Skip to main content

Characterization of the State of Health of Electronic Devices for Fostering Safety and Circular Economy

  • Conference paper
  • First Online:
Systems, Software and Services Process Improvement (EuroSPI 2022)

Abstract

Inspired by the concept of the health of the human body, the state of health (SoH) determination of products has been gaining importance for preventive maintenance and product lifetime extension. In electronics, Remaining Useful Life (RUL) estimates often focus on temperature as the key ageing parameter. They neglect other influential factors such as humidity and vibration. This article proposes a method for determining product SoH which combines the analysis methods FMMEA and Fault Tree Analysis (FTA) for a more relevant identification of the causes and reasons of failures. The proposed method allows the estimation of SoH based on several health indicators and hence takes into consideration several factors of product degradation. The product’s SoH is obtained by aggregating the SoH derived from each single ageing factor through the use of multi-criteria techniques, such as Analytic Hierarchy Process (AHP) and weighted sum methods. The article discusses this method’s potential and limitations based on insights gained from its initial application to a consumer product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forti, V., Baldé, C.P., Kuehr, R., Bel, G.: The Global E-waste Monitor 2020: Quantities, flows and the circular economy potential, United Nations University (UNU)/United Nations Institute for Training and Research (UNITAR) – co-hosted SCYCLE Programme, International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Rotterdam (2020)

    Google Scholar 

  2. International Electrotechnical Commission (IEC): IEC 61508, Functional safety of electrical/electronic/programmable electronic safety-related systems – parts 1–7 (2010)

    Google Scholar 

  3. International Organization for Standardization (ISO): ISO 26262 (all parts), Road vehicles – Functional safety (2018). https://viewerbdc.afnor.org/pdf/viewer/v1-jBrYh6Uw1. Accessed 15 June 2022

  4. Messnarz, R., et al.: Implementing functional safety standards – experiences from the trials about required knowledge and competencies (SafEUr). In: McCaffery, F., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2013. Communications in Computer and Information Science, vol. 364, pp. 323–332 . Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39179-8_29

  5. Monchy, F.: Maintenance: méthodes et organisations pour une meilleure productivité, 3e édition (2012). https://unr-ra-scholarvox-com.sid2nomade-1.grenet.fr/book/88809322. Accessed 23 Mar 2021

  6. Zwingelstein, G.: La maintenance prédictive intelligente pour l’industrie 4.0, Ref: TIP095WEB - “Maintenance” (2019). https://www-techniques-ingenieur-fr.sid2nomade-1.grenet.fr/base-documentaire/genie-industriel-th6/mise-en-uvre-de-la-maintenance-42136210/la-maintenance-predictive-intelligente-pour-l-industrie-4-0-mt9572/. Accessed 28 Apr 2021

  7. Mathew, S., Pecht, M.: Prognostics of Systems: Approaches and Applications. https://www.prognostics.umd.edu/calcepapers/COMADEM2011.pdf. Accessed 19 June 2021

  8. Si, X.S., Wang, W., Hu, C.H., Zhou, D.H.: Remaining useful life estimation - a review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011). https://doi.org/10.1016/j.ejor.2010.11.018.

  9. Bhargava, C., et al.: Review of Health Prognostics and Condition Monitoring of Electronic Components (2020). https://doi.org/10.1109/ACCESS.2020.2989410

  10. Rafiee, J., Arvani, F., Harifi, A., Sadeghi, M.H.: Intelligent condition monitoring of a gearbox using artificial neural network. Mech. Syst. Signal Process. 21(4), 1746–1754 (2007). https://doi.org/10.1016/J.YMSSP.2006.08.005

    Article  Google Scholar 

  11. Gebraeel, N.Z., Lawley, M.A.: A neural network degradation model for computing and updating residual life distributions. IEEE Trans. Autom. Sci. Eng. 5(1), 154–163 (2008). https://doi.org/10.1109/TASE.2007.910302

    Article  Google Scholar 

  12. Ahmad, W., Khan, S.A., Islam, M.M.M., Kim, J.M.: A reliable technique for remaining useful life estimation of rolling element bearings using dynamic regression models. Reliab. Eng. Syst. Saf. 184, 67–76 (2019). https://doi.org/10.1016/j.ress.2018.02.003

    Article  Google Scholar 

  13. Khelif, R., Chebel-Morello, B., Malinowski, S., Laajili, E., Fnaiech, F., Zerhouni, N.: Direct remaining useful life estimation based on support vector regression. IEEE Trans. Ind. Electron. 64(3), 2276–2285 (2017). https://doi.org/10.1109/TIE.2016.2623260

    Article  Google Scholar 

  14. Zhang, J., Hu, C., Si, X., Zhou, Z., Du, D.: Remaining useful life estimation for systems with time-varying mean and variance of degradation processes. Qual. Reliab. Eng. Int. 30(6), 829–841 (2014). https://doi.org/10.1002/qre.1705

    Article  Google Scholar 

  15. Elattar, H.M., Elminir, H.K., Riad, A.M.: Prognostics: a literature review. Complex Intell. Syst. 2(2), 125–154 (2016). https://doi.org/10.1007/s40747-016-0019-3

    Article  Google Scholar 

  16. Pecht, M., Dasgupta, A.: Physics-of-failure: an approach to reliable product development. In: IEEE 1995 International Integrated Reliability Workshop. Final Report, pp. 1–4 (1995). https://doi.org/10.1109/IRWS.1995.493566.

  17. Kulkarni, C., Biswas, G., Koutsoukos, X., Goebel, K., Celaya+, J.: Physics of failure models for capacitor degradation in DC-DC converters. In: The Maintenance and Reliability Conference in Knoxville, TN, USA (2010)

    Google Scholar 

  18. Yin, C.Y., Lu, H., Musallam, M., Bailey, C., Johnson, C.M.: A physics-of-failure based prognostic method for power modules, pp. 1190–1195 (2009). https://doi.org/10.1109/EPTC.2008.4763591.

  19. Lan, J.S., Wu, M.L.: Physics of failure based simulation and experimental testing of quad flat no-lead package. In: Proceedings - Electronic Components and Technology Conference, pp. 2144–2149 (2019). https://doi.org/10.1109/ECTC.2019.00-26

  20. McLeish, J.: Physics of failure based simulated aided/guided accelerated life testing. In: Proceedings - Annual Reliability and Maintainability Symposium (2018). https://doi.org/10.1109/RAM.2018.8462987

  21. Zhu, S.P., Huang, H.Z., Peng, W., Wang, H.K., Mahadevan, S.: Probabilistic physics of failure-based framework for fatigue life prediction of aircraft gas turbine discs under uncertainty. Reliab. Eng. Syst. Saf. 146, 1–12 (2016). https://doi.org/10.1016/J.RESS.2015.10.002

    Article  Google Scholar 

  22. Li, H., Huang, H.Z., Li, Y.F., Zhou, J., Mi, J.: Physics of failure-based reliability prediction of turbine blades using multi-source information fusion. Appl. Soft Comput. 72, 624–635 (2018). https://doi.org/10.1016/J.ASOC.2018.05.015

    Article  Google Scholar 

  23. Shao, Y., Kang, R.: A life prediction method for O-ring static seal structure based on physics of failure. In: Proceedings of 2014 Prognostics and System Health Management Conference, PHM 2014, pp. 16–21 (2014). https://doi.org/10.1109/PHM.2014.6988124

  24. Gu, J., Pecht, M.: Prognostics and health management using physics-of-failure. In: Proceedings - Annual Reliability and Maintainability Symposium, pp. 481–487 (2008). https://doi.org/10.1109/RAMS.2008.4925843

  25. Pecht, M., Gu, J.: Physics-of-failure-based prognostics for electronic products 31(3–4), 309–322 (2009). https://doi.org/10.1177/0142331208092031

  26. Fan, J., Yung, K.C., Pecht, M.: Physics-of-failure-based prognostics and health management for high-power white light-emitting diode lighting. IEEE Trans. Device Mater. Reliab. 11(3), 407–416 (2011). https://doi.org/10.1109/TDMR.2011.2157695

    Article  Google Scholar 

  27. Khan, M.A., Kerkhoff, H.G.: An indirect technique for estimating reliability of analog and mixed-signal systems during operational life. In: Proceedings of the 2013 IEEE 16th International Symposium on Design and Diagnostics of Electronic Circuits and Systems, DDECS 2013, pp. 159–164 (2013). https://doi.org/10.1109/DDECS.2013.6549809

  28. Vazquez, J.C., et al.: Built-in aging monitoring for safety-critical applications. In: 2009 15th IEEE International On-Line Testing Symposium, IOLTS 2009, pp. 9–14 (2009). https://doi.org/10.1109/IOLTS.2009.5195976

  29. Civilini, M.: Reliability and field aging time using temperature sensors. In: Proceedings - 4th International Conference on Sensor Technologies and Applications, SENSORCOMM 2010, pp. 210–213 (2010). https://doi.org/10.1109/SENSORCOMM.2010.39

  30. Takeuchi, K., Shimada, M., Okagaki, T., Shibutani, K., Nii, K., Tsuchiya, F.: Wear-out stress monitor utilising temperature and voltage sensitive ring oscillators. IET Circuits Devices Syst. 12(2), 182–188 (2018). https://doi.org/10.1049/IET-CDS.2017.0153

    Article  Google Scholar 

  31. Beckler, M., Blanton, R.D.: On-chip diagnosis for early-life and wear-out failures. In: Proceedings - International Test Conference (2012). https://doi.org/10.1109/TEST.2012.6401580

  32. Chauhan, P., Osterman, M., Pecht, M., Yu, Q.: Use of temperature as a health monitoring tool for solder interconnect degradation in electronics. In: Proceedings of IEEE 2012 Prognostics and System Health Management Conference, PHM-2012 (2012). https://doi.org/10.1109/PHM.2012.6228874

  33. Wandji, C., ben Rejeb, H., Zwolinski, P.: Characterization of the state of health of a complex system at the end of use. Procedia CIRP 105, 49–54 (2022). https://doi.org/10.1016/J.PROCIR.2022.02.009

  34. Liu, J., Liu, Y., Jiang, P., Feng, F.: FMMEA automation based on function flow modeling. In: Proceedings of 2014 Prognostics and System Health Management Conference, PHM 2014, pp. 482–487 (2014). https://doi.org/10.1109/PHM.2014.6988220

  35. Messnarz, R., Sporer, H.: Functional safety case with FTA and FMEDA consistency approach. In: Larrucea, X., Santamaria, I., O’Connor, R., Messnarz, R. (eds.) Systems, Software and Services Process Improvement, EuroSPI 2018. Communications in Computer and Information Science, vol. 896, pp. 387–397 (2018). Springer, Cham. https://doi.org/10.1007/978-3-319-97925-0_32

  36. Pecht, M.: Prognostics and health management of electronics. Encycl. Struct. Health Monit. (2008). https://doi.org/10.1002/9780470061626.shm118

  37. Saaty, T.L.: The Analytical Hierarchy Process, Planning, Priority. McGraw-Hill International Book Co., New York/London (1980)

    Google Scholar 

  38. Li, X.J., Bin, G.F., Dhillon, B.S.: Model to evaluate the state of mechanical equipment based on health value. Mech. Mach. Theory 46(3), 305–311 (2011). https://doi.org/10.1016/j.mechmachtheory.2010.11.008

    Article  MATH  Google Scholar 

  39. Pries-Heje, J., Johansen, J., Messnarz, R.: SPI MANIFESTO, Software Process Improvement eurospi.net (2010). https://conference.eurospi.net/images/eurospi/spi_manifesto.pdf. Accessed 15 June 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Riel .

Editor information

Editors and Affiliations

Glossary

AHP

Analytic Hierarchy Process

CBM

Condition-Based Maintenance

ETA

Event Tree Analysis

FIT

Failure-in-Time

FMEA

Failure Mode and Effect Analysis

FMMEA

Failure Mode, Mechanism and Effect Analysis

FTA

Fault Tree Analysis

IoT

Internet of Things

PHM

Prognostic and Health Management

PoF

Physic of Failures

RFID

Radio Frequency Identification

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wandji, C., Riel, A., Rejeb, H.B., Zwolinski, P. (2022). Characterization of the State of Health of Electronic Devices for Fostering Safety and Circular Economy. In: Yilmaz, M., Clarke, P., Messnarz, R., Wöran, B. (eds) Systems, Software and Services Process Improvement. EuroSPI 2022. Communications in Computer and Information Science, vol 1646. Springer, Cham. https://doi.org/10.1007/978-3-031-15559-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15559-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15558-1

  • Online ISBN: 978-3-031-15559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics