Skip to main content

Expressing Power of Elementary Quantum Recursion Schemes for Quantum Logarithmic-Time Computability

  • Conference paper
  • First Online:
  • 412 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13468))

Abstract

Quantum computing has been studied over the past four decades based on two computational models of quantum circuits and quantum Turing machines. To capture quantum polynomial-time computability, a new recursion-theoretic approach was taken lately by Yamakami [J. Symb. Logic 80, pp. 1546–1587, 2020] by way of schematic definitions, which constitute a few initial quantum functions and a few construction schemes, including composition, branching, and multi-qubit quantum recursion. By taking a similar step, we look into quantum logarithmic-time computability and further explore the expressing power of elementary schemes designed for such quantum computation. In particular, we introduce an elementary form of the quantum recursion, called the fast quantum recursion, which helps us capture quantum logarithmic-time computability.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This notion should be distinguished from the same terminology used in [15].

  2. 2.

    We remark that Branch[gh] can be expressed as an appropriate unitary matrix and thus it is a legitimate quantum operation to consider.

References

  1. Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC\(^1\). J. Comput. System Sci. 41, 274–306 (1990)

    Article  Google Scholar 

  2. Barenco, A., et al.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457–3467 (1995)

    Article  Google Scholar 

  3. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48, 778–797 (2001)

    Article  Google Scholar 

  4. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers represented by Turing machines. J. Statist. Phys. 22, 563–591 (1980)

    Article  Google Scholar 

  5. Deutsch, D.: Quantum theory, the Church-Turing principle, and the universal quantum computer. Proc. R. Soc. London Ser. A 400, 97–117 (1985)

    Article  Google Scholar 

  6. Deutsch, D.: Quantum computational networks. Proc. R. Soc. London Ser. A 425, 73–90 (1989)

    Article  Google Scholar 

  7. Kleene, S.C.: General recursive functions of natural numbers. Math. Ann. 112, 727–742 (1936)

    Article  Google Scholar 

  8. Kleene, S.C.: Recursive predicates and quantifiers. Trans. AMS 53, 41–73 (1943)

    Article  Google Scholar 

  9. Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantumn Computation (Graduate Studies in Mathematics). Americal Mathematical Society (2002)

    Google Scholar 

  10. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10th edn. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  11. Soare, R.I.: Computability and recursion. Bull. Symb. Log. 2(3), 284–321 (1996)

    Article  Google Scholar 

  12. Tadaki, K., Yamakami, T., Lin, J.C.H.: Theory of one-tape linear-time Turing machines. Theor. Comput. Sci. 411, 22–43 (2010)

    Article  Google Scholar 

  13. Yamakami, T.: A foundation of programming a multi-tape quantum Turing machine. In: Kutyłowski, M., Pacholski, L., Wierzbicki, T. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 430–441. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48340-3_39

    Chapter  Google Scholar 

  14. Yamakami, T.: Quantum NP and a quantum hierarchy. In: IFIP TCS 2002 (Under the Title of Foundations of Information Technology in the Era of Network and Mobile Computing), The International Federation for Information Processing, vol. 96 (Track 1), pp. 323–336. Kluwer Academic Press (2002)

    Google Scholar 

  15. Yamakami, T.: Analysis of quantum functions. Int. J. Fund. Comput. Sci. 14, 815–852 (2003)

    Article  Google Scholar 

  16. Yamakami, T.: A schematic definition of quantum polynomial time computability. J. Symb. Log. 85, 1546–1587 (2020)

    Article  Google Scholar 

  17. Yao, A.C.: Quantum circuit complexity. In: FOCS 1993, pp. 80–91 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoyuki Yamakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamakami, T. (2022). Expressing Power of Elementary Quantum Recursion Schemes for Quantum Logarithmic-Time Computability. In: Ciabattoni, A., Pimentel, E., de Queiroz, R.J.G.B. (eds) Logic, Language, Information, and Computation. WoLLIC 2022. Lecture Notes in Computer Science, vol 13468. Springer, Cham. https://doi.org/10.1007/978-3-031-15298-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15298-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15297-9

  • Online ISBN: 978-3-031-15298-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics