
 Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

17th International Conference on Hybrid Artificial Intelligence
Systems. Salamanca, Spain, September 5-7, 2022. Lecture Notes
in Computer Science, Volume 13469. Springer, 2022. 223-235

DOI: https://doi.org/10.1007/978-3-031-15471-3_20

Copyright: © 2022 Springer

 El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/

Convex Multi-Task Learning with Neural
Networks ⋆

Carlos Ruiz1, Carlos M. Aláız1, and José R. Dorronsoro1,2

1 Dept. Computer Engineering, Universidad Autónoma de Madrid
2 Inst. Ing. Conocimiento, Universidad Autónoma de Madrid

Abstract. Multi-Task Learning aims at improving the learning process
by solving different tasks simultaneously. The approaches to Multi-Task
Learning can be categorized in feature-based, parameter-based and joint-
learning strategies. Feature-based approximations are more natural for
deep models while parameter-based ones are usually designed for shallow
ones, but we can see examples of both for shallow and deep models.
However, the joint-learning approach has been tested on shallow models
exclusively. Here we propose a joint-learning approach for Multi-Task
Neural Networks, we describe the training procedure and we test it in
four different multi-task image datasets to show the improvement in the
performance over other strategies.

1 Introduction

In the Machine Learning (ML) field it is often assumed that the data is indepen-
dently identically distributed, and the empirical risk minimization principle [20],
typically used in supervised learning, bases its generalization abilities in this
claim. However, we often find problems that are similar but where this assump-
tion might be too strong. Multi-Task Learning (MTL) [3] solves jointly similar
problems, each one considered a task, with data sampled from possibly different
distributions. An MTL empirical risk is minimized with the goal of improving
the learning process.

Extending the taxonomy of [25], the MTL approaches can be divided in three
main blocks: feature-learning, regularization-based and combination approaches.
The feature-learning approach tries to learn a space of features useful for all
tasks at the same time. The regularization-based approaches impose some soft
constraints on the task-models so that there exist a connection across them.
Finally, the combination approach combines task-specific models with a common
one shared for all tasks. Recently a convex formulation was proposed in [17].

⋆ The authors acknowledge financial support from the European Regional Develop-
ment Fund and the Spanish State Research Agency of the Ministry of Economy,
Industry, and Competitiveness under the projects TIN2016-76406-P (AEI/FEDER,
UE) and PID2019-106827GB-I00. They also thank the UAM–ADIC Chair for Data
Science and Machine Learning and gratefully acknowledge the use of the facilities of
Centro de Computación Cient́ıfica (CCC) at UAM.

2 C. Ruiz et al.

In ML we call Deep Models those where there exists a feature learning pro-
cess that construct new features, not just a selection of the original ones. The
Shallow Models, in contrast, use directly the original features or a fixed, non-
learnable transformation of them. In MTL we can find examples of both Deep
and Shallow Models either in feature-learning [7,14,16,2,13] and regularization-
based approaches [1,8,9,18,24]. However, the combination-based approach has
only been applied to Shallow Models [10,23,19].

In this work we propose a convex formulation for a combination-based MTL
approach based on Deep Models. To the best of our knowledge this is the first
combination-based approach using Deep Models. The convex formulation used
enables an interpretable parametrization. More precisely, our main contributions
are:

– Revise a taxonomy for MTL: we include a third category, the combination-
based approaches, different from the original feature-learning and regularization-
based approaches.

– Show a general formulation for combination-based MTL.
– Propose a combination-based MTL with Deep Models and use a convex

formulation for better interpretability.
– Implement this approach and test it with four image datasets.

This rest of the paper is organized as follows. In Section 2 we revise the
Multi-Task Learning paradigm revising different views and propose a taxonomy.
In Section 3 we show the general formulation for convex combination-based
approaches and propose the application of this approach with Neural Networks.
In 4 we show the experiments carried out to test our proposal and analyze the
results. Finally, the paper ends with some conclusions and pointers to further
work in Section 5.

2 Multi-Task Learning Approaches

Multi-Task Learning (MTL) tries to learn multiple tasks simultaneously with
the goal of improving the learning process in each task. Given T tasks, with m
examples each, a Multi-Task (MT) sample is z = {(xr

i , y
r
i); i = 1, . . . ,m; r =

1, . . . , T}, where r indicates the task. The pair (xr
i , y

r
i) can be also expressed as

the triplet (xi, yi, ri). The MT regularized risk for hypothesis hr, that will be
minimized, is defined as:

T∑
r=1

m∑
i=1

ℓ(hr(x
r
i), y

r
i) +R(h1, . . . , hT),

where ℓ is some loss function and R some regularizer. One strategy to minimize
this risk, denoted Common Task Learning (CTL), consists in using a common
model for all the tasks, h1, . . . , hT = h. On the other side, minimizing the risk
independently for each task, without any transfer of information between them,
is the Independent Task Learning (ITL) approach. Between these two trivial

Convex Multi-Task Learning with Neural Networks 3

h1(x)

h2(x)

Fig. 1: Hard Sharing Neural Network for two tasks. Assuming a sample belonging
to task 1 is used, the updated shared weights are represented in red, and in blue
the updated specific weights. The input neurons are shown in yellow, the hidden
ones in cyan and the output ones in magenta.

approaches lies the MTL. The coupling between tasks can be enforced using
different strategies. The choice of the strategy is influenced by the properties
of the underlying models performing the learning process. In this paper we will
focus on deep models, but for completeness in this section we will also discuss
details about shallow models.

2.1 Multi-Task Learning with a Feature-Learning Approach

The feature-based approaches implement the transfer learning by sharing a rep-
resentation among tasks, that is hr(x) = gr(f(x)) where f is some feature
transformation that can be learned. The first approach, Hard Sharing, is intro-
duced in [7], where a Neural Network with shared layers and multiple outputs is
used. The hidden layers are common to all tasks and, using the representation
from the last hidden layer, a linear model is learned for each task; see Figure 1
for an example. The corresponding regularized risk can be expressed as

T∑
r=1

m∑
i=1

ℓ(gr(f(x
r
i)), y

r
i) + µ1

T∑
r=1

Ωr(gr) + µ2Ω(f), (1)

where Ωr and Ω are regularizers to penalize the complexity of the functions
gr and the function f , respectively; and µ1 and µ2 are hyperparameters. The
regularization over the predictive functions gr can be done independently because
the coupling is enforced by sharing the feature-learning function f .

A relaxation of the Hard Sharing approach consists in using the hypothesis
hr(x) = gr(fr(x)) where a coupling is enforced between the feature functions
fr. This is known as Soft Sharing approaches, where specific networks are used
for each task and some feature sharing mechanism is implemented at each level
of the networks, e.g. cross-stich networks [14] or sluice networks [16]. In deep
models, where a good representation is learned in the training process, Feature-
Learning MTL is the most natural approach, however some Feature-Learning
MTL approaches for shallow models can be found [2,13]

4 C. Ruiz et al.

2.2 Multi-Task Learning with a Regularization-Based Approach

The regularization-based approaches are used when the hypothesis for each task
can be expressed as hr(x) = w⊺

rϕ(x), where ϕ(x) is a non-learnable transforma-
tion and wr are the parameters of interest to establish a relation between tasks.
The transformation ϕ(x) can be either the original features x in linear models
or some non-linear transformation of x, explicit in deep models and implicit in
kernel models. Here, the coupling is enforced by imposing some penalty over the
matrix W whose columns are the vectors wr. The Multi-Task regularized risk is

T∑
r=1

m∑
i=1

ℓ(w⊺
rϕ(x

r
i), y

r
i) + µΩ(W), (2)

where ϕ is a non-learnable transformation that is common to all the tasks, Ω(W)
is some regularizer of W to enforce a coupling between the columns and µ is a
hyperparameter. For example, in [1,8] a low-rank constraint is imposed over W ,
i.e. Ω(W) = rankW ; while in [9,18] a graph connecting the tasks is defined and
a Laplacian regularization is used to penalize the distances between parameters,
that is Ω(W) =

∑T
r,s=1 Ars ∥wr − ws∥2, where A is the adjacency matrix that

encodes the pairwise task relations.
These strategies can be more suitable for MTL with shallow models, but they

are also applicable for deep ones [24].

2.3 Multi-Task Learning with a Combination Approach

Another strategy, different to both feature-learning and regularization-based ap-
proaches, is a combination of a shared common model and task-specific ones:
hr(x) = g(x) + gr(x). This approach was introduced in [10] where a combina-
tion of models is defined, i.e. hr(x) = (w+vr)

⊺ϕ(x)+b+br, wherew andwr are
the weights, and b and br the biases (common and task-specific, respectively).
The corresponding regularized risk is

T∑
r=1

m∑
i=1

ℓ((w + vr)
⊺ϕ(xr

i) + b+ br, y
r
i) + µ1 ∥w∥2 + µ2

T∑
r=1

∥vr∥2 .

It can be shown that this regularized risk is equivalent to (2) with the regularizer

Ω(W) = ρ1

T∑
r=1

∥∥∥∥∥wr −

(
T∑

r=1

wr

)∥∥∥∥∥
2

+ ρ2

T∑
r=1

∥wr∥2

for some values ρ1(µ1, µ2) and ρ2(µ1, µ2), that is, it imposes a regularization
that penalizes the complexity of parameters wr and the variance between these
parameters. Observe that both the common and specific parts belong to the
same RKHS defined by the implicit transformation ϕ.

An extension shown in [5,6] uses hr(x) = w⊺ϕ(x) + v⊺
rϕr(x) + b + br,

where different transformations are used: ϕ for the common and ϕr for each

Convex Multi-Task Learning with Neural Networks 5

of the specific parts. That is, the common part and each of the specific parts
can belong to different spaces, and hence capture distinct properties of the data.
In [5] it is also outlined the connection of this MT approach with the Learning
Under Privileged Information paradigm [21].

A convex formulation for this approach is presented in [17], namely Con-
vexMTL, where

hr(x) = λ{w⊺ϕ(x)+ b}+ (1− λ){v⊺
rϕr(x)+ br}

and λ is a hyperparameter in the [0, 1] interval. The parameter λ controls how
much to share among the tasks. When λ = 1, the model is equivalent to the
CTL approach, whereas λ = 0 represents the ITL approach. The regularized
risk corresponding to this convex formulation is

T∑
r=1

m∑
i=1

ℓ(λ{w⊺ϕ(x)+ b}+(1−λ){v⊺
rϕr(x)+ br}, yri)+µ

(
∥w∥2 +

T∑
r=1

∥vr∥2
)
,

(3)
where µ1 and µ2 have been changed for λ and µ for a better interpretability. We
can find the combination approach in the context of shallow models, e.g. [23,19].

3 Convex MTL Neural Networks

3.1 Definition

The ConvexMTL formulation described above, in terms of linear models in some
RKHS, can be generalized as the problem of minimizing the regularized risk

T∑
r=1

m∑
i=1

ℓ(λg(xr
i) + (1− λ)gr(x

r
i), y

r
i) + µ

(
Ω(g) +

T∑
r=1

Ωr(gr)

)
, (4)

where Ω and Ωr are regularizers and g and gr are hypothesis. Observe that (4) is
not an a posteriori combination of common and specific models, but the objective
function is minimized jointly on g and the specific models g1, . . . , gT . In (3) each
model is defined in a different space given by the implicit transformations ϕ and
ϕr, that is

g(xr
i ;w) = w⊺ϕ(xr

i)+ b, gr(x
r
i ;wr) = w⊺

rϕr(x
r
i)+ br.

This permits a great flexibility but also imposes the challenge of finding the
optimal kernel width that implicitly defines the space for each model.

The ConvexMTL NN can be defined using a convex combination of a common
model and task-specific models. The output of the model can be expressed as

hr(x
r
i) = λ{w⊺f(xr

i ;Θ) + b}+ (1− λ){w⊺
rfr(x

r
i ;Θr) + br}. (5)

That is, we use Neural Networks as the models:

g(xr
i ;w, Θ) = w⊺f(xr

i ;Θ) + b, gr(x
r
i ;wr, Θr) = w⊺

rfr(x
r
i ;Θr) + br,

6 C. Ruiz et al.

where Θ and Θr are the sets of hidden parameters, and w, wr, b and br are the
weights and biases of the output layer (of the common and specific networks,
respectively). In this formulation, the common and specific feature transforma-
tions f(xr

i ;Θ) and fr(x
r
i ;Θr), that represent the feature-building functions of

the hidden layers, are automatically learned from data in the training process.
This formulation offers multiple combinations since we can model each com-

mon or independent function using different architectures. For example, we can
use a larger network for the common part, since it will be fed with more data,
and simpler networks for the specific parts. Even different types of Neural Net-
works, such as fully connected and convolutional, can be combined depending
on the characteristics of each task. This combination of Neural Networks can
also be interpreted as an implementation of the LUPI paradigm [21], e.g. the
common network can represent the privileged information for each of the tasks,
since it can learn from more sources. To the best of our knowledge, MTL has
been implemented in Neural Networks either with a feature-based or parameter-
based approaches, so this is the first MTL with a joint-learning approach for
deep models.

3.2 Training Procedure

The goal of the ConvexMTL NN is minimizing the regularized risk

T∑
r=1

m∑
i=1

ℓ(hr(x
r
i), y

r
i) + µ

(
∥w∥2 +

T∑
r=1

∥wr∥2 +Ω(Θ) +Ω(Θr)

)
. (6)

Here, hr is defined as in equation (5), and Ω(Θ) and Ω(Θr) represents the L2

regularization of the set of hidden weights of the common and specific networks,
respectively. Given a loss ℓ(ŷ, y), the gradient for any set of parameters P is

∇Pℓ(h(x
t
i), y) =

∂

∂ŷ
ℓ(ŷ, y)|ŷ=h(xt

i)
∇Ph(x

t
i).

Our set of parameters P is partitioned in the set of parameters of each network,
so P = ({w} ∪Θ) ∪

⋃T
r=1 ({wr} ∪Θr), and the gradients are

∇wht(x
t
i) = λ{f(xt

i, Θ)};
∇Θht(x

t
i) = λ{w⊺∇Θf(x

t
i, Θ)} :

∇wtht(x
t
i) = (1− λ){ft(xt

i, Θ)};
∇Θt

ht(x
t
i) = (1− λ){w⊺∇Θt

ft(x
t
i, Θt)};

∇wr
ht(x

t
i) = 0, for r ̸= t;

∇Θrht(x
t
i) = 0, for r ̸= t.

(7)

The gradient of the loss function is scaled with λ in the common network and
with 1 − λ in the t-th specific network, while the rest of the task-specialized
networks are not updated. The regularization is independent in each network,

Convex Multi-Task Learning with Neural Networks 7

h1(x)

h2(x)

g1(x)

1− λ

g(x)

λ

λ

g2(x)

1− λ

Fig. 2: ConvexMTL Neural Network for two tasks. Assuming a sample belonging
to task 1 is used, the updated shared weights are represented in red, and in
blue the updated specific weights. Specific networks are framed in black boxes
and the common one in a blue box. The input neurons are shown in yellow, the
hidden ones in cyan (except those in grey), and the output ones in magenta. We
use the grey color for hidden neurons containing the intermediate functions that
will be combined for the final output: g1(x), g2(x) and g(x). The thick lines are
the hyperparameters λ and 1− λ of the convex combination.

so the gradients of the regularizers are also computed independently. That is,
no specific training algorithm has to be developed for the ConvexMTL NN,
so (6) can be minimized with any stochastic gradient descent strategy using back
propagation. In Figure 2, a ConvexMTL NN is shown in the gradient update step.

3.3 Implementation

Our implementation of the ConvexMTLNeural Network is based on PyTorch [15].
Although we include the gradients expressions in equation (7), the PyTorch pack-
age implements automatic differentiation, so no explicit gradient formulation is
necessary. The ConvexMTL is implemented using (possibly different) PyTorch

modules for the common model and each of the specific modules. In the forward
pass of the network, the output for an example x from task r is computed using
a forward pass of the common module and the specific module corresponding
to task r, and the final output is simply the convex combination of both out-
puts. In the training phase, in which minibatches are used, the full minibatch
is passed through the common model, but the minibatch is partitioned using
only the corresponding examples for each task-specific modules. As mentioned
above, with the adequate forward pass the PyTorch package automatically com-
putes the scaled gradients in the training phase. In Algorithm 1 we show the
pseudo-code of this ConvexMTL forward pass.

8 C. Ruiz et al.

Algorithm 1: Forward pass for ConvexMTL Neural Network.

Input: Xmb, tmb // Minibatch data and task labels

Output: f // Forward pass for the minibatch

Data: λ // Parameter of convex combination

for xi, ti ∈ (Xmb, tmb) do
fi ← λg(xi) + (1− λ)gti(xi) // Convex combination

end

4 Experimental Results

4.1 Problems Description

To test the performance of the ConvexMTL DeepNN approach we use four dif-
ferent image datasets: var-MNIST, rot-MNIST, var-FMNIST and rot-FMNIST.
These datasets are generated using different transformations of other datasets:
the first two using the MNIST dataset [12] as base, and the last two using the
fashion-MNIST dataset [22].

Both MNIST and fashion-MNIST datasets are composed by 28 × 28 grey-
scale images, each belonging to one of 10 balanced classes, also both have 70 k
examples. We define our datasets shuffling the original data and dividing it
among the tasks considered, so each task has the same number of examples;
then we apply the corresponding transformation to the images of each task.

The datasets var-MNIST and var-FMNIST are the result of applying two trans-
formations described for the MNIST Variations datasets [4]. We consider only
the transformations background random, adding random noise with the original
image; and background image, adding with a random patch of a natural im-
age. Using these transformations we define three tasks: standard, random and
image, where no transformation, the background random and the background
image transformations applied, respectively, to define each task. That is, two
tasks have 23 333 examples each, and there are 23 334 in the remaining one.

The datasets var-MNIST and var-FMNIST are generated using the procedure
defined in [11]. We define six different tasks, each corresponding to a rotation of 0,
15, 30, 45, 60 and 75 degrees; therefore, there are four tasks with 11 667 examples
and two with 11 666. In Figure 3, examples of each of the four considered datasets
are shown.

4.2 Experimental Procedure

We compare four different models, all based on Deep Neural Networks:

– A Common-Task Learning approach ctlNN.
– An Independent-Task Learning approach itlNN.
– A Convex Multi-Task Learning approach cvxmtlNN.
– A hard sharing Multi-Task Learning approach hsNN.

Convex Multi-Task Learning with Neural Networks 9

Task: standard Task: standard Task: images Task: random Task: standard Task: random

Task: 75 Task: 30 Task: 30 Task: 45 Task: 15 Task: 45

Task: standard Task: random Task: images Task: random Task: standard Task: random

Task: 45 Task: 15 Task: 15 Task: 45 Task: 0 Task: 75

Fig. 3: Images of the four classification problems used. Each image has a title in-
dicating the corresponding task. The rows correspond to var-MNIST, rot-MNIST,
var-FMNIST and rot-FMNIST (from top to bottom).

The base architecture of every model is a convolutional NN that we will name
convNet. This convNet has 2 convolutional layers of kernel size 5, the first one
with 10 output channels and the second one with 20; then a dropout layer, a
max pooling layer and two hidden linear layers with 320 and 50 neurons each.

In the ctlNN approach, a single convNet with 10 output neurons, one for
each class, is used. For the itlNN approach, an independent convNet with 10
output neurons is used for each task. In the cvxmtlNN, both the common and
task-specific networks are modelled using a convNet with 10 output neurons.
The hsNN uses a convNet and a group of 10 outputs for each task.

All the models considered are trained using the AdamW algorithm and the
optimal weight decay parameter µ is selected using a cross-validation grid search
over the values

{
10−4, 10−3, 10−2, 10−1, 100

}
. The rest of the parameters corre-

sponding to the algorithm are set to the default values: the dropout rate is 0.5
and a padding of 0 for the max pooling layer. Additionally, in the cvxmtlNN
model the parameter λ is also included in the grid search using the values
{0, 0.2, 0.4, 0.6, 0.8, 1}. The training and test sets are generated using a task-
stratified 70% and 30% of the complete datasets. The cross-validation used in
the grid-search is defined using 5 task-stratified folds.

10 C. Ruiz et al.

Table 1: Test Accuracy with Majority Voting.
var-MNIST rot-MNIST var-FMNIST rot-FMNIST

ctlNN 0.964 0.973 0.784 0.834
itlNN 0.968 0.981 0.795 0.873
cvxmtlNN 0.974 0.984 0.812 0.880
hsNN 0.971 0.980 0.770 0.852

Table 2: Test Mean Categorical Cross Entropy.
var-MNIST rot-MNIST var-FMNIST rot-FMNIST

ctlNN 1.274 ± 0.143 1.145 ± 0.039 2.369 ± 0.183 1.757 ± 0.075
itlNN 1.072 ± 0.029 0.873 ± 0.058 2.356 ± 0.130 1.598 ± 0.042
cvxmtlNN 0.924 ± 0.024 0.831 ± 0.029 2.147 ± 0.090 1.482 ± 0.063
hsNN 1.087 ± 0.253 0.898 ± 0.073 3.067 ± 0.888 1.888 ± 0.075

4.3 Results Analysis

To show results less sensitive to randomness, the best models, with the optimal
parameters selected in the cross-validation, are refitted using the whole training
set and 5 different predictions are made. In classification problems, the final
goal is typically the accuracy score, however it is not a differentiable loss, so the
categorical cross entropy is used instead as the loss function to minimize. In this
results we show both losses: accuracy and categorical cross entropy.

In Table 1 we compute a single accuracy score for each model using the ma-
jority voting prediction of the 5 refitted models. In Table 2 we show the average
cross entropy loss of the 5 different models. In all tables, the cvxmtlNN obtains
the best results in all four problems and the itlNN comes second except for the
var-MNIST problem using majority voting. That is, training a specific model for
each task obtains better results than the more rigid ctlNN or hsNN models. Also,
although the ctlNN model obtains the worst results, the difference is not that
large, so it induces the thought that the tasks are not very different, or that
there exists information shared across tasks. The hsNN consistently outperforms
the naive ctlNN model and it seems to capture some shared information, how-
ever this hard sharing approach seems too rigid to fully exploit this common
knowledge. Our proposal, the cvxmtlNN model has flexibility because it trains
specific modules for each task, but it also captures the shared information in the
common model. Moreover, we remark that in ConvexMTL the training of the
common and specific models is made jointly, and since this results into a better
model, we can conclude that the information learned in the common and specific
parts is not totally overlapping, but they complement each other instead.

5 Discussion and Conclusions

In this paper we have proposed a combination-based MTL approach using deep
models that combines a common and task-specific models using a convex formu-

Convex Multi-Task Learning with Neural Networks 11

lation. We have revised the taxonomy of MTL to include a distinct category for
the combination-based models, and our proposal is, to the best of our knowledge
, the first of this category based on Neural Networks.

The most popular approach to MTL with NN’s has been hard sharing, which
shares the hidden parameters and use a different output layer for each task. In
our experiments we have observed that our model outperforms the hard sharing
approach in four image problems. Moreover, our proposal also obtains better
results than the baseline models based on common-task or independent-task
learning. From this fact, we can infer that in our MTL approach the information
learned by the common and task-specific parts is somehow complementary. The
convex combination MTL approach can also be applied to shallow models, such
as SVM’s. However, due to their computational cost, we have not been able to
apply these to our image classification problems.

As lines of further work, there are some interesting ideas to explore. In first
place, our λ hyperparameter, that we currently select using CV, can be incorpo-
rated as another parameter of the networks to be learned using gradient descent.
Also, it is interesting to fully exploit the flexibility of our approach by using dif-
ferent architectures for each module, common and task-specific ones.

References

1. Ando, R.K., Zhang, T.: A framework for learning predictive structures from mul-
tiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005)

2. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach.
Learn. 73(3), 243–272 (2008)

3. Baxter, J.: A model of inductive bias learning. Journal of artificial intelligence
research 12, 149–198 (2000)

4. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

5. Cai, F., Cherkassky, V.: SVM+ regression and multi-task learning. In: International
Joint Conference on Neural Networks, IJCNN 2009, Atlanta, Georgia, USA, 14-19
June 2009. pp. 418–424. IEEE Computer Society (2009)

6. Cai, F., Cherkassky, V.: Generalized SMO algorithm for svm-based multitask learn-
ing. IEEE Trans. Neural Networks Learn. Syst. 23(6), 997–1003 (2012)

7. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

8. Chen, J., Tang, L., Liu, J., Ye, J.: A convex formulation for learning shared struc-
tures from multiple tasks. In: Danyluk, A.P., Bottou, L., Littman, M.L. (eds.)
Proceedings of the 26th Annual International Conference on Machine Learning,
ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009. ACM International
Conference Proceeding Series, vol. 382, pp. 137–144. ACM (2009)

9. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel meth-
ods. J. Mach. Learn. Res. 6, 615–637 (2005)

10. Evgeniou, T., Pontil, M.: Regularized multi–task learning. In: Kim, W., Kohavi,
R., Gehrke, J., DuMouchel, W. (eds.) Proceedings of the Tenth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, Seattle, Wash-
ington, USA, August 22-25, 2004. pp. 109–117. ACM (2004)

12 C. Ruiz et al.

11. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for ob-
ject recognition with multi-task autoencoders. In: 2015 IEEE International Con-
ference on Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015.
pp. 2551–2559. IEEE Computer Society (2015)

12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

13. Maurer, A., Pontil, M., Romera-Paredes, B.: Sparse coding for multitask and trans-
fer learning. In: Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013. JMLR Workshop and
Conference Proceedings, vol. 28, pp. 343–351. JMLR.org (2013)

14. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-
task learning. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016. pp. 3994–4003. IEEE
Computer Society (2016)

15. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L.,
Bai, J., Chintala, S.: Pytorch: An imperative style, high-performance deep
learning library. In: Advances in Neural Information Processing Systems 32,
pp. 8024–8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

16. Ruder, S.: An overview of multi-task learning in deep neural networks. CoRR
abs/1706.05098 (2017)

17. Ruiz, C., Aláız, C.M., Dorronsoro, J.R.: A convex formulation of svm-based multi-
task learning. vol. 11734, pp. 404–415. Springer (2019)

18. Ruiz, C., Aláız, C.M., Dorronsoro, J.R.: Convex graph laplacian multi-task learning
SVM. In: Farkas, I., Masulli, P., Wermter, S. (eds.) Artificial Neural Networks and
Machine Learning - ICANN 2020 - 29th International Conference on Artificial
Neural Networks, Bratislava, Slovakia, September 15-18, 2020, Proceedings, Part
II. Lecture Notes in Computer Science, vol. 12397, pp. 142–154. Springer (2020)

19. Ruiz, C., Aláız, C.M., Dorronsoro, J.R.: Convex formulation for multi-task l1-, l2-,
and ls-svms. Neurocomputing 456, 599–608 (2021)

20. Vapnik, V.: Estimation of dependences based on empirical data. Springer Science
& Business Media (1982)

21. Vapnik, V., Izmailov, R.: Learning using privileged information: similarity control
and knowledge transfer. J. Mach. Learn. Res. 16, 2023–2049 (2015)

22. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms (2017)

23. Xu, S., An, X., Qiao, X., Zhu, L.: Multi-task least-squares support vector machines.
Multim. Tools Appl. 71(2), 699–715 (2014)

24. Yang, Y., Hospedales, T.M.: Trace norm regularised deep multi-task learning. In:
5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Workshop Track Proceedings. OpenReview.net (2017)

25. Zhang, Y., Yang, Q.: An overview of multi-task learning. National Science Review
5(1), 30–43 (2017)

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	plantilla_actualizada_ps_CONGRESO1.pdf
	convex_ruiz_HAIS_2022.pdf
	Convex Multi-Task Learning with Neural Networks

