

This is a self-archived – parallel published version of this article in the

publication archive of the University of Vaasa. It might differ from the original.

Requirements Volatility in Multicultural Situational

Contexts

Author(s): Siakas, Errikos; Rahanu, Harjinder; Georgiadou, Elli; Siakas, Kerstin

Title: Requirements Volatility in Multicultural Situational Contexts

Year: 2022

Version: Accepted manuscript

Copyright © 2022 Springer Nature Switzerland AG.

Please cite the original version:

 Siakas, E., Rahanu, H., Georgiadou, E. & Siakas, K. (2022).

Requirements Volatility in Multicultural Situational Contexts. In:

Yilmaz, M., Clarke, P., Messnarz, R. & Wöran, B. (eds.) 29th European

Systems, Software and Services Process Improvement, EuroSPI 2022,

633-655. Communications in computer and information science,

1646. Cham: Springer. https://doi.org/10.1007/978-3-031-15559-8_45

Requirements Volatility in Multicultural Situational Contexts

Errikos Siakas1, Harjinder Rahanu2, Elli Georgiadou2, Kerstin Siakas3,4
1National Archaeological Museum, Athens, Greece, esiakas@culture.gr

2Middlesex University London, London, UK, h.rahanu@mdx.ac.uk, elli.georgiadou@mdx.ac.uk
3 International Hellenic University, Thessaloniki, Greece, siaka@the.ihu.gr

4University of Vaasa, Finland, ext-ksia@uwasa.fi
Abstract
Requirements’ volatility refers to additions, deletions, and modifications of requirements during the system
development life cycle. Different approaches in software development, including Agile and DevOps, have
addressed requirements volatility by increased user participation throughout the whole development process.
In this paper we analyse requirements volatility from a situational context angle with the aim to increase
understanding of the role of culture and cultural diversity in a multicultural requirements elicitation
process. Research on situational context in Requirements Engineering (RE) is rather limited, despite the
recognized importance of RE and requirements elicitation for improving the quality of the final system and
software product.
This paper builds on an extensive literature review demonstrating the importance of raising awareness and
understanding of the role of culture and cultural diversity for requirements volatility, as one of the most significant
situational factors in the requirements elicitation process, with the aim to improve the whole systems development
process as well as the resulting products and services.

The paper concludes with the presentation of the Requirements Cultural Volatility Framework which aims to
reveal potential conflicts that may occur in requirements elicitation on a multiplicity of cultural dimensions, The
framework proposes actions to be taken in order to address the conflicts and point out expected benefits on each
dimension.
Keywords: Requirements Engineering, Requirements Management, Requirements Development, Requirements Elicitation,
 Requirements Volatility, Situational Context

1 Introduction

1.1 Global Software Development

In Global Software Development (GSD), also called Distributed Software Development, software development
teams and stakeholders with an interest in the product or service under development are located in different parts
of the world. GSD increasingly takes place mainly because organisations seek cost-effective alternatives outside
the boundaries of countries or access to an international talent pool [53]. These decisions are motivated by various
reasons with different benefits, such as potential costs reduction, access to certain professional skills, increased
competitiveness, flexibility of hiring practices, risk mitigation related to labour and taxes, and possibility of
expansion into new markets [9, 39]. GSD takes place between a mother organisation and its subsidiaries, partners
in outsourcing arrangements and joint ventures (e.g., research and innovation projects) with partners from
different countries and often from different organisations.

Despite many advantages, GSD has resulted in challenges for stakeholders which are not collocated projects,
placed together in software development projects developed in the same location [19]. The characteristics
exhibited by GSD show significant differences from traditional or collocated software development. Due to
system development with team members and stakeholders being in different geographical locations, there are
differences in cultures and time zones [25, 48] which impact communication and coordination processes (2, 35,
49). As a result, the frequency and quality of communication between system engineers within the development
team diminishes and between members of the development teams and stakeholders, coordination becomes
difficult, and trust declines [20, 49]. Additional challenges of GSD include [3]:

i. distinctive approaches to systems development;
ii. different processes to follow;
iii. disparate ways of doing things in diverse organisations;
iv. different technical capabilities of remotely distributed team members;
v. reduced visibility of the development work carried out at disparate sites.

1.2 Requirements Engineering

Requirements Engineering is widely studied in the field of system and software development to denote the
systematic handling of requirements.

RE is an organized way to understand the system domain and context, to accurately capture, analyse, model, verify
and validate the requirements/needs of the stakeholders [3]. After requirements definition the requirements are
conveyed to the development team who aim to develop a product or service as described and modelled by the
requirements engineers (49). The management and follow-up of changes/ enhancements in system and software
requirements are also parts of RE.

1.3 Requirements Elicitation

Requirements elicitation is the first step, a multifaceted and iterative activity, in the RE process, and it is dedicated
to uncovering, extracting, and surfacing the needs, requirements, expectations and preferences of users/customers,
including their tacit knowledge [49]. The requirements elicitation phase aims to collect information and
viewpoints regarding application domain, business requirements, user/customer requirements, constraints,
security requirements, information requirements, standards, etc. [43]. It is fundamentally a concerted human
activity regarding requirements determination with intensive and extensive communication between the
requirements engineers and the various stakeholders, such as customers, end-users, domain experts, project
owners, etc. [49]. Effective communication, collaboration, and negotiation with all relevant stakeholders, often
having diverse knowledge domains is needed. This can be achieved through authentic commitment of all involved
parties for accomplishing requirements development and prioritization.

The fundamental activities in requirements elicitation start with the identification of potential stakeholders and
their needs, requirements and wishes. Stakeholders are also those who in the end will accept (or not) the system
and judge its quality. Stakeholders, such as end-users and people affected by the system may be numerous,
unknown or cannot be easily identified for participating in requirements elicitation activities. Current approaches
try to deal with stakeholders outside organisational reach by online polls, questionnaires, or pilot studies (49).
Four fundamental activities are involved in the requirements elicitation process [17, 18], namely communication,
setting priorities, negotiation, and cooperation with stakeholders.

It is important that the requirements engineers fully understand the system domain. Traditional approaches to
requirements elicitation do not consider factors such as distance, time zones, cultural diversity, communication,
and language barriers. Effective communication and collaboration between requirements engineers and
stakeholders are of the utmost importance. In GSD decreased communication, (informal communication is
lacking), geographical distance, cultural diversity, differences in time zones and language barriers create
difficulties for effective communication [10]. As a result, the ways by which requirements elicitation is usually
being performed in collocated system and software development environments cannot be effectively utilized in a
globally distributed environment [47].

1.4 Focus of this paper

As culture plays a major role in the way individuals communicate and collaborate it is also an important factor in
the RE process, and has a critical impact on system and software quality and costs [6]. The culture of the
individuals participating in the RE process may well influence both the RE process and the resulting product
development. This work examines the RE and the requirements elicitation process from a cultural situational
context viewpoint.

The focus of this paper is on the meaning and role of culture in Global Software Development (GSD) and the
influence of culture on the requirements elicitation process. As a result of an extensive literature review and
longitudinal experience from different software development approaches, such as Waterfall, Incremental,
Iterative, , Agile and DevOps, we aim to bring the challenges in multicultural situational contexts into view. We
aim to raise awareness and understanding of culture as a crucial factor for successful requirements elicitation in
global settings, the quality of the whole system and software process, as well as of the resulting products and
services, are likely to increase. It also aims to be a tool for requirements engineers to identify risks of volatility so
that they can be minimized at an early stage.

