Skip to main content

Can AI Replace Conventional Markerless Tracking? A Comparative Performance Study for Mobile Augmented Reality Based on Artificial Intelligence

  • Conference paper
  • First Online:
Book cover Extended Reality (XR Salento 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13446))

Included in the following conference series:

  • 1202 Accesses

Abstract

AR is struggling to achieve its maturity for the mass market. Indeed, there are still many challenging issues that are waiting to be discovered and improved in AR related fields. Artificial Intelligence seems the more promising solution to overcome these limitations; indeed, they can be combined to obtain unique and immersive experiences. Thus, in this work, we focus on integrating DL models into the pipeline of AR development. This paper describes an experiment performed as comparative study, to evaluate if classification and/or object detection can be used an alternative way to track objects in AR. In other words, we implemented a mobile application that is capable of exploiting AI based model for classification and object detection and, at the same time, project the results in AR environment. Several off-the-shelf devices have been used, in order to make the comparison consistent, and to provide the community with useful insights over the opportunity to integrate AI models in AR environment and to what extent this can be convenient or not. Performance tests have been made in terms of both memory consumption and processing time, as well as for Android and iOS based applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bekele, M.K., Pierdicca, R., Frontoni, E., Malinverni, E.S., Gain, J.: A survey of augmented, virtual, and mixed reality for cultural heritage. J. Comput. Cul. Herit. (JOCCH) 11(2), 1–36 (2018)

    Article  Google Scholar 

  2. Cantillo, D., Cervantes, B., Cardona, J.: HealthCam: machine learning models on mobile devices for unhealthy packaged food detection and classification. In: 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM), pp. 1–6. IEEE (2021)

    Google Scholar 

  3. Chen, J.W., Lin, W.J., Cheng, H.J., Hung, C.L., Lin, C.Y., Chen, S.P.: A smartphone-based application for scale pest detection using multiple-object detection methods. Electronics 10(4), 372 (2021)

    Article  Google Scholar 

  4. Clini, P., Frontoni, E., Quattrini, R., Pierdicca, R.: Augmented reality experience: from high-resolution acquisition to real time augmented contents. Adv. Multimedia 2014, 1–9 (2014)

    Article  Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Elhassouny, A., Smarandache, F.: Smart mobile application to recognize tomato leaf diseases using convolutional neural networks. In: 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), pp. 1–4. IEEE (2019)

    Google Scholar 

  7. Gammeter, S., Gassmann, A., Bossard, L., Quack, T., Van Gool, L.: Server-side object recognition and client-side object tracking for mobile augmented reality. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 1–8. IEEE (2010)

    Google Scholar 

  8. Han, J., Zhang, D., Cheng, G., Liu, N., Xu, D.: Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Sig. Process. Mag. 35(1), 84–100 (2018)

    Article  Google Scholar 

  9. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  10. Khan, M.A., Israr, S., Almogren, A.S., Din, I.U., Almogren, A., Rodrigues, J.J.: Using augmented reality and deep learning to enhance Taxila Museum experience. J. Real-Time Image Proc. 18(2), 321–332 (2021). https://doi.org/10.1007/s11554-020-01038-y

    Article  Google Scholar 

  11. Lalonde, J.F.: Deep learning for augmented reality. In: 2018 17th Workshop on Information Optics (WIO), pp. 1–3. IEEE (2018)

    Google Scholar 

  12. Lampropoulos, G., Keramopoulos, E., Diamantaras, K.: Enhancing the functionality of augmented reality using deep learning, semantic web and knowledge graphs: a review. Vis. Inf. 4(1), 32–42 (2020)

    Google Scholar 

  13. Lin, P.H., Chen, S.Y.: Design and evaluation of a deep learning recommendation based augmented reality system for teaching programming and computational thinking. IEEE Access 8, 45689–45699 (2020)

    Article  Google Scholar 

  14. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Liu, L., et al.: Deep learning for generic object detection: a survey. Int. J. Comput. Vis. 128(2), 261–318 (2020)

    Article  Google Scholar 

  16. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  17. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157. IEEE (1999)

    Google Scholar 

  18. Matsuda, Y., Hoashi, H., Yanai, K.: Recognition of multiple-food images by detecting candidate regions. In: 2012 IEEE International Conference on Multimedia and Expo, pp. 25–30. IEEE (2012)

    Google Scholar 

  19. Monteiro, P., Gonçalves, G., Coelho, H., Melo, M., Bessa, M.: Hands-free interaction in immersive virtual reality: a systematic review. IEEE Trans. Vis. Comput. Graph. 27(5), 2702–2713 (2021)

    Article  Google Scholar 

  20. Muñoz Bocanegra, R., et al.: Aprendizaje profundo en dispositivo portable para el reconocimiento de frutas y verduras (2019)

    Google Scholar 

  21. Nasreen, J., Arif, W., Shaikh, A.A., Muhammad, Y., Abdullah, M.: Object detection and narrator for visually impaired people. In: 2019 IEEE 6th International Conference on Engineering Technologies and Applied Sciences (ICETAS), pp. 1–4. IEEE (2019)

    Google Scholar 

  22. Ngugi, L.C., Abdelwahab, M., Abo-Zahhad, M.: Tomato leaf segmentation algorithms for mobile phone applications using deep learning. Comput. Electron. Agric. 178, 105788 (2020)

    Article  Google Scholar 

  23. Nguyen, M., Tran, H., Le, H., Yan, W.Q.: A tile based colour picture with hidden QR code for augmented reality and beyond. In: Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, pp. 1–4 (2017)

    Google Scholar 

  24. Park, K.B., Kim, M., Choi, S.H., Lee, J.Y.: Deep learning-based smart task assistance in wearable augmented reality. Robot. Comput. Integr. Manuf. 63, 101887 (2020)

    Article  Google Scholar 

  25. Park, Y.J., Ro, H., Lee, N.K., Han, T.D.: Deep-care: projection-based home care augmented reality system with deep learning for elderly. Appl. Sci. 9(18), 3897 (2019)

    Article  Google Scholar 

  26. Pescarin, S.: Digital heritage into practice. SCIRES-IT Sci. Res. Inf. Technol. 6(1), 1–4 (2016)

    Google Scholar 

  27. Pierdicca, R., Frontoni, E., Pollini, R., Trani, M., Verdini, L.: The use of augmented reality glasses for the application in industry 4.0. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10324, pp. 389–401. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_30

    Chapter  Google Scholar 

  28. Puggioni, M., Frontoni, E., Paolanti, M., Pierdicca, R.: ScooIAR: an educational platform to improve students’ learning through virtual reality. IEEE Access 9, 21059–21070 (2021)

    Article  Google Scholar 

  29. Rao, J., Qiao, Y., Ren, F., Wang, J., Du, Q.: A mobile outdoor augmented reality method combining deep learning object detection and spatial relationships for geovisualization. Sensors 17(9), 1951 (2017)

    Article  Google Scholar 

  30. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  31. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  32. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  33. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2016)

    Article  Google Scholar 

  34. Salunkhe, A., Raut, M., Santra, S., Bhagwat, S.: Android-based object recognition application for visually impaired. In: ITM Web of Conferences, vol. 40, p. 03001. EDP Sciences (2021)

    Google Scholar 

  35. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  36. Sanga, S., Mero, V., Machuve, D., Mwanganda, D.: Mobile-based deep learning models for banana diseases detection. arXiv preprint arXiv:2004.03718 (2020)

  37. Sereno, M., Wang, X., Besançon, L., McGuffin, M.J., Isenberg, T.: Collaborative work in augmented reality: a survey. IEEE Trans. Vis. Comput. Graph. 28, 2530–2549 (2020)

    Google Scholar 

  38. Svensson, J., Atles, J.: Object detection in augmented reality. Master’s Theses in Mathematical Sciences (2018)

    Google Scholar 

  39. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  40. Tanzi, L., Piazzolla, P., Porpiglia, F., Vezzetti, E.: Real-time deep learning semantic segmentation during intra-operative surgery for 3d augmented reality assistance. Int. J. Comput. Assist. Radiol. Surg. 16(9), 1435–1445 (2021)

    Article  Google Scholar 

  41. Zhao, Z.Q., Zheng, P., Xu, S., Wu, X.: Object detection with deep learning a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This project has received funding from the European Union’s Horizon 2020 research and innovation programme through the XR4ALL project with grant agreement No 825545.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pierdicca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pierdicca, R., Tonetto, F., Mameli, M., Rosati, R., Zingaretti, P. (2022). Can AI Replace Conventional Markerless Tracking? A Comparative Performance Study for Mobile Augmented Reality Based on Artificial Intelligence. In: De Paolis, L.T., Arpaia, P., Sacco, M. (eds) Extended Reality. XR Salento 2022. Lecture Notes in Computer Science, vol 13446. Springer, Cham. https://doi.org/10.1007/978-3-031-15553-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15553-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15552-9

  • Online ISBN: 978-3-031-15553-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics