLC which we name multi-classifier model (MCM). Its
axiomatics along with the completeness and complexity results for the satisfia-
bility checking problem are given in Section 3. In Section 4, we will exemplify
the logic’s application by using it to represent the notion of black box and to
formalize different notions of classifier explanation. A dynamic extension is given
in Section 6 to capture the process of acquisition of new knowledge about the
classifier. Some non-routine proofs are given in a technical annex at the end of
the paper.

2 Language and Semantics

Let Atm0 = {p, q, . . .} be a countable set of atomic propositions which intend
to denote input variables (features) of a classifier. We introduce a finite set Val

to denote the possible output values (classifications, decisions) of the classifier.
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Elements of Val are noted x, y, . . . For any x ∈ Val , we call t(x) a decision atom,
and have Dec = {t(x) : x ∈ Val}.3 Finally let Atm = Atm0 ∪Dec.

The modal language L is defined by the following grammar:

ϕ ::= p | t(x) | ¬ϕ | ϕ1 ∧ ϕ2 | �Iϕ | �Fϕ,

where p ranges over Atm0 and x ranges over Val .

Definition 1. A multi-classifier model (MCM) is a pair Γ =(S, Φ) where S ⊆
2Atm0 and Φ ⊆ FS , with FS = ValS the set of functions with domain S and
codomain Val . A pointed MCM is a triple (Γ, s, f) where Γ =(S, Φ) is an MCM,
s ∈ S and f ∈ Φ. The class of all multi-classifier models is noted MCM.

Formulas in L are interpreted relative to a pointed MCM as follows.

Definition 2 (Satisfaction relation). Let Γ =(S, Φ) be an MCM, s ∈ S and
f ∈ Φ. Then,

(Γ, s, f) |= p ⇐⇒ p ∈ s,

(Γ, s, f) |= t(x) ⇐⇒ f(s) = x,

(Γ, s, f) |= ¬ϕ ⇐⇒ (Γ, s, f) 6|= ϕ,

(Γ, s, f) |= ϕ ∧ ψ ⇐⇒ (Γ, s, f) |= ϕ and (Γ, s, f) |= ψ,

(Γ, s, f) |= �Iϕ ⇐⇒ ∀s′ ∈ S : (Γ, s′, f) |= ϕ,

(Γ, s, f) |= �Fϕ ⇐⇒ ∀f ′ ∈ Φ : (Γ, s, f ′) |= ϕ.

Both �Iϕ and �Fϕ have standard modal reading but range over different sets.
�Iϕ has to be read “ϕ necessarily holds for the actual function, regardless of
the input instance”, while its dual ♦Iϕ =def ¬�I¬ϕ has to be read “ϕ possibly
holds for the actual function, regardless of the input instance”. Similarly, �Fϕ
has to be read “ϕ necessarily holds for the actual input instance, regardless of
the function” and its dual ♦Fϕ has to be read “ϕ possibly holds for the actual
input instance, regardless of the function”.

Let X be a finite subset of Atm0. An important abbreviation is the following:

[X ]ϕ =def

∧

Y⊆X

(

(
∧

p∈Y

∧
∧

p∈X\Y

¬p) → �I((
∧

p∈Y

∧
∧

p∈X\Y

¬p) → ϕ)
)

.

Complex as it seems, [X ]ϕ means nothing but “ϕ necessarily holds, regardless of
the values of the input variables outside X” or “ϕ necessarily holds, if the values
of the input variables in X are kept fixed”. It can be justified by checking that
(Γ, s, f) |= [X ]ϕ, if and only if ∀s′ ∈ S, if s ∩ X = s′ ∩ X then (Γ, s′, f) |= ϕ.
Its dual 〈X〉ϕ =def ¬[X ]¬ϕ has to be read “ϕ possibly holds, if the values of
the input variables in X are kept fixed” ’. These modalities have a ceteris paribus
reading and were first introduced in [8]. Similar modalities are used in existing
logics of functional dependence [25,3].

3 Notice that p denotes an input variable, while x is an output value rather than the
output variable, which makes sense of the symbolic difference between p and t(x).
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A formula ϕ of L is said to be satisfiable relative to the class MCM if
there exists a pointed multi-classifier model (Γ, s, f) with Γ ∈ MCM such that
(Γ, s, f) |= ϕ. We say that that ϕ is valid in the multi-classifier model Γ =(S, Φ),
noted Γ |= ϕ, if (Γ, s, f) |= ϕ for every s ∈ S, f ∈ Φ. It is said to be valid relative
to MCM, noted |=MCM ϕ, if ¬ϕ is not satisfiable relative to MCM.

3 Axiomatics and Complexity

In this section, we are going to present two axiomatics for the language L by
distinguishing the finite-variable from the infinite-variable case. We will more-
over give complexity results for satisfiability checking. Before, we are going to
introduce an alternative Kripke semantics for the interpretation of the language
L. It will allow us to use the standard canonical model technique for proving
completeness. Indeed, this technique cannot be directly applied to MCMs in the
infinite-variable case.

3.1 Alternative Kripke Semantics

The crucial concept of the alternative semantics is multi-decision model (MDM).

Definition 3. An MDM is a tuple M =
(

W,∼�I
,∼�F

, V
)

where:

- W is a set of worlds,
- ∼�I

and ∼�F
are equivalence relations on W ,

- V :W −→ 2Atm is a valuation function,

and which satisfies the following constraints, ∀w, v ∈W , ∀x, y ∈ Val :

(C1) ∼�I
◦ ∼�F

=∼�F
◦ ∼�I

,
(C2) if VAtm0

(w) = VAtm0
(v) and w ∼�I

v, then VDec(w) = VDec(v),
(C3) if w ∼�F

v then VAtm0
(w) = VAtm0

(v),
(C4) if t(x) ∈ V (w) and x 6= y then t(y) 6∈ V (w),
(C5) ∃x ∈ Val such that t(x) ∈ V (w),

with VY (w) =
(

V (w) ∩ Y
)

for every w ∈ W and for every Y ⊆ Atm, and ◦ the
standard composition operator for binary relations.

The class of multi-decision models is noted MDM. An MDMM =(W,∼�I
,∼�F

, V )
is called finite if W is finite. The class of finite MDMs is noted finite-MDM.
Interpretation of formulas in L relative to a pointed MDM goes as follows. (We
omit interpretations for ¬ and ∧ which are defined as usual.)

Definition 4 (Satisfaction Relation). Let M =
(

W,∼�I
,∼�F

, V
)

be an MDM
and let w ∈W . Then,

(M,w) |= q ⇐⇒ q ∈ V (w) for q ∈ Atm,

(M,w) |= �Iϕ⇐⇒ ∀v ∈ W, if w∼�I
v then v |= ϕ,

(M,w) |= �Fϕ⇐⇒ ∀v ∈ W, if w ∼�F
v then v |= ϕ.
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Validity and satisfiability of formulas in L relative to class MDM (resp.
finite-MDM) are defined in the usual way.

The most important result in this subsection is the semantic equivalence
between MCM and MDM, regardless of Atm0 being finite or infinite. Although
a pointed MDM (M,w) looks like a pointed MCM (Γ, s, f), it only approximates
it. Indeed, unlike an MCM, an MDM M may be redundant, that is, (i) a classifier
in M (i.e., a ∼�I

-equivalence class) may include multiple copies of the same
input instance (i.e., of the same valuation for the atoms in Atm0), or (ii) M may
contain multiple copies of the same classifier (i.e., two identical ∼�F

-equivalence
classes). Moreover, an MDMM may be “defective” insofar as (iii) the intersection
between a classifier in M (i.e., a ∼�I

-equivalence class) and the set of all possible
classifications of a given input instance by the classifiers in M (i.e., a ∼�F

-
equivalence class) is not a singleton. What makes the proof of the following
theorem non-trivial is transforming a possibly redundant or defective MDM into
a non-redundant and non-defective one by preserving truth of formulas. A non-
redundant and non-defective MDM is then isomorphic to an MCM.

Theorem 1. Let ϕ ∈ L. Then, ϕ is satisfiable relative to the class MCM if
and only if it is satisfiable relative to the class MDM.

Proof. We start with the left-to-right direction of the proof. Let (Γ, s0, f0) be a
pointed MCM with Γ =(S, Φ), S ⊆ 2Atm0 and Φ ⊆ FS such that (Γ, s0, f0) |= ϕ.
We define the tuple M =

(

W,∼�I
,∼�F

, V
)

as follows:

- W = {(s, f) : s ∈ S and f ∈ Φ},
- ∀(s, f), (s′, f ′) ∈W , (s, f) ∼�I

(s′, f ′) iff f = f ′

- ∀(s, f), (s′, f ′) ∈W , (s, f) ∼�F
(s′, f ′) iff s = s′,

- ∀(s, f) ∈ W , V (s, f) = s ∪ {t(f(s))}.

It is routine exercise to verify that M so defined is an MDM. Moreover, by
induction on the structure of ϕ, it is easy to prove that “(Γ, s, f) |= ϕ iff
(

M, (s, f)
)

|= ϕ” for every s ∈ S and f ∈ Φ. Thus,
(

M, (s0, f0)
)

|= ϕ since
(Γ, s0, f0) |= ϕ.

Let us now prove the right-to-left direction. Let M =(W,∼�I
,∼�F

, V ) be
an MDM and w0 ∈ W such that (M,w0) |= ϕ. Given v ∈ W , let |v| = {u ∈
W : v ∼�I

u and V (v) = V (u)}. We transform the MDM M into a tuple
M ′ =

(

W ′,∼′
�I

,∼′
�F

, V ′
)

such that:

- W ′ = {|v| : v ∈ W},
- ∀|v|, |u| ∈ W ′, |v| ∼�I

|u| iff ∃v′ ∈ |v|, u′ ∈ |u| such that v′ ∼�I
u′,

- ∀|v|, |u| ∈ W ′, |v| ∼′
�F

|u| iff ∃v′ ∈ |v|, u′ ∈ |u| such that v′ ∼�F
u′,

- ∀|v| ∈W ′, V ′(|v|) = V (v).

Like what we did for V , let V ′
Y (|v|) = V ′(|v|) ∩ Y for all Y ⊆ Atm.

It is a routine exercise to verify that M ′ is an MDM and, by induction on
the structure of ϕ, that “(M, v) |= ϕ iff (M ′, |v|) |= ϕ” for every v ∈ W . Thus,
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(M, |w0|) |= ϕ since (M,w0) |= ϕ. Finally, because of Constraints C2 and C3 in
Definition 3, the following property holds:

(C6)
(

∼′
�I

∩ ∼′
�F

)

= idW ′ ,

where idW ′ is the identity relation on W ′.
Let W ′/ ∼′

�I

be the quotient set of W ′ by the equivalence relation ∼′
�I

. We
note τ, τ ′, . . . its elements. Given τ, τ ′ ∈ W ′/ ∼′

�I

, we write τ ≈F τ ′ if and only
if, ∀|v| ∈ τ, ∀|u| ∈ τ ′, if V ′

Atm0
(|v|) = V ′

Atm0
(|u|) then V ′

Dec(|v|) = V ′
Dec(|u|).

Given |v|, |u| ∈ W ′, we write |v| ≃ |u| if and only if ∃τ, τ ′ ∈ W ′/ ∼′
�I

such that
|v| ∈ τ, |u| ∈ τ ′, τ ≈F τ ′ and V ′

Atm0
(|v|) = V ′

Atm0
(|u|). Clearly, ≈F and ≃ are

equivalence relations.
We are going to transform the MDMM ′ into an MDM which does not contain

multiple copies of the same function and which satisfies the same formulas as
M ′. We define it to be a tuple M ′′ =

(

W ′′,∼′′
�I

,∼′′
�F

, V ′′
)

such that:

- W ′′ = {≃(|v|) : |v| ∈ W ′},
- ∀ ≃(|v|),≃(|u|) ∈ W ′′, ≃(|v|) ∼′′

�I

≃(|u|) iff ∃|v′| ∈≃(|v|), |u′| ∈≃(|u|) such
that |v′| ∼′

�I

|u′|,
- ∀ ≃(|v|),≃(|u|) ∈ W ′′, ≃(|v|) ∼′′

�F

≃(|u|) iff ∃|v′| ∈≃(|v|), |u′| ∈≃(|u|) such
that |v′| ∼′

�F

|u′|,

- ∀ ≃(|v|) ∈ W ′′, V ′′
(

≃(|v|)
)

= V ′(|v|).

Again, it is routine to verify that M ′′ is an MDM which satisfies the previous
Constraint C6. Moreover, by induction on the structure of ϕ, it is easy to prove
that “(M ′, |v|) |= ϕ iff

(

M ′′,≃(|v|)
)

|= ϕ” for every |v| ∈ W ′. Thus,
(

M ′′,≃

(|w0|)
)

|= ϕ since (M ′, |w0|) |= ϕ.
We can easily build an MCM isomorphic to M ′′.

3.2 Finite-Variable Case

We first consider the variant of the logic with finitely many propositional atoms
in Atm0. For every finite X,Y ⊆ Atm0 we define:

cnX,Y =def

∧

p∈X

p ∧
∧

p∈(Y \X)

¬p.

Definition 5 (Logic PLC). Let Atm0 be finite. We define PLC as the extension
of classical propositional logic given by axioms and rules of inference in Table 1.

Axioms AtLeastt(x), AtMostt(x) and Funct guarantee that every input
Y ⊆ Atm0, whose syntactic counterpart is cnY ,Atm0

, has only one decision atom
as output. Axioms K�, T�, 4� and 5� together with the rule of inference Nec�
indicate that both modal operators �F and �I satisfy the principles of the modal
logic S5. According to Axiom Comm, they moreover commute. This makes the
logic meet the requirement of a product of two S5 modal logics, i.e., S52 [7].
Nevertheless, the existence of the two “independence” Axioms Indep�F,p and

Indep�F,¬p indicates that PLC is stronger than S52 in general.
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(

�ϕ ∧ �(ϕ→ ψ)
)

→ �ψ (K�)

�ϕ→ ϕ (T�)

�ϕ→ ��ϕ (4�)

¬�ϕ → �¬�ϕ (5�)

�F�Iϕ ↔ �I�Fϕ (Comm)
∨

x∈Val

t(x) (AtLeastt(x))

t(x) → ¬t(y) if x 6= y (AtMostt(x))
(

cnX,Atm0
∧ t(x)

)

→ �I

(

cnX,Atm0
→ t(x)

)

(Funct)

p→ �Fp (Indep�F,p)

¬p→ �F¬p (Indep�F,¬p)
ϕ

�ϕ
(Nec�)

Table 1. Axioms and rules of inference, with � ∈ {�I,�F}

Soundness of PLC relative to MCM is a simple exercise. To prove the com-
pleteness result, we first need to show that PLC is complete relative to MDM,
which is proven by the canonical model construction.

Theorem 2. Let Atm0 be finite. Then, the logic PLC is sound and complete
relative to the class MDM.

Our main result of this subsection becomes a corollary of Theorems 1 and 2.

Corollary 1. Let Atm0 be finite. Then, the logic PLC is sound and complete
relative to the class MCM.

3.3 Infinite-Variable Case

We now move to the infinite-variable variant of our logic, under the assumption
that the set Atm0 is countably infinite. In order to obtain an axiomatics we just
need to drop the “functionality” Axiom Funct of Table 1. Indeed, when Atm0

is infinite, the construction cnX,Atm0
cannot be expressed in a finitary way.

Definition 6 (Logic WPLC). We define WPLC (Weak PLC) to be the exten-
sion of classical propositional logic given by Axioms K�, T�, 4�, 5�, Comm,
AtLeastt(x), AtMostt(x), Indep�F,p and Indep�F,¬p, and the rule of inference
Nec� in Table 1.

Soundness of the logic WPLC is a straightforward exercise. For completeness,
we need to distinguish MDMs from quasi-MDMs that are obtained by removing
the “functionality” Constraint C2 from Definition 3.
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Definition 7 (Quasi-MDM). A quasi-MDM is a tuple M =(W,∼�I
,∼�F

, V )
where W , ∼�I

, ∼�F
and V are defined as in Definition 3 and which satisfies all

constraints of Definition 3 except C2.

The class of quasi-MDMs is noted QMDM. A quasi-MDMM =(W,∼�I
,∼�F

, V )
is said to be finite if W is finite. The class of finite quasi-MDMs is noted finite-
QMDM. Semantic interpretation of formulas in L relative to quasi-MDMs is
analogous to semantic interpretation relative to MDMs given in Definition 4.
Moreover, validity and satisfiability of formulas in L relative to class QMDM

(resp. finite-QMDM) is again defined in the usual way.
The first crucial result of this subsection is that when Atm0 is infinite the

language L cannot distinguish finite MDMs from finite quasi-MDMs.

Theorem 3. Let ϕ ∈ L with Atm0 infinite. Then, ϕ is satisfiable relative to
the class finite-MDM if and only if it is satisfiable relative to the class finite-
QMDM.

Proof. The left-to-right direction is trivial. We prove the right-to-left direction.
Suppose Atm0 is infinite. Moreover, let M =(W,∼�I

,∼�F
, V ) be a finite quasi-

MDM and w0 ∈ W such that (M,w0) |= ϕ. Since Atm0 is infinite and W is
finite, we can define an injection g :W −→ Atm0 \Atm(ϕ). We define the tuple
M ′ =

(

W ′,∼′
�I

,∼′
�F

, V ′
)

as follows:

- W ′ =W ;
- ∼′

�I

=∼�I

- ∼′
�F

=∼�F
;

- for every w ∈ W ′,

V ′(w) =
(

V (w) \ {g(v) : v ∈W and w 6= v}
)

∪ {g(w)}.

It is routine to verify that M ′ is a finite MDM. Indeed, V ′
Atm0

(w) 6= V ′
Atm0

(v)
for all w, v ∈ W ′ such that w 6= v. This guarantees that M ′ satisfies the “func-
tionality” constraint C2. Moreover, by induction on the structure of ϕ, it is
straightforward to prove that “(M, v) |= ϕ iff (M ′, v) |= ϕ” for every v ∈W . The
crucial point of the proof is that ∼′

�I

=∼�I
and ∼′

�F

=∼�F
. Thus, (M ′, w0) |= ϕ

since (M,w0) |= ϕ. ⊓⊔

The second result is that satisfiability for formulas in L relative to the class
QMDM is equivalent to satisfiability relative to the class finite-QMDM.

Theorem 4. Let ϕ ∈ L. Then, ϕ is satisfiable relative to the class QMDM if
and only if it is satisfiable relative to the class finite-QMDM.

Proof. The right-to-left direction is clear. We are going to prove the left-to-right
direction by a filtration argument.

LetM = (W,∼�I
,∼�F

, V ) be a quasi-MDM and w0 ∈ W such that (M,w0) |=
ϕ. It is routine to verify that (∼�I

∪ ∼�F
)∗ =∼�I

◦ ∼�F
=∼�F

◦ ∼�I
. Thus, we

can define M ′ = (W ′,∼′
�I

,∼′
�F

, V ′) to be the submodel of M generated from
w0 through the relation ∼�I

◦ ∼�F
. M ′ is a quasi-MDM and (M ′, w0) |= ϕ.
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Let sf (ϕ) be the set of all subformulas of ϕ and let sf +(ϕ) = sf (ϕ) ∪ Dec.
Moreover, for every v ∈ W ′, let Θ(v) =

{

ψ ∈ sf +(ϕ) : (M ′, v) |= ψ
}

. For every
v, u ∈W ′, we define

v ≃ u iff Θ(v) = Θ(u).

Moreover, we define [v] = {u ∈W ′ : v ≃ u}.
We construct a new model M ′′ = (W ′′,∼′′

�I

,∼′′
�F

, V ′′) where:

- W ′′ = {[v] : v ∈W ′};
- [v] ∼′′

�I

[u] iff

∀�Iψ ∈ sf (ϕ),
(

(M ′, v) |= �Iψ iff (M ′, u) |= �Iψ
)

;

- [v] ∼′′
�F

[u] iff

∀�Fψ ∈ sf (ϕ),
(

(M ′, v) |= �Fψ iff (M ′, u) |= �Fψ
)

and

∀p ∈ sf (ϕ) ∩ Atm0,
(

(M ′, v) |= p iff (M ′, u) |= p
)

;

- V ′′
(

[v]
)

= V ′
sf (ϕ)∩Atm0

(v) ∪ V ′
Dec(v).

M ′′ is indeed a filtration, for it satisfies that if v ∼� u, then [v] ∼� [u];
and if �ψ ∈ sf(ϕ) and (M ′, v) |= �ψ, then (M ′, u) |= ψ, for � ∈ {�I,�F}.
Additionally, the valuation function is defined in the standard way.

To check that M ′′ is a finite quasi-MDM, we go through all constraints.
For C1 a crucial fact is that M ′ generated from w0 through ∼�I

◦ ∼�F
, viz.

∀v, u ∈W ′, v ∼�I
◦ ∼�F

u and v ∼�F
◦ ∼�I

u.
To see that fact, by construction of M ′ we have w0 ∼′

�I

◦ ∼′
�F

u and w0 ∼′
�I

◦ ∼′
�F

v. This means w0 ∼′
�I

v1 ∼′
�F

v and w0 ∼′
�I

u1 ∼′
�F

u for some u1, v1 ∈
W ′ ⊆ W . Then we have v1 ∼′

�I

◦ ∼′
�F

u by the Euclidean of ∼′
�I

. Then, since
v1, u ∈ W and by C1 of M , we have v1 ∼�F

v2 ∼�I
u for some v2 ∈ W . Since

w0 ∼�I
v1 ∼�F

v2, we are sure that v2 ∈ W ′, which gives us v1 ∼′
�F

v2 ∼′
�I

u.
So now we have v ∼′

�F

v1 ∼′
�F

v2 ∼′
�I

u, and by Euclidean of ∼′
�F

, we have
v ∼′

�F

◦ ∼′
�I

u. The case of u ∼′
�I

◦ ∼′
�F

v is proven in the same way.
C3 holds because of the definition of ∼′′

�F

. C4,C5 hold, since V ′′ not only
considers sf (ϕ) ∩Atm0 but also Dec.

It is routine to verify that M ′′ = (W ′′,∼′′
�I

,∼′′
�F

, V ′′) is a filtration of M ′

and is a finite quasi-MDM. Therefore, (M ′′, [w0]) |= ϕ. ⊓⊔

The following theorem is provable by standard canonical model argument.
Note that like Theorems 1 and 4, it does not rely on Atm0 being infinite or finite.

Theorem 5. The logic WPLC is sound and complete relative to the class QMDM.

The fact that the logic WPLC is sound and complete relative to the class
MCM is a direct corollary of Theorems 1, 3, 4 and 5.

Corollary 2. Let Atm0 be infinite. Then, the logic WPLC is sound and complete
relative to the class MCM.
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3.4 Complexity Results

We now move to complexity of satisfiability checking. As for the axiomatics,
we distinguish the finite-variable from the infinite-variable case. When Atm0 is
finite, the problem of verifying whether a formula is satisfiable is polynomial. The
latter problem mirrors the satisfiability checking problem for the finite-variable
modal logic S5 which is also known to be polynomial [9].

Theorem 6. Let Atm0 be finite. Then, checking satisfiability of L-formulas rel-
ative to the class MCM can be done in polynomial time.

Proof. Suppose |Atm0| is finite. Then, the class MCM is bounded by some
integer k. So, in order to determine whether a formula ϕ is satisfiable for the
class MCM, it is sufficient to verify whether ϕ is satisfied in one of these MCMs.
This verification takes a polynomial time in the size of ϕ since it is a repeated
model checking and model checking in the product modal logic S52 is polynomial.

⊓⊔

We know that when moving from the finite-variable to the infinite-variable case
complexity of satisfiability checking is in NEXPTIME.

Theorem 7. Let Atm0 be infinite. Then, checking satisfiability of L-formulas
relative to the class MCM is in NEXPTIME.

Proof. We know that satisfiability checking for the product modal logic S52 with
two S5 modalities �1 and �2 is NEXPTIME-complete [7]. We have a polynomial
reduction of satisfiability checking for L-formulas relative to the class MCM to
the latter problem. In particular, given a formula ϕ ∈ L, we can translate it
into a formula tr(ϕ) of S52 where the translation tr is defined as follows: (i)
tr(q) = q for q ∈ Atm, (ii) tr(¬ϕ) = ¬tr(ϕ), (iii) tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2),
(iv) tr(�Iϕ) = �1tr(ϕ), (v) tr(�Fϕ) = �2tr(ϕ). We have that ϕ is satisfiable for
the class MCM if and only

∧

χ∈∆ �1�2χ ∧ tr(ϕ) is a satisfiable formula of the

product modal logic S52, where ∆ is the following finite theory corresponding to
the Axioms Indep�F,p, Indep�F,¬p, AtMostt(x) and AtLeastt(x) of the logic
WPLC:

∆ ={
∨

x∈Val

t(x)} ∪ {t(x) → ¬t(y) : x 6= y} ∪ {p→ �Fp : p ∈ Atm0(ϕ)}∪

{¬p→ �F¬p : p ∈ Atm0(ϕ)},

and Atm0(ϕ) is the set of atoms in Atm0(ϕ) which occur in ϕ. ⊓⊔

In [4] (see also [5]) it is proved that all proper normal extensions of the product
modal logic S52 are in NP. In future work, we plan to verify whether these
results are applicable to our setting in order to improve our complexity upper
bound. The problem is that Axioms Indep�F,p, Indep�F,¬p, AtMostt(x) and
AtLeastt(x) are not axiom schemata in the proper sense.
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4 Application

As mentioned, the �F operator is interpreted as partial knowledge about the
classifier properties.4 In this section, we are going to exemplify how to use it for
representing abductive explanations of a black box classifier.

4.1 An Example of Classification Task

Consider a selection function which specifies whether a paper submitted to a
conference is acceptable for presentation (1) or not (0) depending on its feature
profile composed of four input features: significance (si), originality (or), clarity
of the presentation (cl) and fulfillment of the anonymity requirement (an). For
the sake of simplicity, we assume each feature in a paper profile is binary: si
means the paper is significant while ¬si means the paper is not significant, or
means the paper is original while ¬or means the paper is not original, and so
on. We say that a first paper profile dominates a second paper profile, if all
conditions satisfied by the second profile are satisfied by the first profile, and
there exists a condition satisfied by the first profile which is not satisfied by the
second profile. For example if the first profile is si∧¬or∧ cl∧ an and the second
profile is si ∧ ¬or ∧ ¬cl ∧ an, then the first dominates the second.

The selection function is implemented in a classifier system that has to au-
tomatically split papers into two sets, the set of acceptable papers and the set
of non-acceptable ones. We assume a certain agent (e.g., the author of a paper
submitted to the conference) has only partial knowledge of the classifier system.
In particular, she only knows that the classifier complies with the following three
constraints: (1) submissions that satisfy the four conditions should be automat-
ically accepted, (2) if a first paper profile dominates a second paper profile and
the second paper profile is acceptable, then the first paper profile should also be
acceptable, and (3) submissions that violate the anonymity requirement should
be automatically rejected. In this case, the classifier is a black box for the agent.

Example 1. The multi-classifier model (MCM) representing the previous situa-
tion is the tuple Γ =(S, Φ) such that S = 2{si,or,cl,an} and

∀f ∈ FS , f ∈ Φ iff (i) ∀s ∈ S, if {si, or, cl, an} ⊆ s then f(s) = 1,

(ii) ∀s, s′ ∈ S, if s ⊂ s′ and f(s) = 1 then f(s′) = 1.

(iii) ∀s ∈ S, if an 6∈ s then f(s) = 0.

The agent does not know which function in Φ corresponds to the actual classifier,
i.e., they are epistemically indistinguishable for her.

4 In the real world, partial knowledge may come from the data set as well as from
the training process. For example, through learning, we may acquire knowledge that
certain input features behave monotonically [?].
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4.2 Explanations

Given space constraints, we exemplify explanations for white and black box clas-
sifiers by showing the dichotomy global vs. local explanation and the notion of
abductive explanation based on prime implicant. Some notations and abbrevi-
ations are needed to formally represent them. Let λ denote a conjunction of
literals, where a literal is an atom p or its negation ¬p. We write λ ⊆ λ′, call λ
a part (subset) of λ′, if all literals in λ also occur in λ′; and λ ⊂ λ′ if λ ⊆ λ′

but not λ′ ⊆ λ. In the glossary of Boolean classifiers, s is called an instance, λ
is called a term or property (of the instance). The set of terms is noted Term .
Moreover, let Atm(ϕ) denote the atoms occurring in ϕ. Finally, notice that the
abbreviations [X ]ϕ and 〈X〉ϕ introduced in Section 2 will be used.

Let us start with prime implicant, a key concept in the theory of Boolean
functions since [19]. It can be presented in the language L(Atm) as follows:

PImp(λ, x) =def�I

(

λ→
(

t(x) ∧
∧

p∈Atm(λ)

〈Atm(λ) \ {p}〉¬t(x)
)

)

.

The abbreviation PImp(λ, x) has to be read “λ is a prime implicant for the clas-
sification x”. Roughly speaking, the latter means that (i) λ necessarily leads to
the classification x (why λ is an implicant), and (ii) for any of its proper subsets
λ′, possibly there is a state where λ′ holds but the classification is different from
x (why λ is prime).

Prime implicant counts as a “global” explanation, in the sense that it is
a property of the classifier and holds at all its input instances. Partially, as
a response to the local approach in model-agnostic methods, researchers from
logic-based approaches in XAI focus on the “localized” prime implicant namely
abductive explanation (AXp).5 An abductive explanation is not only a prime
implicant, but also a property of the actual instance. The notion of abductive
explanation is expressed in L as follows:

AXp(λ, x) =def λ ∧ PImp(λ, x).

AXp(λ, x) just means that λ is an abductive explanation of the actual classifica-
tion x. Let us instantiate the notions of prime implicant and abductive explana-
tion in the paper example we introduced in Section 4.1.

Example 2. Take the MCM Γ =(S, Φ) in Example 1, and let s1 = {si, or, an} ∈
S. Consider the function f1 s.t. ∀s ∈ S : f1(s) = 1 iff an ∈ s and {or, cl}∩ s 6= ∅.
The function f1 is syntactically expressed by the formula �I

(

t(1) ↔ ((or∧an)∨

(cl ∧ an))
)

. Clearly f1 ∈ Φ for it satisfies the three constraints. Hence, we have:

(Γ, s1, f1) |=AXp(or ∧ an, 1) ∧ PImp(or ∧ an, 1) ∧ PImp(cl ∧ an, 1).

Meanwhile (Γ, s1, f1) 6|= AXp(cl∧an, 1), because (Γ, s1, f1) 6|= cl∧an. But consider
s2 = {si, cl, an} ∈ S. We have (Γ, s2, f1) |= AXp(cl ∧ an, 1).

5 It has many names in literature: PI explanation [22], sufficient reason [6]. We adopt
the one from [12] for its nice correspondence to contrastive explanation in [11].
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Now we investigate what happens when facing a black box model Γ =(S, Φ).
The agent has uncertainty about the actual classifier’s properties. Therefore, it
is interesting to draw the distinction between objective and subjective (or epis-
temic) explanation. Objective explanation coincides with the notion of explana-
tion in the context of white box classifiers defined above. Subjective explanation
refers to the agent’s interpretation of the classifier and her explanation of the
classifier’s decision in the light of her partial knowledge.

We say the term λ is a subjective prime implicant for x, noted SubPImp(λ, x),
if the agent knows that λ is a prime implicant for x, that is:

SubPImp(λ, x) =def �FPImp(λ, x).

Similarly, we say λ is a subjective abductive explanation of the actual classifica-
tion x, noted SubAXp(λ, x), if the agent knows that λ is an abductive explanation
of the actual classification x, that is:

SubAXp(λ, x) =def �FAXp(λ, x).

It is worth noting that in the case of a white box classifier, if the set of input
instances S is finite, we can always find an abductive explanation of the actual
classification. That is, for every Γ =(S, Φ) ∈ MCM, s ∈ S and f ∈ Φ:

if S is finite then ∃λ ∈ Term such that (Γ, s, f) |= AXp
(

λ, f(s)
)

.

Nonetheless, this result cannot be generalized to the black box case. Indeed, as
the following example shows, there is no guarantee for the existence of a subjec-
tive explanation of the actual classification. The problem is that the minimality
condition can collapse when moving from objective to subjective explanation,
since the agent can have more than one classifier in her epistemic state.

Example 3. Let Γ =(S, Φ), f1 and s1 be the same as in Example 2. There is
no λ such that (Γ, s1, f1) |= �FAXp(λ, 1). To see this, consider f2 s.t. ∀s ∈ S :
f2(s) = 1 iff {si, an} ⊆ s. The function f2 is syntactically expressed by the
formula �I(t(1) ↔ (si∧an)). Clearly f2 ∈ Φ for it satisfies the three constraints.
We have (Γ, s1, f2) |= AXp(si ∧ an, 1). But there is no term which minimally
explains both f1(s1) and f2(s1). Indeed, or ∧ an is not enough for explaining
f2(s1), si ∧ an is not enough for explaining f1(s1), and si ∧ or ∧ an fails the
minimality condition for both. Therefore, we have

(Γ, s1, f1) |=AXp(or ∧ an, 1) ∧
∧

λ∈Term({si,or,cl,an})

¬SubAXp(λ, 1).

However, this does not mean that the agent knows nothing about the classifier.
For instance, she knows that violating the anonymity requirement is a prime
implicant for rejection, that is, (Γ, s1, f1) |= SubAXp(¬an, 0).

To sum up, the four notions of explanation we introduced can be organized
in Table 2 along the two dimensions objective vs subjective and local vs global.
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Local Global

Objective AXp(λ, x) PImp(λ, x)

Subjective SubAXp(λ, x) SubPImp(λ, x)
Table 2. Notions of prime implicant and abductive explanation

5 Dynamic Extension

Before concluding, we are going to present a simple dynamic extension of the
language L by operators of the form [ϕ]. They describe the consequences of
removing from the actual model all classifiers that do not globally satisfy the
constraint ϕ. More generally, they allow us to model the process of gaining new
knowledge about the classifier’s properties. The extended modal language Ldyn

is defined by the following grammar:

ϕ ::= p | t(x) | ¬ϕ | ϕ1 ∧ ϕ2 | �Iϕ | �Fϕ | [ϕ]ψ,

where p ranges over Atm0 and x ranges over Val .

The new formula [ϕ]ψ has to be read “ψ holds after having discarded all
classifiers that do not globally satisfy the property ϕ”. Notice the similar but
different notations [X ] and [ϕ]. For example, [{p}], [{p, q}] are abbreviations
with ceteris paribus meaning, while [p], [p ∧ ¬q] are dynamic operators.

The interpretation of the operators [ϕ] relative to a pointed MCM (Γ, s, f)
with Γ =(S, Φ), s ∈ S and f ∈ Φ goes as follows:

(Γ, s, f) |= [ϕ]ψ ⇐⇒ if (Γ, s, f) |= �Iϕ then (Γϕ, s, f) |= ψ,

where Γϕ = (Sϕ, Φϕ) is the MCM such that:

Sϕ = S,

Φϕ = {f ′ ∈ Φ : ∀s′ ∈ S, (Γ, s′, f ′) |= ϕ}.

The previous update semantics for the operator [ϕ] is reminiscent of the seman-
tics of public announcement logic (PAL) [18,23]. However, there is an important
difference. While PAL has a one-dimensional state elimination semantics, our
update semantics operates on a single dimension of the product in an MCM. In
particular, it only removes classifiers that do not globally satisfy the constraint
ϕ, without modifying the set S of input instances.

The logics D-PLC and D-WPLC (Dynamic PLC and D-WPLC) extend the
logic PLC and WPLC by the dynamic operators [ϕ]. They are defined as follows.

Definition 8 (Logics D-PLC and D-WPLC). We define D-PLC (resp. D-WPLC)
to be the extension of PLC (resp. WPLC) of Definition 5 (resp. Definition 6) gen-



A Logic of “Black Box” Classifier Systems 15

erated by the following reduction axioms for the dynamic operators [ϕ]:

[ϕ]p ↔(�Iϕ→ p)

[ϕ]t(x) ↔
(

�Iϕ→ t(x)
)

[ϕ]¬ψ ↔(�Iϕ→ ¬[ϕ]ψ)

[ϕ](ψ1 ∧ ψ2) ↔
(

[ϕ]ψ1 ∧ [ϕ]ψ2

)

[ϕ]�Iψ ↔(�Iϕ→ �I[ϕ]ψ)

[ϕ]�Fψ ↔(�Iϕ→ �F[ϕ]ψ)

and the following rule of inference:

ϕ1 ↔ ϕ2

ψ ↔ ψ[ϕ1/ϕ2]
(RE)

It is a routine exercise to verify that the equivalences in Definition 8 are
valid for the class MCM and that the rule of replacement of equivalents (RE)
preserves validity. We show the validity of the sixth equivalence as an example:

(Γ, s, f) |= [ϕ]�Fψ ⇐⇒ if (Γ, s, f) |= �Iϕ then(Γϕ, s, f) |= �Fψ;

⇐⇒ if (Γ, s, f) |= �Iϕ then∀f ′ ∈ Φϕ, (Γϕ, s, f ′) |= ψ;

⇐⇒ if (Γ, s, f) |= �Iϕ then ∀f ′ ∈ Φ,
(

if ∀s′ ∈ S, (Γ, s′, f ′) |= ψ then (Γϕ, s, f ′) |= ψ
)

;

⇐⇒ if (Γ, s, f) |= �Iϕ then ∀f ′ ∈ Φ,
(

if (Γ, s, f ′) |= �Iψ then (Γϕ, s, f ′) |= ψ
)

;

⇐⇒ if (Γ, s, f) |= �Iϕ then ∀f ′ ∈ Φ, (Γ, s, f ′) |= [ϕ]ψ;

⇐⇒(Γ, s, f) |= �Iϕ→ �F[ϕ]ψ.

The completeness of D-PLC and D-WPLC for this class of models follows
from Theorem 2 and Corollary 1, in view of the fact that the reduction axioms
and the rule of replacement of proved equivalents can be used to find, for any
Ldyn -formula, a provably equivalent L-formula.

Theorem 8. Let Atm0 be finite. Then, the logic D-PLC is sound and complete
relative to the class MCM.

Theorem 9. Let Atm0 be infinite. Then, the logic D-WPLC is sound and com-
plete relative to the class MCM.

The following decidability result is a consequence of Theorem 7 and the
fact that via the reduction axioms in Definition 8 we can find a reduction of
satisfiability checking of Ldyn -formulas to satisfiability checking of L-formulas.

Theorem 10. Checking satisfiability of Ldyn -formulas relative to MCM is de-
cidable.

Let us end up with the paper example to illustrate to expressive power of
our dynamic extension.
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Example 4. Let Γ =(S, Φ), f1 and s1 be the same as in Example 2. We have

(Γ, s1, f1) |= [(or ∧ an) → t(1)]�F

∨

λ⊆(or∧an)

AXp(λ, 1).

This means that after having discarded all classifiers which do not take (or∧an)
as an implicant for acceptance of a paper, the agent knows that there must be
a part of or ∧ an that abductively explains the acceptance of the paper s1.

6 Conclusion

We have presented a product modal logic which supports reasoning about (i)
partial knowledge and uncertainty of a classifier’s properties and, (ii) objective
and subjective explanations of a classifier’s decision. Moreover, we have studied
a dynamic extension of the logic which allows us to represent the event of gaining
new knowledge about the classifier’s properties.

Our logic is intrinsically single-agent: it models the uncertainty of one agent
about the actual classifier’s properties. In future work, we plan to generalize our
framework to the multi-agent setting. The extension would result in a multi-
relational product semantics in which every agent has her own epistemic indis-
tinguishability relation which commutes with the input instance dimension (the
equivalence relation ∼�I

in Definition 3 of MDM). We also plan to enrich this
semantics with a knowledge update mechanism in the spirit of Section 5. This
would allow us to represent exchange of information between agents with an
explanatory purpose, which is named dialogical explanation by philosophers [24]
and interactive explanation by researchers in the XAI domain [1,16].

Acknowledgments

Support from the ANR-3IA Artificial and Natural Intelligence Toulouse Institute
(ANITI) is gratefully acknowledged.

References

1. S. Amershi, M. Cakmak, W.B. Knox, and T. Kulesza. Power to the people: The
role of humans in interactive machine learning. AI Magazine, 35(4):105–120, 2014.

2. Gilles Audemard, Steve Bellart, Louenas Bounia, Frederic Koriche, Jean-Marie
Lagniez, and Pierre Marquis. On the computational intelligibility of boolean clas-
sifiers. In Proceedings of the International Conference on Principles of Knowledge
Representation and Reasoning, volume 18, pages 74–86, 2021.

3. A. Baltag and J. van Benthem. A simple logic of functional dependence. Journal
of Philosophical Logic, 50(5):939–1005, 2021.

4. N. Bezhanishvili and I. M. Hodkinson. All normal extensions of s5-squared are
finitely axiomatizable. Studia Logica, 78(3):443–457, 2004.

5. N. Bezhanishvili and M. Marx. All proper normal extensions of S5-square have
the polynomial size model property. Studia Logica, 73(3):367–382, 2003.



A Logic of “Black Box” Classifier Systems 17

6. Adnan Darwiche and Auguste Hirth. On the reasons behind decisions. In ECAI
2020 - 24th European Conference on Artificial Intelligence, volume 325 of Frontiers
in Artificial Intelligence and Applications, pages 712–720. IOS Press, 2020.

7. D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional
modal logics: theory and applications. Elsevier, 2003.

8. Davide Grossi, Emiliano Lorini, and François Schwarzentruber. The ceteris paribus
structure of logics of game forms. Journal of Artificial Intelligence Research, 53:91–
126, 2015.

9. J. Y. Halpern. The effect of bounding the number of primitive propositions and
the depth of nesting on the complexity of modal logic. Artificial Intelligence,
75(2):361–372, 1995.

10. Carl G. Hempel and Paul Oppenheim. Studies in the logic of explanation. Philos-
ophy of science, 15(2):135–175, 1948.

11. Alexey Ignatiev, Nina Narodytska, Nicholas Asher, and Joao Marques-Silva. From
contrastive to abductive explanations and back again. In International Conference
of the Italian Association for Artificial Intelligence, pages 335–355. Springer, 2020.

12. Alexey Ignatiev, Nina Narodytska, and Joao Marques-Silva. Abduction-based ex-
planations for machine learning models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 1511–1519, 2019.

13. Boris Kment. Counterfactuals and explanation. Mind, 115(458):261–310, 2006.
14. Xinghan Liu and Emiliano Lorini. A logic for binary classifiers and their explana-

tion. In Proceedings of the 4th International Conference on Logic and Argumenta-
tion (CLAR 2021), volume 13040 of LNCS, pages 302–321. Springer, 2021.

15. Scott Lundberg and Su-In Lee. A unified approach to interpreting model predic-
tions. arXiv preprint arXiv:1705.07874, 2017.

16. T. Miller. Explanation in artificial intelligence: insights from the social sciences.
Artificial Intelligence, 267:1–38, 2019.

17. Christoph Molnar. Interpretable machine learning. Lulu. com, 2020.
18. J. Plaza. Logics of public communications. Synthese, 158(2):165–179, 2007.
19. Willard V. Quine. A way to simplify truth functions. The American mathematical

monthly, 62(9):627–631, 1955.
20. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should i trust

you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pages
1135–1144, 2016.

21. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision
model-agnostic explanations. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence (AAAI-18), volume 32, 2018.

22. Andy Shih, Arthur Choi, and Adnan Darwiche. Formal verification of bayesian
network classifiers. In International Conference on Probabilistic Graphical Models,
pages 427–438. PMLR, 2018.

23. Hans van Ditmarsch, Wiebe van Der Hoek, and Barteld Kooi. Dynamic Epistemic
Logic, volume 337 of Synthese Library. Springer, 2007.

24. D. Walton. A new dialectical theory of explanation. Philosophical Explorations,
7(1):71–89, 2004.

25. F. Yang and J. Väänänen. Propositional logics of dependence. Annals of Pure and
Applied Logic, 167(7):557–589, 2016.


	A Logic of ``Black Box'' Classifier Systems 