The remainder of this paper is organized as follows. In the following section, we introduce prior work identifying
how culture is viewed as a Situational Factor and based on two Situational Classifications we explain and justify

our approach to concentrating on the impact of culture on the RE process. The amplified challenges particularly
relating to the culture of Software Engineering (SE) in global and multi-cultural environments, in which people
with different national, organisational, team and professional cultures need to communicate and collaborate are
discussed and the Cultural Impact on Systems and on RE are presented together with potential impact of
Hofstede’s each dimension [22]on RE. The paper continues with looking at trust, knowledge sharing and maturity
through the lens of requirements elicitation and presents three case studies of potential volatility cases. Finally,
we demonstrate a Requirements Cultural Volatility Framework that aims to provide a viewpoint regarding
potential conflicts that may occur on a multiplicity of dimensions and interactions. The framework proposes
actions to be taken in order to address the conflicts and show the expected benefits in personal, team,
organisational and national cultures. Conclusions and Further Work complete the paper.

2 Requirements volatility

Requirements volatility is defined as “the emergence of new requirements or modification or removal of existing
requirements” [15]. It is the most critical risk factor in systems and software development projects, causing
problems such as higher defect density, low performance, project delays and cost overruns [11, 15, 61].
Requirements volatility, as a major source of risk, is often underestimated, particularly the impact of small changes
to requirements in the later stages of the development lifecycle [13, 63]. Managing requirements volatility is
paramount to success. Requirements are usually not fully known or understood in the beginning of a project.
Organisational goals and objectives, policies, structures, and work roles of intended end users are likely to change
during a system’s development. New requirements and alterations to requirements can appear during any
development phase because customer/user needs may mature due to increased knowledge brought on by the
development activities, or new needs may surface because of unforeseen organisational or environmental changes
and pressures [7]. If such changes are not taken into consideration, the original requirements will become
incomplete and inconsistent with the new situation. Requirements are usually determined by individuals who often
have conflicting needs and goals. In a global context these individuals may come from different national,
organisational and team cultures with different values and preferences. An iterative process for requirements
elicitation is proposed to lessen volatility risks.
The requirements volatility factor consists of the following sub-factors:
Scope creep: changes and uncontrolled growth in a project’s scope at any point of the system and software
development lifecycle [8[without addressing effects on budget, time, resources and customer approval. Adding
unauthorized features or functionality to a project is usually a result of poor initial scope definition, poor change
control, lack of identification of what is required in order to achieve the project objectives (poorly defined initial
requirements), poor communication between stakeholders, as well as lack of initial product versatility and
adaptability. Scope creep often requires increased amount of work to be done and increased costs. To avoid scope
creep minor adjustments to the original project scope should be carefully re-estimated and communicated to
involved stakeholders. Scope creep in Agile methodologies can be found within the iterations.
Ambiguous system and project requirements: unclear or unspecified requirements. Ambiguity in requirements
elicitation can be attributed to communication problems between the customer/stakeholder and the requirements
engineer. The customers may fail to explain their needs (sometimes even to understand them) or the
system/software engineer may fail to understand the users’ needs and the system context. Ambiguity in RE
contributes to system difficulties because the RE process fails to specify unique requirements for the system (59)
and leads to confusion, wasted effort and rework.
Continually changing system and project requirements: requirements that are not stable but are likely to change
during the development process. Many projects start without a clear idea of what needs to be accomplished due
to change in external factors, indecision, hidden assumptions, unfolded tacit knowledge etc. Increase in effort and
cost is the most significant impact of changing requirements. An Agile rapid prototyping (8) or a Minimum Viable
Product (MVP) approach are considered suitable in approaches of continuously changing requirements.
Ill-defined project goals: too many features or neglected critical functionality. Many projects slow down due to
lack of clear definitions of aims, objectives, goals, and desired measurable outcomes. Goal analysis approaches
emphasize the use of the goal notion for understanding or describing aspects of the real world, in an attempt to
rationally find better ways of coping with the complexity of human affairs [38].
Abundance of features: a large quantity of software and system features. System/software engineers tend to
develop more features than needed in pursuit of customer/user satisfaction [28]. This usually leads to increased
complexity, increased effort and costs and is in discord with lean system development. A study in 2020 surveying
600 software companies in Canada, France, Germany, the UK and US showed that only 80% of developed features
were used by the majority of the users [44]. We do not know if the unused features were those requested by
customers, but the findings are worrying and prompt for caution regarding maximizing customer value whilst

minimizing waste. Systems and software requirements involve the identification of the dynamic linkage between
markets, products and technologies through analysis of customer/user processes and prioritization of their
activities [34]. A constant pace of development is difficult to establish where there is not a constant velocity of
requirements identification.
Assumptions and Ambiguities: An assumption (whether implicit or invalid) is a statement that is assumed to be
true, and it is invalid when the assumed statement is actually not true. Lehman [37] states that implicit and invalid
assumptions cause a variety of problems. External changes continually invalidate the initial assumption set where
“inevitably some assumptions remain unknown, even unsuspected, until they cause incorrect results, misbehaviour
or worse [28]. In their extensive review of problems caused by assumptions Al Mamun and Hansson [1] concluded
that implicit assumptions are usually made by lack of consciousness about the pitfalls of implicit assumptions or
due to political reasons within the organisation. In addition, they identified that there is no awareness of the
(implicit) assumptions among the stakeholders/people. Implicit assumptions thus represent tacit knowledge,
which has been identified by the knowledge engineering discipline as volatile and thus challenging to preserve
and transfer. ‘Assumptions can arise from ambiguous descriptions (whether intentionally or unintentionally)
which are a feature of natural language. Ambiguity can result from misunderstandings and misinterpretations of
terms between developers and between the various stakeholders. Although the English language is the lingua
franca of Computing and Software Engineering members of a multilingual and multicultural team might
understand concepts slightly differently. Such misunderstandings and misinterpretations can lead to
postponement of decisions and to the development of systems that do not behave as intended by the users although
the developers may honestly believe they have followed the requirements’ [27].
Elwahab et al. [15] investigated the causes, the impact of requirements volatility and developed a framework for
managing requirements volatility. The causes of requirements volatility were found to be attributed to:

i. Business environment changes: government regulations, factors related to market, competition, financial,
policy, technological and legal changes etc.

ii. Changes in development requirements: requirements error, conflicting requirements, missing
requirements, evolving user and technological needs, missing team members, cost upgrades etc.

The requirements errors were classified into:
i. People Requirement Errors: the communication gaps between stakeholders, poor participation between

the development team and management team, limited understanding of domain knowledge, users with
unreasonable timelines and limited knowledge of what they want;

ii. Process Requirement Errors: unsuitable processes, inadequate analysis of requirements, using old process
and methodology, inadequate method of achieving objectives and requirements change during the
project;

iii. Documentation Requirement Errors: Team may not understand the policy of the user’s organisation or use
of standards.

Requirements volatility was found to impact on increase in the size of the project, increased defect density,
additional work, effort and cost (often >20%) and schedule duration [15]

The framework they propose includes the following phases:
i. Elicitation and analysis of business: The requirements are documented in the Software Requirements

Specification (SRS), which aims to ensure that requirements are visible to and understood by all
stakeholders.

ii. Specification validation: the requirements are validated according to the following requirement measures,
namely: correctness, un-ambiguity, completeness, consistency, verifiability, modifiability, traceable,
understandability of user needs, importance and stability.

iii. Requirements volatility causes: analysis of the requirements volatility causes.
iv. Change control management: The change control process, including details of the change and change

decision according to volatility measurements (priorities, necessary status and working hours), approval
prior to implementation and finally documentation in the change log before implementing the change,
need to be documented and managed.

Important sources with detailed explanations of the different phases in requirements engineering can be found in
[65-67].

Dasanayake et al. [11] depicted requirements volatility as shown in figure 1. They interviewed fifteen software
architects involved in different projects in a large-scale software development company developing smart phone
applications. The customers of the company were globally distributed in multiple development sites.
Communication was challenging due to distance and time differences of the virtual teams, who used different
terminology and concepts due to different domains, language barriers and cultural differences. Requirements
elicitation was carried out by using techniques such as focus groups, beta testers, and direct customer
communication. Customer needs were clarified during requirement analysis. The product owner, who made the
decisions about the product road maps, figured out the high-level product requirements, and created requirements
prioritizations. The product owner was the link between the software team and product management. The product
owner, who also monitors the progress, had the responsibility to communicate with the product management to
identify the product requirements and then convert them into user stories together with the software team. At this
point, requirements volatility factors may include changing customer needs and evolving technological
understanding.

Figure 1 Requirements volatility depicted [adapted from 11]

Figure 1 shows that the context, the requirements themselves and the architecture are impacting on requirements
volatility. Identification of the different volatility risk factors and the implications and consequences they cause
contribute to the readiness of minimizing the impact of volatility on the development process and the final product.
Motivation and prevention actions in the original framework are changed to prevention and mitigation actions,
because when there is a risk or a problem we need ways to avoid it and if that is not possible to address it; in this
way we minimize the factors that may contribute to volatility of requirements. Dasanayake et al. [11] identified
that each team although working in the same company had different combination of characteristics such as project
type, stakeholders and team culture, and hence also different readiness and solutions to requirements volatility.

Software architects were not directly involved in customer requirement elicitation and analysis. The final
outcomes of the study showed that poor communication, distorted information, and external dependencies were
the primary factors that impeded software teams from choosing the optimal course of action to design software
architecture, lead to inadequate documentation, inability to trace design rationale and increased complexity of the
architecture. Dasanayake et al. [11] state that the adoption of agile software development which is designed to
accommodate possible future changes and was found to have better readiness for requirements volatility.

Similar results were found by Zowghi and Nurmuliani [63], who identified that the more frequent developers and
customers communicated with each other during RE, the less volatile were the requirements. Their findings also
suggested that the more user representatives were involved in the development team the more volatile were the
requirements. This seems to suggest that frequent discussions with a small number of customer/user
representatives are likely to cause less culturally based volatility. With fewer people involved ambiguity is likely
to be minimised.
Thakurta and Ahlemann [61] investigated organisational practices dealing with requirements volatility, and how
the adopted project execution strategy with regard to process model selection decisions influences on this risk.
They identified and present in order of significance twelve different strategies to managing projects that had
resulted in volatility as well as seven factors influenced by business when selecting execution strategy.

The management strategies identified are:
i. involving the business side in the project,
ii. project scope negotiation;
iii. rescheduling project deadlines;
iv. engaging in requirements management activities;
v. documentation of processes procedures and activities;
vi. adjusting project human resources;
vii. using expert knowledge;
viii. focusing on communications;
ix. reducing project complexity;
x. readjusting project effort;
xi. variable costing of additional requirements,
xii. architecting product to withstand change and training workforce.

The seven business factors include in order of significance:

i. influence of business/customers;
ii. complexity of the project;
iii. management preferences;
iv. requirements set of the project;
v. maturity of the development process;
vi. project initial estimates (size, effort);
vii. project ultimate objectives.

The influence of business/customers emerged as the highest determinant. They also identified a gradual shift
towards customization. The observations of the researchers revealed that project managers tend to seek to manage
the changes instead of trying to prevent them, decisions regarding selection of execution strategies in projects at
risk were largely influenced by business, and finally agile methodologies were found to be the most suitable
software development approach for handling volatility risks.

3 Culture as a situational context factor

Context is the situation, circumstances, or specific setting in which an event occurs. The requirements of a system
are defined in a context where many factors, such as project, team, and organisation characteristics, as well as
business domain, contract type and stakeholder involvement influence the results of decision taking [12). The
situational context is the reason why something is occurring in a certain way, and it drives the actual behaviour
and actions associated with the situation.
In this study we investigated the literature regarding the role of culture as a situational context factor. Situational
factors are conditions in the environment that influence people’s behaviour [31), and include societal, individual,
and organisational factors [32, 33]. They influence the enculturation processes [individual and group socialization,
knowledge acquisition, leaders, heroes and myths) that influence e.g., the Information Technology (IT) cultural
assumptions, which in turn create certain outcomes (conflict over IT direction, innovation, integration of IT with
business strategy). Similarly, the outcomes influence the situational factors and the enculturation processes, and
the IT cultural assumptions also influence the enculturation process, in a recursive and ongoing process over time.
In the next section we examine different classifications of situational factors in RE in order to show how they are
related to each other, and also in order to establish how culture fits into the classification. We present extracts
from two classification schemes [8, 31] that cover situational factors which can lead to varying situations during
the RE process in global environments.

3.1 Classification of Situational Factors

Requirements elicitation is the most complex and challenging task when it takes place within a certain organisation
in collocated mode, since it is carried out by people (requirements engineers and stakeholders) with different
knowledge, different professional values, terminology, and work-related values. In global environments
Requirements Elicitation becomes even more complex and challenging [42, 51, 52]. Khan et al. [29, 30, 31] argue
that it is of the utmost importance to evaluate the situational factors before selecting the appropriate process for
any project, because otherwise situational factors can undermine the competence of the RE team to determine the
constraints and characteristics of the system under development.

Table 1. Situational Factors Classification Categories (extracted from 31).
Categories Individual Factors
Organisation Organisation Resource, Organisation Strategies, Organisation Standards,

Organisation Culture, Power Relations, Organisation Learning Exposure, Organisation Politics,
Organisation size,
Organisation Practices, Organisation Technical Maturity, Organisation Regulations, Organisation
Environment, Organisation Structure, Organisation Process Maturity

Stakeholders Team, Client, Stakeholder Relationship, Stakeholder Interaction Mode, Requirements
Realization, Stakeholder Performance, Stakeholder maturity

Project Problem Domain, Project Requirements, Project Characteristics, Requirement Evolution, Project
Goals, Requirements Estimation, Project Risks

Process Tasks, Techniques, Process Selection, Process Maturity, Tools, Management Knowledge,
Management Performance, Management Decision, Quality Metrics, Defect Occurrence, Testing
Accuracy

Khan et al. [31] categorized 37 situational factors, as shown in Table 1. Culture is mentioned explicitly as
Organisation Culture within the Organisation category. However, this is misleading because culture is a human
construction that exists wherever humans are involved. It includes intangible common aspects of social life and
practices, way of communicating, thinking, and behaving that a certain group of people share [22, 23, 24]. Culture
encompasses the social beliefs and behaviour, assumptions, values, attitudes and norms that can be used to define
them as a collective. Hence, we understand that Culture cannot be omitted from the Stakeholders category, because
we can identify different stakeholder cultures, team culture etc.. Similarly domain knowledge should be included
in stakeholder category, because knowledge of the domain is imperative for understanding what requirements are
needed.
Similarly, Clarke and O’Connor [8] developed a comprehensive Situational Factors Reference Framework shown
in Table 2 that affects the software development process. The table consists of 8 categories divided into 44
individual factors and 170 sub-factors. They state that all situational individual factors have some level of
influence on each other and on the system development process [8]. They conclude that such inter-dependencies
create a complexity difficult to decompose or eliminate as many dependencies are generated by loose decisions
taken on a lose foundation. We consider that these inter-dependencies can also be attributed to culture as an
umbrella factor. In Table 2 we can see that Culture is explicitly mentioned only in the Personnel category.
However, we postulate that culture operates in all categories. For example, the following categories in table 2 are
linked to certain obvious factors, such as:

i. Organisation: organisational culture etc.;
ii. Operations: end-user culture etc.;

iii. Management: management culture etc.;
iv. Business: business culture etc..

 Table 2. Situational Factors Classification Categories (extracted from 8)
Categories Individual Factors
Personnel Culture, Experience, Skills, Team size, Cohesion, Productivity, Disharmony, Commitment,

Turnover
Technology Emergent, Knowledge
Requirements Feasibility, Rigidity, Standards, Changeability
Organisation Maturity, Management commitment, Stability, Structure, Facilities, Organisation Size
Operation End-Users, Prerequisites
Management Accomplishment, Expertise, Continuity
Business Customer satisfaction, Opportunities, Business drivers, External dependencies, Time to

market, Payment terms, Potential loss
Application Application size, Type of application, Complexity, Quality, Performance, Development phase,

Degree of risk, Connectivity, Component reuse, Deployment profile, Predictability
With reference to Tables 1 and 2 there is a marked difference in the defined categories and the individual factors.
Both perspectives can, however, be considered accurate, depending on what viewpoint the factors are investigated
from. Since culture is ‘the collective programming of the mind’ as defined by Hofstede [22, 23] it is certainly
restricted to people, hence requirements engineers and stakeholders of the requirements elicitation process. When
people come from different backgrounds with different behaviours, values, norms and patterns of perception and
preferences, they see and understand things differently and put emphasis on different aspects. These cultural points

of view need to be identified and demystified during the requirements elicitation phase of any project for
maximizing the production of high-quality products, and for ensuring the satisfaction of stakeholders.

Our experience from longitudinal studies about cultural influence on GSD [49, 50, 53, 51, 52, 57] is that culture
is impacting on all the other often interrelated categories, and thus, a complex network of situational dynamics is
created.
In Table 1 culture is referred to as organisational culture in the Organisation category. In Table 2, culture is
mentioned in the Personnel category. Clarke and O’Connor [8] also sub-divided the cultural factor into team
culture and resistance to change. These viewpoints are only a part of the truth. Culture is the cornerstone of the
values and practices found in human behaviour’s and therefore of enormous importance for all global transactions,
including requirements elicitation.
Management of cultural diversity is similarly of the utmost importance in today’s globalized world, because
increasing number of companies involved in joint ventures, cross-national partnerships, outsourcing relationships
and subsidiaries need to embrace people from a variety of ethnic backgrounds and cultures. Due to globalization,
which has contributed to increased integration of labour markets, the need to develop cultural sensitivity is
generally emphasized and a new awareness of the importance of understanding other cultures is rising [53).
Ramesh et al. [46) for example advocate that project managers should evaluate the compatibility of each practice
of the software lifecycle with the national culture of stakeholders to ensure that the selected methods/practices are
appropriate for the cultural contexts in which they are applied.
An optimal systems development process is dependent on the situational characteristics of individual system
development settings, such as the nature of the application or system under development, team size, requirements
volatility and personnel experience [8] but studies on situational context in RE are very scarce.

4 RE in different Software Development Approaches

In this section we are looking at RE in different software development approaches. In the Software Process
Improvement (SPI) approach the requirements elicitation process is considered a robust cornerstone. However,
the SPI process is considered bureaucratic and time consuming and thus mainly used today for large safety-critical
systems [55]. Ramasubbu et al. [45] examined a leading offshore software service company that employs over
19,000 people in 17 countries worldwide, on whether widely adopted structured software processes of the
Capability Maturity Model Integrated (CMMI) are effective in mitigating the negative effects of work dispersion
in offshore software development. The results from 42 projects completed in a two-year period indicated that
adoption of structured process models have both a direct and a learning-mediated effect in mitigating the negative
effect of work dispersion in offshore software development. Investments in the structured key process areas
(KPAs) as specified by CMMI mitigate the negative effect of work dispersion on productivity and quality.
Investments in conceptual learning contributed to improved quality; operational learning investments were
associated with improved productivity.

In Agile and Lean software development, the RE process is by nature incremental and iterative because
requirements are considered to evolve as the customers may change their mind or because of changes in the overall
technical and socio-economic environment [62]. Agile methods provide a viable solution when the software to be
developed has fuzzy or changing requirements [60]. In Agile development, the system and software requirements
are incrementally specified and prioritized [58] in an iterative process along with the actual end-user/customer
(often on-site) and other stakeholders. Valuable feedback regarding the product is received through sprint
reviews, also created together with the customer/stakeholder. Hence, it can be said that one of the interactions that
facilitate the RE process is the sprint review meetings that is used throughout the software lifecycle [26]. In Agile
development there are also roles, such as the User Experience Designer, which is normally used to obtain feedback
from the end user in an iterative process. During frequent planning meetings, new requirements are communicated
to the development team [58], as design mockups/wireframes/user flows etc. The aims are to support the
development team to mature regarding requirements and readiness [46]. Communication, both formal and
informal, is crucial in agile development. Hildebrand et al. [21] studied how and to what extent Extreme
Programming (XP), a popular agile methodology with pair programming, can be transferred to distributed
development projects for large enterprise applications. They found that communication and coordination
deteriorated due to spatial separation, temporal, and cultural factors. Social aspects, such as body language, may
be difficult to interpret when using technical communication means, and informal communication is principally
lacking in distributed environments. Working in different time zones is challenging and as cultural factors they
mention differences in language and customs between different cultures. In this paper we try to analyse these
external cultural factors and their influence on software elicitation. We also recognize that agile

DevOps, (Development and Operations) is a recent shift in the software engineering domain towards collaboration
between development, quality assurance, and operations [5]. The main drivers in DevOps are fewer requirements’
changes focused testing, quality assurance, and a fast delivery cycle [40). The aims of DevOps are to deliver
value to customers faster and continuously through automation and a predefined way of handling the product;
hence reducing problems arising from miscommunication between team members, and accelerating problem
resolution [14, 36]. Requirements are defined through stakeholder participation in an advanced RE process with
feature mapping and an explicit delivery model [14, 26]. Requirements elicitation is fundamental for the success
of the entire system. Requirements are further shaped both by development feedback and through monitoring of
operations. In short, we can say that DevOps places focus on the deployment of developed software, whether it
is developed via Agile or other methodologies. DevOps also addresses gaps between developers and Information
Technology (IT) operations/infrastructure, whilst Agile software development addresses communication gaps
between end-users and developers. DevOps does not, to our knowledge, explicitly deal with cultural issues.

5 Requirements Elicitation, Trust, Knowledge Sharing and different maturity levels

5.1 Interorganisational trust

In requirements elicitation at least two organisations or two groups of people are involved. Trust between them
is paramount for the success of the process. Ojukwu and Georgiadou [41] emphasised that Inter-Organisational
Trust (IOT) is the directional relationship existing between one organisation and another or between one group of
organisations and another group or another single organisation in which one party (the trustor) is willing to believe
that the other party (the trustee) is willing to honour the terms of their business obligations. They developed an
IOT model which they applied and validated in the context of ecommerce.

In the case of GSD, the trustor and trustee come from different cultures. This difference often engenders mistrust
and misunderstanding which are likely to hamper the requirements elicitation process. Awareness and cultural
sensitivity of this complexity is likely to build trust and thus minimise misunderstandings and facilitate the
requirements elicitation process.

5.2 Knowledge sharing levels and maturity levels

Misunderstandings and miscommunication are likely to happen at all stages of the RE process particularly at the
requirements elicitation stage. Differences in maturity levels between the developing and the user organisations,
reluctance to share knowledge at personal, project team, or organisational level is bound to result in
misunderstandings and failures. The I5P Framework [16] visualises performance estimation through the alignment
of process maturity and knowledge sharing. As the organisational maturity increases so does the knowledge
sharing.

 Figure 2 The I5P Framework [16]

The growth of the Internet Of Things (IOT) and of knowledge sharing combined form the conditions for a
successful requirements elicitation process.

6 Three case studies of potential cultural volatility causes

Alsanoosy et al. [4] argue that Power Distance (PD) as defined by Hofstede [22) dominates RE activities. In low
PD countries lower ranking and higher-ranking employees consider each other as equals and decentralization is
popular. On the other hand, high PD countries subscribe to the authority of bosses and to centralization. Zanini
and Migueles [64] argue that the intersection between high PD, low trust, and strong Uncertainty Avoidance (UA)
seems to create circularities that jeopardize the capacity to solve complex problems.

Case study 1: Requirements elicitation with people with antithetical cultural values
Lack of trust has a negative impact on the requirements elicitation process because it reduces the transparency
and communication among stakeholders. Our experience from the Finnish KEMO project1 showed similar results.
The aim of the KEMO project was to help companies that manufacture parcelled goods to successfully begin their
production in other counties by identifying, recognizing, and strengthening in advance factors and elements of
successful production and logistics, and to eliminate potential risks. The Finnish national culture shows low PD
and medium UA [22]. Eight Finnish managers from three different Finnish global organisations dealing with
international operations with countries with high PD, high UA and collective characteristics, were interviewed.
The results revealed that the first thing the Finnish requirements engineers did was to find out who is the highest
ranked person in the hierarchy responsible for taking the final decision regarding the requirements and to consult
that person ‘because otherwise nothing will be decided......in the meetings lower employees do not speak up,
everything is always OK although it may not be’. One interviewee in the KEMO project stated ‘In the Nordic
counties trust is a value. In many other countries trust is not a value. The only way you can build trust is through
action and demonstrated capability.’…. ‘As a requirement engineer it is also important that you sit somewhere
higher up physically so that they respect and trust you, even if you are at the same hierarchical level. They call
me by Mr. and my Surname, while at home everybody other by their first name’. It was also observed that power
distance affects sensitivity of subordinates toward ethical behaviours of leaders. In a high level of PD ethical
leaders have higher authority. We conclude that in the requirements elicitation process it is important that the
requirements engineers build a trustworthy and ethical relationship with stakeholders.
Case study 2: Requirements elicitation in high PD countries
Similar behaviours were found by Siakas and Mitalas [56] and Siakas et al. [55] from a laboratory course in
Software Quality Management in Higher Education (HE) in Greece, (high PD), where groups of four students in
each group, simulated a real-life software development system. The educational system in Greece is dominantly
teacher-centred and the students depend on the teacher who initiates all communication [22). The students who
were responsible for the requirements elicitation asked the teacher to confirm every requirement due to fear of
making mistakes, and of not receiving approval by the ‘superior’; hence the whole requirements elicitation process
was significantly slowed down, and the viewpoints of stakeholders where not taken into consideration if not
proved by the teacher (person with higher social status).
Case study 3: Requirements elicitation in high PD countries
Experience from a software development project for a clothing manufacturer in Greece also provided evidence of
this ‘defence’ aspect. The requirements engineer decided to observe the end-users in their daily work because the
manager’s decisions negatively affected the proposed solution. The difficulty that arose was to convince the
manager that the end-users possessed more detailed context knowledge. The opinions of the ‘lower-level’ end-
users needed to be taken into consideration, without creating a cultural conflict (disagreement feared to be
interpreted as disrespect). Hence, we conclude that social status in high PD environments negatively affects the
outcomes and the quality of the requirements elicitation activity, since lower-level stakeholders do not freely
articulate their requirements since they are worried about conflicting with managers or receiving criticisms.

7 The Requirements Cultural Volatility Framework

Building on the context category of volatility presented in Figure 1 we can see that the context category includes
three sub-categories, namely team info, project info and company info. We interpret the word info as
characteristics, hence team, company and project characteristics, which we further analyse in Table 3.

Hofstede [22] emphasises that “culture is not the property of individuals, but of groups. It is a collection of
characteristics possessed by people who have been conditioned by similar socialisation practices, educational
procedures and life experiences". Teams and organisations are built by groups of people who adopt certain unique

1 http://www.uva.fi/materiaali/pdf/isbn_978-952-476-375-2.pdf

attitudes, behaviours, and values; hence they have their own cultures. Cultural identity is a part of a person’s
self-perception related to nationality, ethnicity, religion, social class, generation, and any kind of social group that
has its own distinct culture. National culture expresses the ethnic values of individuals in a country. Countries
possess distinct and relatively stable cultures [22]. Similarly, the organisational culture expresses a set of
assumptions, beliefs, attitudes, and values that are shared by existing members and are taught to new members of
an organisation. It includes prevailing patterns of behaviour and sentiments. Organisational culture is mainly
created and maintained in existing frameworks by the founders and the leaders of an organisation through their
value system. Organisational culture is often reflected as the result of management activity or is looked at through
levels of practices, such as symbols, heroes, and rituals [49]. Team culture reflects assumptions, beliefs, attitudes,
and values that are shared by team members. Professional culture is a result of the educational experiences and
the socialization process that occur during education and working within a certain profession. Each profession
reinforces common values, problem-solving approaches, and language/jargon/terminology. A person can
simultaneously belong to and identify with several different cultures.

Table 3: Grouping of context characteristics influencing volatility

Team characteristics Organisation Characteristics Project characteristics

• Level of dispersion
• Cohesion
• Domain knowledge
• Language (native/foreign)
• National culture
• Organisational culture
• Team Culture
• Professional culture

(multidisciplinarity)

• National culture
• Organisational culture
o Clan
o Hierarchical
o Democratic
o Disciplined
• Learning orientation
• Process orientation

• Size/Scope/Complexity
• Effort
• Predefined processes
• Process improvement approaches
• Level of Stakeholder involvement
o Motivation & Constraint

• Lifecycle models
o Waterfall, Spiral, V-Model, Agile

DevOps

National values, as defined by Hofstede [22], constitute similar ways of acting and thinking (viewpoints, attitudes,
habits, norms and practices) of a nation. The national culture (the ethnic values of the workforce) can be
categorised in several dimensions, namely Power Distance, Uncertainty Avoidance, Collectivism/Individualism,
Masculinity/Femininity, Long Term Orientation and Indulgence/Constraint and measured on a scale from zero to
hundred.

The Organisational culture (the way the organisation is structured and managed) was depicted by Siakas and
Georgiadou [50] in the C.HI.D.DI. Typology based on Hofstede’s work-related cultural dimensions PD and UA.
[22, 57]. These two dimensions are consider to also mirror organisational culture [22, 50, 57]. Each type belongs
to a quadrant formed by two dimensions. On the horizontal axis Uncertainty Avoidance (UA) starting from weak
UA and ending in strong UA is pictured, while on the vertical axis Power Distance (PD) starting from weak PD
and ending in Strong PD is pictured. The four quadrants form a specific typology of organisational cultures
pictured in Figure 2, which is called the C.HI.D.DI. (Clan, HIerarchical, Democratic, DIsciplined) typology of
organisational cultures. These four types of culture should be considered as ideal types, because the exact
measurement of culture is hindered by operational and conceptual problems and by the multidisciplinary complex
character of the research domain.

 Strong PD Clan Hierarchical

 Weak PD Democratic Discipline
Weak UA Strong UA

 Figure 2: The C.HI.D.DI. Typology of Organisational Cultures [50]

National cultures influence organisational cultures. Both national and organisational cultures influence team
cultures. People can concurrently belong to many different cultures, e.g., through their participation in different
teams. Thus, a complex network of people with different kinds of cultural influences need to work together on a
project. Stakeholder involvement in a project is considered to increase the understanding of the development team
of the project domain. Also, the requirements engineers and the stakeholders possess their own professional
culture, namely technical and business-oriented cultures.

The actors involved in requirements elicitation (team from the side of the project development and stakeholders
with different interests in the project) have different roles, objectives, backgrounds, domain knowledge,
preferences, and priorities. Examples of actors are management (responsible for scope and financial decisions),
the product owner/requirements engineer (responsibility to identify the product requirements) and the
system/software team, domain experts etc. However, there are basically two key players during the requirements
elicitation process, namely customers/users/managers/sales personnel etc. (all stakeholders that have an interest
in the end-product) and requirements engineer/product owner (who needs to understand the customer/user
expectations of the system and who controls that the agreed requirements are implemented). Hence, two
professional cultures are involved, namely the user who views the system from a business perspective and the
requirements engineer who views the system from a technological perspective. Thus, a communication gap is
inherited in the communication process, which is a risk factor for misunderstandings and volatility. In global
settings, with actors coming from different organisational, national and team cultures the communication gap is
exaggerated [49].

The Requirements Cultural Volatility Framework shows that stakeholder involvement in the requirements
elicitation activities is crucial because stakeholders are the final recipients of the system under development.
However, stakeholders may be reluctant to spend time to explain to requirements engineer the functions of the
system under development. In global settings the difficulty of common understanding is amplified due to national,
organisational and team diversity. Thus, inevitably the requirements cultural volatility is increased. Figure 3
illustrates the multiplicity of dimensions and interactions. The upside-down triangle (at the top of the inverted
triangle) in the middle shows the different cultural dimensions influencing behaviours. The broadest influence
comes from the national culture people have grown up in. It mainly reflects the values, which are the deepest
level of a culture. The next level is the organisational culture. The more mature an organisation is the stronger is
the organisational culture and the stronger the influence on the employees (‘the way we do things here’). The
following level is the team culture, which depending on the personalities and the influences from the
organisational and national culture develops as time goes by and the team becomes coherent.. On the left side of
the triangle the potential conflicts are shown stemming from the corresponding dimension on the same parallel.
The examples of conflicts shown on the left side on four dimensions/levels are not exhaustive , but representative,
for the corresponding dimension. For example, ‘retaining information’ is a cultural characteristic that can happen
on all dimensions/levels, but is probably the most tangible on team level. On the right-side of the triangle we
show proposed actions to be taken in order to address the corresponding conflicts. We also show in italics the
expected benefits in personal, team, organisational and national cultures.

Cultural Context: Multiplicity of Dimensions, Interactions, Actions and Expected Benefits

Potential Conflicts ……………Dimensions and Factors…………………Actions & Benefits

Prejudice,
Misunderstandings,
Miscommunication

Joint discussion and analysis:
Conflict Resolution, Consensus,
Compromise, Co-creation

Incompatibility,
Conflict, Mistrust,
Blame, Manipulation

Retaining Information,
Fragmentation, Lack
of cohesion, Disgrace

Insecurity, Guilt,
Disrespectfulness,
Ignorance, Moodiness

Awareness Training: Insight
Mutual Appreciation, Fairness,
Resilience, Versatility

Information & Knowledge
sharing: Domain Knowledge
enhancement, Confidence growth

Reflective discussions and
knowledge sharing: Openness ,
Growth of Trust, Loyalty

National Culture
Values, Rituals, Heroes, Symbols, Beliefs,

Attitude, Ethics, Norms, Practices

Organisational Culture &
Maturity

Standards, Processes, ICTs

Team Culture
Multidisciplinarity,

Dispersion

Personality
Feeling,
Temper

Figure 3: The Requirements Cultural Volatility Framework

8 Conclusions and Further Work

The aim, of the research presented here, was to report on the challenges of requirements elicitation in multicultural
environments. The focus was on Requirements Volatility in Multicultural Situational Contexts. An extensive
literature review was carried out covering situational factors affecting the RE process and focussing on
requirements volatility, its causes, the various manifestations, and conflicts. As a result of the insights gained a
Requirements Cultural Volatility framework was developed to help organisations, teams, and individuals
understand the cultural influence on human behaviour of actors in the requirements elicitation process.

As mentioned in the SPI Manifesto2 ‘it is very important to ensure the alignment of SPI initiatives and
organisation culture’. Nowadays software is increasingly developed by virtual teams involving system and
software developers and stakeholders from i) subsidiaries in different countries with different national cultures,
but same organizational culture, ii) joint ventures and outsourcing relationships with system and software
developers and stakeholders from different countries with different national cultures and different organisations
with different organisational cultures. In addition, we have different professional cultures between the system and
software developer, who is technically oriented and the customer/user who is business oriented. In this paper we
tried to emphasise the importance of understanding these differences of cultural values and instead of letting
cultural differences become hurdles we claim that awareness and recognition of divergent values could be an
advantage for the software process improvement.

Culture and cultural diversity are the most significant situational factors in the distributed requirements elicitation
process. There are other important factors in requirements elicitation, but in a global context culture needs
particular attention. The importance of raising awareness and understanding of the role of culture and cultural
diversity for requirements volatility aims to improve the whole systems development process as well as the
resulting products and services. The research presented in this paper reveals that cultural studies in the field of RE
are insufficient, and that more empirical studies are needed particularly in view of novel technologies and ways
of virtual ways of interacting which tend to result in espoused cultures.

9 References
1. Al Mamun, M.A., Hansson, J. Review and Challenges of Assumptions in Software Development, 2nd

Analytic Virtual Integration of Cyber-Physical Systems Workshop (AVICPS), Vienna, Austria. 2011.
2. Ali, N. and Lai, R. Managing requirements change in global software development, Proceedings of the

2014 International Conference on Data and Software Engineering, Indonesia. 2014.
3. Ali, N. and Lai, R. Requirements Engineering in Global Software Development: A Survey Study from the

Perspectives of Stakeholders, Journal of Software, 13(10):520-532. 2018
4. Alsanoosy, T., Spichkova, M. and Harland, J. Cultural influence on requirements engineering activities: a

systematic literature review and analysis. Requirements Engineering, 25:339–362, 2020
5. Benguria, G., Alonso, J., Etxaniz, I., Orue-Echevarria, L. and Escalante, M. Agile Development and

Operation of Complex Systems in Multi-technology and Multi-company Environments: Following a DevOps
Approach, Systems Software and Service Process Improvement, pp. 15-27. 2018.

6. Chakraborty, S., Sarker, S., Sarker, S. An Exploration into the Requirements Elicitation: A Grounded
Approach, Journal of the Association of Information Systems, 11(4): 212-249. 2010.

7. Christel, M.G. and Kang, K.C. 1992. Issues in Requirements Elicitation, Technical Report, CMU/SEI-92-
TR-012, ESC-TR-92-012, Carnegie Mellon University, Pittsburgh, Pennsylvania, US.

8. Clarke, P., and O’Connor, R.V. The situational factors that affect the software development process:
towards a comprehensive reference framework. Jl of Inf. Software Technology, 54 (5), pp.433-447. 2012.

9. Conchuir, E. O., Holmström, H., Ågerfalk, P. J., and Fitzgerald, B. Exploring the assumed benefits of global
software development, 1st Int. Conference on Global Software Journal of Software, 531(13):159–168. 2018.

10. Damian, D. Stakeholders in global requirements engineering: Lessons learned from practice, IEEE
Software, 24(2):21-27. 2007.

11. Dasanayake, S., Aaramaa, S., Markkula, J., and Oivo, M. . Impact of requirements volatility on software
architecture: How do software teams keep up with ever-changing requirements? Journal of Software:
Evolution and Process, DOI: 10.1002/smr.2160. 2019.

12. Dede, B., Lioufko, I. . Situational Factors Affecting Software Development Process Selection, MSc Thesis,
Goetenborg University Sweden. 2010.

13. Dev, H., and Awasthi, H. A Systematic Study of Requirement Volatility during Software Development
Process, International Journal of Computer Science Issues, 9(2):528-533. 2012.

2 https://conference.eurospi.net/index.php/en/manifesto

14. Ebert, C., Gallardo, G., Hernantes, J., and Serrano, N. . DevOps, IEEE Software, pp. 94-100. 2016.
15. Elwahab, K.A., Latif, M.A.E., Kholeif, S. Identify and Manage the Software Requirements Volatility:

Proposed Framework and Case Study, Int. J. of Adv. Computer Science and Applications, 7(5):64-71. 2016.
16. Georgiadou, E., Siakas, K., Balstrup, B. The I5P Visualisation Framework for Performance Estimation

through the Alignment of Process Maturity and Knowledge Sharing, IJHCITP, Vol. 2 No 2. 2010.
17. Grunbacher, P. and Braunsberger, P. Tool Support for Distributed Requirements Negotiation: Lessons

Learned. Cooperative Methods and Tools for Distributed Software Processes. IEEE, pp. 46--55. 2003.
18. Grunbacher, P., Halling, M., Biffl, S., Kitapci, H. and Boehm, B.W. Integrating Collaborative Processes

and Quality Assurance Techniques: Experience from Requirements Negotiation. Journal of Management
Information System, 20(4): pp. 9-29. 2004.

19. Herbsleb, J. D., and Moitra, D. Global Software Development, IEEE Software, 18(2):16-20. 2002
20. Herbsleb, J. D., and Mockus, A. An empirical study of speed and communication in globally distributed

software development. IEEE Transactions on Software Engineering, 29(3). 2003.
21. Hildebrand, T. Geisser,M., Kude, T.,Bruch, D. and Acker, T. . Agile Methodologies for Distributed

CollaborativeDevelopment of Enterprise Applications, International Conference on Complex, Intelligent
and Software Intensive Systems, IEEE Comp. Soc. pp. 540- 545. 2008

22. Hofstede, G. Culture's consequences: comparing values, behaviours, institutions, and organisations- 2nd
Ed. - Thousand Oaks, Calif.; London: Sage Publications. 2001.

23. Hofstede, G., Hofstede, G. J., and Minkov, M. Cultures and Organisations - Software of the Mind:
Intercultural Cooperation and its Importance for Survival. McGraw-Hill. 2010

24. Hofstede, G. Dimensionalizing Cultures: The Hofstede Model in Context. Online Readings in Psychology
and Culture, 2(1), (doi.org/10.9707/2307-0919.1014). 2001.

25. Hsieh, Y. Culture and shared understanding in distributed requirements engineering, Proceedings of the
International Conference on Global Software Engineering, Brazil. 2006.

26. Jabbari, R., bin Ali, N., Petersen, K., and Tanveer, B. What is DevOps? A Systematic Mapping Study on
Definitions and Practices. XP '16 Workshops Proceedings,, article no. 12. 2016.

27. Kamsties E. Understanding Ambiguity in Requirements Engineering. In: Aurum A., Wohlin C. (eds)
Engineering and Managing Software Requirements. Springer, Berlin, Heidelberg. 2005.

28. Kauppinen, M., Savolainen, J., Lehtola, L., Komssi, M., Töhönen, H., Davis, A. From feature development
to customer value creation, 17th Int. requirements engineering conf., pp. 275–280. 2009.

29. Khan, H.H., bin Mahrin, M.N., and Malik, M.N. Situational Requirement Engineering Framework for
Global Software Development: Formulation and Design. Bahria University, JICT, 9 (1):74-84. 2016.

30. Khan, H., bin Mahrin, M.N., and Chuprat, S. Situational Requirement Engineering Framework for Global
Software Development. Int. Conf. on Computer, Communication, and Control Technology, Kedach,
Malesia, pp. 224-229. 2014.

31. Khan, H. H., bin Mahrin, M. N., and Chuprat, S. Situational Factors Affecting Requirement Engineering
Process in Global Software Development. IEEE Conf. Open Systems, Malaysia, pp. 118-21. 2013.

32. Kaarst-Brown, M. L. How Organisations Keep Information Technology Out: The Interaction of Tri-Level
Influences on Organisational and IT Culture, Working Paper IST-MLKB, Syracuse University, US. 2004

33. Kaarst-Brown, M.L., and Robey, D. More on Myth, Magic and Metaphor: Cultural Insights into the
Management of Information Technology in Organisations, Inf. Techn. and People 12(2):192-217. 1999.

34. Komssi, M., Kauppinen, M., Töhönen, H., Lehtola, L., Davis, A. Roadmapping problems in practice: value
creation from the perspective of the customers, Requirements Engineering, pp. 45–69. 2015.

35. Lai, R., and Ali, N. A method of requirements management for global software development, Advances in
Information Sciences, Human and Science Publication, USA, 2013,

36. Lampropoulos, G., Morcavallo, A., Salvi, L., Spiralska-Golak, I., Siakas, K. DevOps: The New Frontier of
Industrial Software, in O. Khan, P. Marchbank, E. Georgiadou, P. Linecar, M. Ross, G. Staples in Int.
Experiences and Initiatives in IT Quality Management, 27th SQM, Southampton, UK, pp. 119-130. 2019.

37. Lehman, M. Development and Evolution, Address at IDI, Oslo, 16 March. 2006.
38. Lehtola, L., Kauppinen, M., Vähäniitty, J., and Komssi, M. Linking business and requirements

engineering: is solution planning a missing activity in software product companies? Requirements
Engineering, Vol. 14, pp. 113–128.2009.

39. Mighetti, J. P., and Hadad, G.D.S. A Requirements Engineering Process Adapted to Global Software
Development. CLEI Electronic Journal, 19 (3) Paper 7. 2016.

40. NewRelic 2018. Navigating DevOps - What it is and why it matters to you and your business, eBook,
https://try.newrelic.com/rs/412-MZS-894/images/NewRelic_DevOps-101-Navigating-DevOps-eBook.pdf.

41. Ojukwu, D. and Gergiadou, E. Towards Improving Inter-Organisational Trust amongst SMEs – A Case
Study from Developing Countries, 9th IFIP International Conference on the Social Implications of
Computers in Developing Countries, May, Sao Paolo, Brazil. 2007.

42. Pacheco, C., García, I., and Reyes, M. Requirements elicitation techniques: A systematic literature review
based on the maturity of the techniques. IET Software, 12 (4):364-378. 2018.

43. Pandey, D., Suman, U., and Ramani, A.K. An Effective Requirement Engineering Process Model for
Software Development and Requirements Management. Int. Conference on Advances in Recent
Technologies in Communication and Computing, IEEE Comp. Soc., pp. 287 – 291. 2010.

44. Pendo-Study, 2020. https://wraltechwire.com/2020/01/28/pendo-study-with-80-of-features-not-used-
software-execs-re-evaluating-success-metrics/

45. Ramasubbu, N., Mithas, S., Krishnan, M. S. and Kemerer, C. Work Dispersion, Process-Based Learning
and Offshore Software Development Performance. MIS Quarterly. 32(2):437-458. 2008.

46. Ramesh, B., Cao, L., Kim. J.J., Mohan, K., and James, T.L. Conflicts and complements between eastern
cultures and agile methods: an empirical investigation. EJIS 26(2):206–235. 2017.

47. Romero, M., Vizcaino, A., and Piattini, M. Towards a definition of completeness for global requirements
elicitation. 13th Conf. on Innovation and Technology in Computer Science Education, pp. 364-364. 2008.

48. Shewell, C. Good business communicates across cultures: A practical guide to communication. Bristol:
Mastek Publications. 2000.

49. Siakas, E., Rahanu, H., Georgiadou, E., Siakas, K. Towards Reducing Communication Gaps in
Multicultural and Global Requirements Elicitation. In: Yilmaz M., Clarke P., Messnarz R., Reiner M. (eds),
Systems, Software and Services Process Improvement. EuroSPI. vol 1442. Springer, pp. 257-277. 2021

50. Siakas, K., Georgiadou, E. A New Typology of National and Organisational Cultures to Facilitate Software
Quality Management, in E. Georgiadou, G. King, P. Pouyioutas, M. Ross, G. Staples (eds), Quality and
Software Development: Teaching and Training Issues, the 5th INSPIRE conf., London, pp. 213-226. 2000.

51. Siakas, K., Georgiadou, E., Siakas, D., and Rahanu, H. Developing effective teams in global
multidiscipline engineering and manufacturing organisations. in X. Larrucea, I. Santamaria, R.V.
O’Connor, R. Messnarz, Systems, Software and Services Process Improvement, Springer, Heidelberg, pp.
564-576. 2018.

52. Siakas, K., Georgiadou, E., and Siakas, D. Knowledge Sharing in Distributed Teams: Influence of National
and Organisational Culture, in Khosrow-Pour, M (ed). Entrepreneurship, Collaboration, and Innovation in
the Modern Business Era, Chapter11, April 2018, pp. 221-242. 2018.

53. Siakas, K, and Siakas, D. Cultural and Organisational Diversity Evaluation (CODE): A Tool for Improving
Global Transactions. Strategic Outsourcing Int. Journal, 8 (2/3), pp. 206 – 228. 2015.

54. Siakas K., Siakas E. The Agile Professional Culture: A Source of Agile Quality, Software Process:
Improvement and Practice (SPIP) Journal, John Wiley & Sons, Volume 12, Issue 6, pp. 597 – 610. 2007.

55. Siakas, K., Taouktsis, V., Pehlivanis, K., Voutsa, E, Gisis, T. Assessment – Improvement of a Balanced
ScoreCard Application; Experiences from a Laboratory Course in Software Quality Management, the 10th,
INSPIRE, 21-23 March 2005, Glouchestershire, UK, pp. 11-23. 2005.

56. Siakas, K., Mitalas, A. Experiences from the Use of the Personal Software Process (PSP) in Greece;
Analysis of Cultural Factors in the 9th INternational Conference on Software Process Improvement -
Research into Education and Training, Kent, UK, 05-07.04.2004, pp.11-21. 2004.

57. Siakas K. SQM-CODE: Software Quality Management – Cultural and Organisational Diversity Evaluation,
PhD Thesis, London Metropolitan University, UK. 2002.

58. Schmidt, C.T., Kude, T., Tripp, J. Heinzl, A. and Spohrer, K. Team Adaptability in Agile Information Systems
Development, 34th International Conference on Information Systems, Milan, Italy, pp.1-11. 2013

59. Söderman, J. How to be a good ombudsman. 11th Int- Ombudsman Institute World Conference, Occasional
paper nr. 80, https://www.theioi.org/publications/occasional-papers-1979-2008 (accessed 12.09.2019). 2008.

60. Thayer, R. H., and Royce, W. W. Software Systems Engineering. IEEE System and Software Requirements
Engineering. Los Alamos, California. 1990.

61. Thakurta, R, and Ahlemann, F. Understanding Requirements Volatility in Software Projects – An Empirical
Investigation of Volatility Awareness, Management Approaches and their Applicability, Proceedings of the
43rd Hawaii International Conference on System Sciences, pp. 1-10. 2010.

62. Tjong, F. Avoiding Ambiguity in Requirements Specifications, PhD Thesis, Univ. of Nottingham, UK. 2008.
63. Zowghi, D., and Nurmuliani, N. A Study of the Impact of Requirements Volatility on Software Project

Performance, 9th Asia-Pacific Software Engineering Conference, Gold Coast, Australia. 2002.
64. Zanini, M.T. and Migueles, C. Building trust in a high-Power Distance context: the role of the perception

of integrity in shared leadership, Academy of Management Conference, Chicago, August. 2018.
65. ISO/IEC/IEEE 26511:2018Systems and software engineering - Requirements for managers of information

for users of systems, software, and services, https://www.iso.org/standard/70879.html (access 31.05.2022).
66. CMMI Requirements Development (RD), https://www.cmmi.co.uk/cmmi/RD.htm (accessed 31.05.2022).
67. SWEBOK V3, Guide to the Engineering Body of Knowledge, available at

https://cs.fit.edu/~kgallagher/Schtick/Serious/SWEBOKv3.pdf, 31.05.2022).
68. Requirements Working Group, INCOSE, Guide for writing requirements, 2012

