
ReCCoVER: Detecting Causal Confusion for
Explainable Reinforcement Learning

Jasmina Gajcin1[0000−0002−8731−1236] and Ivana Dusparic1[0000−0003−0621−5400]

Trinity College Dublin, Dublin, Ireland

Abstract. Despite notable results in various fields over the recent years,
deep reinforcement learning (DRL) algorithms lack transparency, affect-
ing user trust and hindering their deployment to high-risk tasks. Causal
confusion refers to a phenomenon where an agent learns spurious cor-
relations between features which might not hold across the entire state
space, preventing safe deployment to real tasks where such correlations
might be broken. In this work, we examine whether an agent relies on
spurious correlations in critical states, and propose an alternative subset
of features on which it should base its decisions instead, to make it less
susceptible to causal confusion. Our goal is to increase transparency of
DRL agents by exposing the influence of learned spurious correlations on
its decisions, and offering advice to developers about feature selection in
different parts of state space, to avoid causal confusion. We propose ReC-
CoVER, an algorithm which detects causal confusion in agent’s reasoning
before deployment, by executing its policy in alternative environments
where certain correlations between features do not hold. We demonstrate
our approach in the taxi and grid world environments, where ReCCoVER
detects states in which an agent relies on spurious correlations and offers
a set of features that should be considered instead.

Keywords: Reinforcement Learning · Explainability · Intepretablity ·
Feature Attribution · Causal Explanations · Causal Confusion

1 Introduction

Understanding decisions of RL agents can increase users’ trust and encourage
collaboration with the system, prevent discrimination or uncover surprising be-
havior [18]. One of the main tasks of explainability in RL is, however, to ensure
that agent’s behavior is correct and not prone to mistakes. This is a necessary
step before agent can be deployed to a real-life task.

In this work, we focus on one specific obstacle to successful deployment of RL
agents – causal confusion. Causal confusion is a phenomenon which occurs when
agent learns to rely on spurious correlations between the features which might
not hold over the entire state space. For illustration, we refer to an example of a
medical decision-making system for assigning urgent care to patients [12], which
learns to rely on the correlation between arm pain and heart attacks, resulting
in system suggesting emergency care for a patient with a minor arm injury. In

ar
X

iv
:2

20
3.

11
21

1v
1 

 [
cs

.L
G

] 
 2

1 
M

ar
 2

02
2



2 Jasmina Gajcin and Ivana Dusparic

Fig. 1. Different causal structures in different situations for a medical decision system.
Agent uses features Condition and Armpain to decide on Treatment. Dotted lines
represent causal relationships between features, while full lines show whether agent
should rely on the feature for its decision. Left: if Condition = HeartAttack, arm pain
should be disregarded. Right: If Condition = ArmInjury, arm pain is an important
factor in determining treatment.

other words, the system failed to learn the causal structure of the task – that
heart attack is the true reason for administering urgent care and arm pain is just
a side effect that is highly correlated, but should not affect the decision (Figure
1). Reliance on spurious correlations becomes an issue when agent is confronted
with a situation in which the correlation does not hold. For this reason, it is
necessary to verify that agent’s behavior does not depend on any spurious cor-
relations before deployment to a real-life task, even if agent performs optimally
in experimental setting. Causal confusion was first detected in imitation learn-
ing (IL), where RL agent can learn to rely on spurious correlations in expert’s
observations which do not hold in the RL environment [10]. Causal confusion
was further examined in RL and, to mitigate its effects, a method for targeted
exploration was proposed [12], forcing the agent to visit states that challenge
potential learned spurious correlations.

In this work, we address the problem of causal confusion in RL from the per-
spective of explainability, and aim to increase understanding of agent’s behavior
in critical states, by examining whether agent relies on spurious correlations to
make a decision. To achieve the above, we propose ReCCoVER (Recognizing
Causal Confusion for Verifiable and Explainable RL), an approach for detecting
and correcting situations in which an agent relies on damaging spurious corre-
lations. If spurious correlation is uncovered, we identify the area of state space
in which relying on such correlation is damaging and ReCCoVER generates an
alternative subset of features that the agent should instead focus on in that state
subspace, to avoid causal confusion. It is important to note that the subset of
features agent should rely on can differ between states – a feature can be useful
in one state, but might need to be ignored in another (Figure 1). To make our
explanations concise, we verify agent’s reasoning only in critical states. Specif-
ically, we focus on states in which agent reaches local maximum in terms of
state-value function. Since agent has an opportunity to achieve a large reward
or complete a subtask in local maxima states [20], these decisions are some of
the most important in agent’s execution. To uncover the possibility of spurious
correlation in state s, we make use of the fact that a policy relying on such cor-



ReCCoVER: Detecting Causal Confusion for Explainable RL 3

relation will fail to generalize to situations where the correlation is broken. To
that end, we create alternative environments by performing causal interventions
on features and explore the behavior of the policy in different settings. Taking
the example of the medical system described above, we explore what makes it
decide on urgent care for a patient with heart attack by forcing arm pain to be
absent and observing how well agent performs in the alternative situation. To
find out whether a policy relying on a different set of features would general-
ize better in the alternative environment, we propose a method for training a
feature-parametrized policy, which simultaneously learns a separate policy for
each possible subset of features. Performance of this policy in alternative en-
vironments is used to detect whether ignoring certain features during training
could prevent spurious correlations from being learned and produce correct be-
havior in an alternative environment in which agent’s original policy fails. This
way we can make sure that agents make decisions in critical states based on the
correct features (e.g. suggesting urgent care because of the heart-attack and not
arm pain), and do not rely on damaging correlations.

Current work in causal confusion focuses on learning a robust policy that
does not rely on spurious correlations [12]. However, current approaches can
only detect spurious correlations in agent’s reasoning after recording a drop in
performance when the agent is deployed to an environment where such correla-
tions do not hold. In contrast, we focus on verifying the behavior of a trained
policy before deployment, to ensure that it does not rely on damaging spuri-
ous correlations, and propose improvements to make policy less prone to causal
confusion and thus safer for deployment. Most similar to our work is the origi-
nal work on causal confusion, which proposes a method for uncovering the true
causes of expert’s actions when an RL policy is learned using IL [10]. However,
the work assumes that the true causes are constant throughout the episode, and
that the same set of features should be considered and same features should
be ignored in each state. Additionally, the work detects causal confusion which
originates as a consequence of distributional shift between expert’s observations
and agent’s environment. In contrast, we observe that a single feature can be
both useful and confusing, depending on the situation – arm pain should not be
a cause of a decision if a patient has a heart attack, but should be considered if
they suffer from an arm injury. Moreover, we focus on a RL setting where causal
confusion stems from agent learning spurious correlations throughout its expe-
rience in the environment, and create alternative environments in which such
correlations do not hold to verify agent’s reasoning.

By proposing ReCCoVER, the main contributions of this paper are:

1. A method for extracting critical states in which agent’s behavior needs to
be verified. For each critical state, ReCCoVER generates a set of alternative
environments in which certain correlations between features are broken, to
simulate conditions that the agent did not observe often during training.

2. An approach for detecting spurious correlations in agent’s policy by examin-
ing agent’s performance in alternative environments where learned correla-
tions do not hold. If spurious correlation is detected, we identify the area of



4 Jasmina Gajcin and Ivana Dusparic

state space in which relying on that correlation is damaging and ReCCoVER
proposes a subset of features that agent should rely on in that area instead.

We test and evaluate ReCCoVER in the taxi and minigrid traffic environ-
ments, where we uncover parts of the state space where causal confusion is
damaging and propose a different subset of features agent should rely on, to
avoid learning spurious correlations. Full ReCCoVER code and evaluation envi-
ronments are available at https://github.com/anonymous902109/reccover.

2 Related Work

In this section we present a short description of structural causal models, along
with a brief overview of current methods in explainable RL.

2.1 Structural Causal Models (SCM)

Structural causal models [16] represent causal relationships between variables
and consist of two main parts: a directed acyclic graph (DAG), and a set of
structural equations. Each node in the DAG is associated with either an observ-
able ({Xi}ni=1) or an unobservable variable ({Ui}mi=1), and presence of a directed
edge between two nodes implies a causal relationship. Structural equations can
be assigned to edges in order to describe the strength of the causal effect:

Xi = fi(PAi, Ui) (1)

In other words, value of each observable variable Xi is directed by the values
of its parent variables PAi and unobserved variables through some function fi.

Causal interventions are operations on the SCM that help us detect a cause-
effect relationship between two variables. Intervention on variable A is usually
denoted by the do-operator: do(A = v), and represents setting value of A to v
[17]. Intervening on a variable removes any incoming causal arcs to that variable,
because it forcibly sets the value of the variable, regardless of the other variables
that might be causing it. Outgoing causal relationships will, however, remain
intact. When intervening on features of an RL state, we use the do(f → v; s)
notation to describe forcibly setting feature f to v in state s.

2.2 Explainable Reinforcement Learning (XRL)

Recent years have seen a rise in developing methods for explaining RL agents
[18]. According to their scope, XRL approaches can be divided into local and
global. While local XRL methods explain one decision [15,13,24], the aim of global
explanations is to understand the behavior of a policy as a whole [1,6,20,23,8].
Within this classification, ReCCoVER can be considered a hybrid method –
while we aim to verify policy behavior locally, in specific, critical states, we also
provide a way to extract critical states automatically, enabling global explana-
tions to be generated without the need for user input.

https://github.com/anonymous902109/reccover


ReCCoVER: Detecting Causal Confusion for Explainable RL 5

Feature attribution is a local method for explaining a decision by assigning
importance to input features, depending on their contribution to the output [3].
Feature attribution is often referred to as feature importance [4]. In supervised
learning, feature attribution is commonly used for explaining and verifying be-
havior of black-box models. For example, LIME [11] generates an intrinsically
interpretable local model which approximates behavior of the black-box system
around the instance in question. Feature importance can be then extracted from
the interpretable model, for example as feature weights in case of linear LIME.
Similarly, saliency maps are used in image-based supervised learning tasks to
highlight parts of the image which contributed the most to the decision [21].

In XRL, feature attribution methods such as saliency maps and LIME have
been adopted from supervised learning to explain decisions of RL agents [9,19,7].
Similarly, the aim of this work is to explain agent’s behavior by examining the
influence of individual features on the decision. However, instead of only showing
which features contributed to the decision, we explore whether an agent is relying
on spurious correlations in that state, and if so, offer an alternative set of features
that agent should instead be considering. This enables the developer to not only
detect errors in agent’s reasoning, but also correct them.

3 ReCCoVER

In this section, we posit a method for examining critical states and detecting
potential spurious correlations in agent’s decision-making process, which we
call ReCCoVER :Recovering Causal Confusion for Verifiable and Explainable
Reinforcement Learning. As input, ReCCoVER requires agent’s learnt policy π,
state-value function Vπ(s), feature set F and a set of possible feature subsets G.
If the entire feature space is searched, G is the power set of F , G = P(F).

We start by describing an approach for gathering critical states in agent’s
execution (Section 3.1). Since actions in these states can bring large reward, we
focus on verifying agent’s behavior in these states. We then describe the process
of simultaneously learning a separate policy for each subset of features in G
(Section 3.2). We propose a method for generating alternative environments by
performing interventions on state features (Section 3.3). Since setting a value of a
feature can break its correlation with other features, we use policy performance in
alternative environments to observe how policies depending on different features
handle different correlation settings. Finally, we describe how causal confusion
can be detected in alternative environments by executing a feature-parametrized
policy and observing whether ignoring specific features during training prevents
the agent from learning spurious correlations (Section 3.4). An overview of the
ReCCoVER approach is shown in Figure 2 and Algorithm 2.

3.1 Extracting Critical States

Naturally, agent’s behavior must be verified as a whole before deployment to
a real-life task. However, it can be costly to explain agent’s behavior in each



6 Jasmina Gajcin and Ivana Dusparic

Algorithm 1 ReCCoVER algorithm

Input: Policy π, state-value function Vπ, feature set F , feature subsets G
Parameters: α, k
Output: Feature subset F(S∗)

1: Extract critical states Sc
2: Train a feature-parametrized policy πG
3: for sc ∈ Sc do
4: Generate alternative environments A(sc) by intervening on each feature in F
5: Filter A(sc) based on state novelty
6: for A ∈ A(sc) do
7: Evaluate policy π in A for k steps and record return Rπ
8: for Gi ∈ G do
9: Evaluate policy πG(Gi) in A for k steps and record return R(Gi)

10: end for
11: if Rπ � R(Gj) for some Gj ∈ G then
12: Identify subspace S∗ ⊆ S where detected spurious correlation is damaging
13: Propose feature subset Gj to be used in states in S∗

14: end if
15: end for
16: end for

state. Additionally, making a sub-optimal action is riskier in certain states than
in others. For example, taking a slightly longer route is less dangerous for a
self-driving car than incorrectly reacting in a near-collision situation. Thus, we
focus on ensuring that agent behaves correctly in selected, critical states.

Inspired by the idea of interesting states [20], we consider critical states to
be those in which an agent reaches a local maximum. Formally, given policy π
and its state-value function Vπ(s), a set of local maxima states Sc is defined as:

Sc = {s ∈ S|Vπ(s) ≥ Vπ(s′),∀s′ ∈ Ts} (2)

where Ts is a set of states that agent can transition to from s by taking
any available action a ∈ A. Local maxima states represent situations that are
preferable for the agent, and often correspond to a larger reward, due to achieving
a sub goal or finishing the task. Since making the right decision in these states
can yield a large reward, it is important to ensure agent’s reasoning is correct
and does not rely on spurious correlations in these states. The output of this
part of the method is a set of critical states Sc.

3.2 Training Feature-Parametrized Policy

Knowing a separate policy for each feature subset helps us understand how
agent’s behavior changes when its access to certain features is denied during
training. To train a separate policy for each subset of features, we adapt the
approach proposed by [10] from the IL to an RL setting. To uncover the subset
of features an agent should rely on in order to avoid causal confusion, authors



ReCCoVER: Detecting Causal Confusion for Explainable RL 7

Fig. 2. Overview of ReCCoVER: to explain decisions of policy π, a set of critical states
Sc is extracted. Feature-parametrized policy πG is trained to simultaneously learn a
separate policy for each subset of features in G. For each critical state s

(i)
c , a set of

alternative environments A(s
(i)
c ) is generated, and performance of policy π and policies

corresponding to different feature subsets in πG are evaluated in A(s
(i)
c ). Alternative

environments in which causal confusion is detected are manually examined to extract
an area of subspace S∗ where relying on causal confusion damages performance of π
and a different subset of features F(S∗) is proposed to be used in states in S∗.

in [10] propose an approach for training a feature-parametrized neural network
to simultaneously learn a separate policy for each possible subset of features.
Each feature subset is encoded as a binary vector, with each coordinate indicat-
ing whether the specific feature is present. During training, feature subsets are
iteratively sampled and only policy relying on the chosen subset of features is
updated.

We adapt this approach from IL to DRL setting. We also represent each
feature subset as a binary vector, where each coordinate denotes presence of a
feature. However, instead of supervised methods used in the original work, we use
DQN [14] to learn a policy. In every iteration of the algorithm, a binary vector is
sampled at random and the feature-parametrized policy is updated based only on
features present in the chosen vector. In this way, multiple policies that rely only
on features available in their corresponding vectors are learned simultaneously.
High-level overview of the training process for the feature-parametrized DRL
policy is shown in Figure 3 and further laid out in Algorithm 1. The output of
this stage of ReCCoVER is a feature-parametrized policy πG.



8 Jasmina Gajcin and Ivana Dusparic

Fig. 3. Feature-parametrized policy training: each episode i, a random feature sub-
set Gi is generated and used to mask agent states. At the same time, Gi is used as
a parameter for the sampling function, to ensure that only policy relying on Gi is
updated.

Algorithm 2 Training a feature-parametrized policy πG
Input: Set of feature subsets G
Output: Feature-parametrized policy πG

1: Randomly initialize appropriate network(s)
2: Initialize replay memory buffer D
3: while loss not converged do
4: Receive initial observation s0
5: Sample random feature subset Gi ∈ G
6: while episode not over do
7: Mask current state s∗t = [st �Gi;Gi]
8: Select action at based on policy network
9: Execute at, receive reward rt+1 and new state st+1

10: Update state st = st+1

11: Mask new state s∗t+1 = [st+1 �Gi;Gi]
12: Store (s∗t , at, rt+1, s

∗
t+1, Gi) in D

13: Sample batch from D with feauture subset Gi
14: Calculate the loss specific to the DRL algorithm
15: Perform gradient descent update based on the loss
16: end while
17: end while

3.3 Generating Alternative Environments

A policy that relies on a damaging spurious correlation will fail to generalize
to an environment where such correlation does not hold. To test whether agent
learned such correlations, we generate alternative environments in which specific
correlations between features do not hold and evaluate the policy in them. To
break correlation between two features we use causal interventions. Specifically,
for two features A and B, where A causes B (A→ B), performing an intervention
on B and setting it to a fixed value cancels any correlation between the two.



ReCCoVER: Detecting Causal Confusion for Explainable RL 9

To examine how well a policy handles a change in correlations between fea-
tures in a critical state sc, we generate a set of alternative environments A(sc)
by intervening on specific state features of sc. Environment A(f → v; sc) denotes
an environment with starting state sc, in which feature f is forcibly set to value
v. By setting a feature to a specific value, we break any correlation between that
feature and features that are causing it.

For a task with N features, where each feature can take M different values,
there are N ·M possible alternative environments. Seeing how generating such
large number of environments might be unfeasible, we evaluate the policy in
the selected subset of alternative environments. Since we wish to test agent’s
behavior in unexpected situations, where learned correlations might be broken,
we adopt the idea of state novelty [22]. Intuitively, to explain agent’s action in
state sc, we only perform intervention do(f → v; sc) on state sc if it leads to a
highly novel state s′. We generate a data set of agent’s transitions D by unrolling
the policy in the environment and calculate novelty of a state s as:

N (s) =

{
1√
n(s)

, if n(s) ≥ 1

1, otherwise
(3)

where n(s) is the number of occurrences in agent’s experience D.
For a critical state sc we generate a set of alternative environments by per-

forming interventions on sc that lead to highly novel states:

A(sc) = {A(f → v; sc)|N (s′) > α, s′ = do(f → v; sc)} (4)

where α is a threshold value, denoting how novel a state must be to be
considered. The output from this stage of ReCCoVER is a set of alternative
environments A(sc) for each critical state sc ∈ Sc.

3.4 Detecting Causal Confusion

Given a set of alternative environments A(sc) for a state sc being explained, we
can execute policy π to test its robustness in each of them. If π fails in environ-
ment A(sc), one explanation for that could be that agent’s reliance on a spurious
correlation has lead to poor generalization to an alternative environment where
such correlation is broken. However, it is also possible that by intervening on
a feature, we made the task much more difficult or impossible to complete in
the alternative environment (e.g., changed the goal position to a far away or un-
reachable position). The difference is that, if reliance on a spurious correlation
is the cause of failure, then a policy which ignores features that contribute to
spurious correlation in that state would perform well, as it would not be able
to learn the damaging correlation. On the other hand, if environment A(sc) is
indeed unsolvable, any policy relying on any subset of features will fail as well.

To examine whether agent’s policy π relies on spurious correlations in a spe-
cific critical state, we compare its performance in alternative environments with
the performance of feature-parametrized policy πG. By evaluating individual



10 Jasmina Gajcin and Ivana Dusparic

policies of πG, we can see how policies relying on different subsets of features
differ in behavior in a critical state. Given a set of alternative environments
A(sc) in critical state sc, agent’s policy π is executed in each of them for a fixed
number of steps k. Similarly, individual policies corresponding to different fea-
ture subsets from πG are executed in each alternative environment for the same
number of steps. In each alternative environment A(sc), we compare the returns
of agent’s policy π, with returns of individual policies in πG.

Causal confusion is detected in an alternative environment A(sc) if agent’s
policy π fails to generalize to A(sc), but policy πG(G′) corresponding to subset
of features G′ shows good performance. This means that π learned to rely on
a spurious correlation in sc which πG(G′) did not learn, as it did not consider
certain features. Formally, for feature-parametrized policy πG, agent’s policy
π and an alternative environment A(f → v; sc), ReCCoVER detects causal
confusion if there exists a policy πG(G′) trained on a subset of features G′, that
performs significantly better than π in A(f → v; sc):

Rk(A(f, v; sc), π)� Rk(A(f, v; sc), πG(G′)) (5)

whereRk(A, π) is a return achieved in environment A after following policy π
for k steps. Defining what is considered a “significantly better performance” can
depend on the task. In this work, we assume RL tasks in which failure is met with
a large negative reward, thus allowing for more straightforward identification of
poor generalization performance. On the contrary, if π is at least as successful as
other policies in πG in all alternative environments, we assume that its behavior
is satisfactory and not reliant on spurious correlations.

An environment A(sc) where causal confusion is detected uncovers a part of
the state space in which reliance on spurious correlations damages agent’s per-
formance. We expect that alternative environments in which causal confusion is
detected will offer an insight into which parts of the environment agent cannot
conquer due to its reliance on spurious correlations. As our work is preliminary
and of exploratory nature, we manually examine the alternative environments
where causal confusion is detected, to extract parts of the state space in which an
agent should rely on a modified subset of features. Ideally, this process should be
automated, and problematic state subspaces directly extracted. If causal confu-
sion is detected in an alternative environment A(sc), where πG(G′) outperforms
π, and a human expert manually extracts a subset of problematic states S∗ ⊆ S,
we propose that the agent should rely on features from G′ in states from S∗.

4 Evaluation Scenarios and Settings

In this section, we describe two environments in which we evaluate ReCCoVER.

Taxi Environment is modelled after the OpenAI [2] taxi environment. Agent’s
goal in this task is to navigate a 5 × 5 grid world, pick up a passenger from a
designated location and drop them off at their destination. Each step in the



ReCCoVER: Detecting Causal Confusion for Explainable RL 11

Fig. 4. MiniGridworld traffic environment: Agent (red) needs to reach the goal (green),
avoid collision with the other vehicle (blue) and obey the traffic light (outlined red).

environment yields a −1 penalty, picking up the passenger wins +10 reward and
for successfully completing the task the agent receives +20 reward. Episodes
terminate upon task completion, or after 200 time steps.

In the original environment, the agent has information about the taxi’s po-
sition, passenger’s location and destination. We augment the state space with
another feature – a passenger descriptor, which has a high influence on passen-
ger’s choice of destination, in order to create potential for spurious correlations
to be learned in the environment. Using the passenger descriptor as a proxy for
destination will have no negative consequences as long as the two features are
highly correlated. However, if the agent that relies on the descriptor encounters
a situation in which the descriptor is not indicative of the destination, it will fail
to drop off the passenger. It is imperative from the perspective of generaliza-
tion and explainability, for the agent to recognize that, despite this correlation,
destination is ultimately the important feature as it will always indicate the cor-
rect drop-off coordinates, regardless of the descriptor value. In each state, agents
should rely only on the original features, and ignore the passenger descriptor.

MiniGrid Traffic Environment is based on grid world environment [5]. We
extend it into a traffic environment by setting up a traffic light, and another
vehicle in the environment in front of the agent. Reaching the goal requires
obeying the traffic light and avoiding collision with the other vehicle. The vehicle
in front of the agent drives ahead whenever possible, while obeying the traffic
light. The agent has access to its own location, location of the goal, location and
the current action of the other vehicle, traffic light location and light color. The
agent can decide at each step whether to move forward or remain in place. Each
step has a living −1 penalty, while crashing into the other vehicle or violating
the red light costs −10 and terminates the episode. Successfully navigating to
the goal brings +10 reward, and correctly crossing the traffic light is awarded
with +10. Episodes are limited to 200 time steps.

Unlike the taxi environment, different situations in this environment require
different subsets of features. For example, consider the situation where the agent
is at the traffic light, behind another vehicle (Figure 4). If the traffic light is red,
the agent only needs to rely on this feature to know that it needs to stay in
place. If the light is green, the agent needs to observe both the light and the
position of the car in front. Under the assumption that the car in front of the
agent follows traffic rules, it is likely that the action of the vehicle in front of the



12 Jasmina Gajcin and Ivana Dusparic

Table 1. Training parameters for policies πcorrect and πconfused in taxi and minigrid
environments. The same parameters are used for πcorrect and πconfused within one task.

Task Algorithm Architecture Learning Rate Gamma Memory Capacity Exploration
Start Epsilon End Epsilon Epsilon Decay

Taxi DQN
Linear(5, 256)
Linear(256, 6)

1e−4 0.99 10000 0.9 0.01 100000

Minigrid traffic DQN
Linear(6, 512)
Linear(512, 2)

1e−4 0.99 80000 0.9 0.1 50000

Table 2. Training parameters for feature-parametrized policy πG in taxi and minigrid
environments as a part of ReCCoVER algorithm.

Task Algorithm Architecture Learning Rate Gamma Memory Capacity Exploration
Start Epsilon End Epsilon Epsilon Decay

Taxi DQN
Linear(10, 512)
Linear(512, 6)

1e−4 0.99 320000 0.9 0.01 100000

Minigrid traffic DQN
Linear(12, 512)
Linear(512, 2)

1e−4 0.99 80000 0.9 0.1 50000

agent and agent’s action will be highly correlated. However, if the agent relies
on this correlation, and only observes the action of the car in front of it to decide
whether it should move forward, then its policy will fail in a situation where the
car in front stops behaving as expected (e.g., stops even though the traffic light
is green or drives despite the red light). This means that the subset of necessary
features is not constant throughout the episode, as the action of the vehicle in
front needs to be considered in specific states, but can be confusing in other.

5 Evaluating ReCCoVER

To demonstrate detection and correction of causal confusion in RL using ReC-
CoVER, we set up three evaluation goals to examine:

1. Goal 1 (Critical states): Verify that extracted critical states correspond
to local maxima states in terms of state-value function.

2. Goal 2 (Recognizing causal confusion): Verify that, for a policy which
relies on a spurious correlation to make a decision in a critical state, ReC-
CoVER flags the state.

3. Goal 3 (Proposing correct feature subset): Verify that relying on the
feature subset proposed by ReCCoVER during training produces a policy
less prone to causal confusion.

To verify that correct critical states have been extracted, we manually ex-
amine them, with a view to automate this process in the future. In the taxi
environment, local maxima states in terms of the state-value function should
correspond to situations in which the agent reaches the passenger location or
destination and should perform a pick-up or drop-off action, to complete a sub-
goal and collect a reward. In the minigrid traffic environment, local maximum
is reached when the agent is at the traffic light, or a step away from the goal, as
successfully crossing the traffic light or reaching the goal brings large rewards.



ReCCoVER: Detecting Causal Confusion for Explainable RL 13

To evaluate the second goal, we train a policy πconfused which relies on spu-
rious correlations in the environment, and apply ReCCoVER to detect causal
confusion in critical states. To train πconfused in the taxi environment, we pur-
posefully randomize the destination feature during training, forcing πconfused to
rely on the passenger descriptor. As long as the passenger descriptor correlates
with the destination, the agent can safely ignore the destination and use the
descriptor as its proxy. However, we expect to see a drop in performance in al-
ternative environments in which the destination is intervened on, breaking the
descriptor and destination correlation. Additionally, we expect causal confusion
to occur only in states in which the destination is important for the policy, such
as situations where an agent has picked up the passenger and is trying to drop
them off. In the minigrid traffic environment, we randomize the feature denoting
the traffic light, in order to learn a policy πconfused which relies solely on the
actions of the vehicle in front of the agent. As long as the vehicle in front of the
agent follows the traffic rules (i.e., correctly stops at the traffic light), an agent
can safely ignore the traffic light and follow the vehicle. We expect to see causal
confusion occur in a situations where vehicle in front does not follow traffic rules.

To evaluate the third goal, we start by examining the alternative environ-
ments in which ReCCoVER detected spurious correlations. We manually extract
a set of states S∗ where causal confusion damaged the performance of πconfused
and propose a different feature subset F(S∗) to be used in states in S∗, to pre-
vent learning spurious correlations. F(S∗) equals the feature subset G′ of policy
πG(G′) which outperformed πconfused in alternative environments. We then train
a new policy πcorrect, ensuring that it focuses only on features from F(S∗) in
states in S∗. We do this by purposefully randomizing all features not present
in F(S∗), in states from S∗ during training. Finally, we apply ReCCoVER to
πcorrect, to examine whether adjusting which features policy relies on in certain
areas of the state space makes it less prone to learning spurious correlations.

Training parameters for policies πcorrect and πconfused in both environments
are shown in Table 1. ReCCoVER also requires parameters k and α, denoting the
number of steps that policies are evaluated in alternative environments and nov-
elty sensitivity when choosing novel alternative environments respectively. We
evaluate policies in alternative environments for k = 3 steps in taxi, and k = 1
steps in minigrid traffic environment, and use α = 0.9 in both tasks. Addition-
ally, training parameters for feature-parametrized policy πG in ReCCoVER are
given in Table 2. We limit the training of πG by including in G only those feature
subsets which enable learning at least a part of the task. In the taxi environ-
ment, agent’s state consists of its x location, y location, passenger descriptor,
passenger location and destination. We consider 4 feature subsets corresponding
to binary vectors

[
1 1 1 1 1

]
,
[
1 1 0 1 1

]
,
[
1 1 1 1 0

]
and

[
1 1 0 1 0

]
. First three

feature subsets can be used to learn the complete task in the environment where
descriptor and destination features are highly correlate, as they contain all nec-
essary information. The last subset can help the agent achieve the first subtask
of picking up the passenger, but lacks information about destination, necessary
for completing the task. In minigrid traffic environment, agent’s state consists



14 Jasmina Gajcin and Ivana Dusparic

of its location, goal location, other vehicle’s action and location, traffic light lo-
cation and color. We limit G to 3 feature subsets:

[
1 1 1 1 1 1

]
,
[
1 1 1 1 1 0

]
and[

1 1 0 1 1 1
]
. All three subsets can learn the task fully in the environment in

which the vehicle in front of the agent is following traffic rules.

6 Results

In this section, we present our results of evaluating ReCCoVER in two RL
environments against the three evaluation goals (Section 5).

6.1 Taxi Environment

Goal 1 (Extracting Critical States): ReCCoVER extracts 16 critical states
(Table 3). Sc contains states in which the agent is at the passenger location and
should perform the pick up action, and states in which the agent should perform
a drop off action, after successfully picking up the passenger and reaching the
destination. Both situations correspond to local maxima, as they represent states
in which agent has potential to receive a large reward in the next step.

Goal 2 (Recognizing Causal Confusion): We apply ReCCoVER to exam-
ine the πconfused, policy which relies on the passenger descriptor, but ignores
the destination feature. For each critical state, ReCCoVER generated on aver-
age 8.81 alternative environments (Table 3), and examined behavior of πconfused
and πG in them. ReCCoVER detected causal confusion in 4 critical states (Ta-
ble 3), corresponding to 4 possible destination positions. In these states, the
agent is at the destination, about to drop off the passenger. Intervening on the
destination feature in these states breaks the correlation between descriptor and
destination, and leads to poor performance for πconfused. For that reason, we dis-
cover that performance of πconfused drops in alternative environments obtained
by intervening on the destination feature. However, in the same alternative en-
vironments, policy πG(

[
1 1 0 1 1

]
) performed significantly better than πconfused.

Policy πG(
[
1 1 0 1 1

]
) relied on destination and ignored the passenger descriptor,

making it robust to changes in correlation between the two features. In critical
states where the agent should pick up the passenger, ReCCoVER does not de-
tect causal confusion, because information about destination is not necessary for
this part of the task and ignoring it does not damage immediate performance.

Goal 3 (Proposing Correct Feature Subset): All alternative environments
in which ReCCoVER detected causal confusion for policy πconfused have been
obtained by intervening on destination, in situations where the agent already
picked up the passenger. For this reason, we propose that the subset of features
that the agent relies on be altered only in parts of the state space in which the
agent has completed the subtask of picking up the passenger. Policy πconfused
was outperformed in each such alternative environment by πG(

[
1 1 0 1 1

]
). For



ReCCoVER: Detecting Causal Confusion for Explainable RL 15

Table 3. Output of each stage of the ReCCoVER algorithm in taxi environment.

Policy
Number of
episodes

Number of
collected transitions

Number of
critical states

Average number of alternative
worlds per critical state

Number of states
where causal confusion detected

πconfused
πcorrect

100
100

920
916

16
16

8.81
8.43

4
0

this reason, train πcorrect to rely on feature subset
[
1 1 0 1 1

]
in parts of the state

space where the passenger has been picked up. In other areas of the environment,
πcorrect relies on the same features as πconfused, denoted by

[
1 1 1 1 0

]
. As above,

we randomize the features that the agent should not rely on in specific states
during training. Finally, we apply ReCCoVER algorithm to uncover whether
altered feature subset helped πcorrect become less susceptible to causal confusion.
ReCCoVER does not detect causal confusion in any critical state for policy
πcorrect, indicating that it does not rely on spurious correlations (Table 3).

6.2 Minigrid Traffic Environment

Goal 1 (Extracting Critical States): ReCCoVER extracts 2 critical states
(Table 4). The first represents the situation where the agent is at the traffic light,
while in the second, the agent is one step away from the goal. Both states show
to situations in which the agent is about to complete a sub task or reach the
goal and receive a large reward, making them plausable local maxima states.

Goal 2 (Recognizing Causal Confusion): We apply ReCCoVER to exam-
ine behavior of policy πconfused, which fully relies on the actions of the vehi-
cle in front of the agent to make decisions, ignoring the traffic light. On av-
erage, 14 alternative environments are generated for each critical state (Table
4). ReCCoVER detects causal confusion in alternative environment where the
agent is at the red light, but the vehicle in front of it continues driving (Ta-
ble 4). Policy πconfused, relying only on the decisions of the vehicle in front, in
this situation runs the red light, and receives a large penalty. However, policy
πG(

[
1 1 0 1 1 1 1

]
), which relies on the traffic light, but ignores the actions of

the vehicle in front, acts correctly in this state and stops at the red light. It is
important to note that πG(

[
1 1 0 1 1 1 1

]
) cannot be applied to entire task, as

knowing the current action of the vehicle in front is needed to avoid collision. In a
critical state where the agent is one step away from the goal, no causal confusion
is detected, since the traffic light in this state does not affect the action.

Goal 3 (Proposing Correct Feature Subset): By examining the alternative
environment in which ReCCoVER detected causal confusion for policy πconfused,
we propose that the feature subset that the agent relies on be altered in part
of the state space S∗ where the agent is at the red traffic light. We train policy
πcorrect to rely on the same feature subset

[
1 1 1 1 1 0

]
as πconfused in all situa-

tions except in states from S∗, where it should rely on subset
[
1 1 0 1 1 1

]
. We



16 Jasmina Gajcin and Ivana Dusparic

Table 4. Output of each stage of the ReCCoVER approach in minigrid environment.

Policy
Number of
episodes

Number of
collected transitions

Number of
critical states

Average number of alternative
worlds per critical state

Number of states
where causal confusion detected

πconfused
πcorrect

100
100

1500
1500

2
1

14
15

1
0

train πcorrect to ignore the traffic light when agent is not directly at it, by ran-
domizing the traffic light feature. However, when the agent is at the red light, we
encourage the agent to observe the traffic light and ignore the vehicle in front, by
randomizing the feature corresponding to the action of the vehicle. This way, we
obtain a policy πcorrect, which focuses on the car in front of it in all situations,
except when it faces a red light, where it ignores the vehicle and relies only on
the light color. To ensure that πcorrect can encounter all the necessary situations,
we train it in an environment where the vehicle in front does not always follow
the traffic rules, and might run the red light. ReCCoVER is applied to examine
the behavior of πcorrect, and causal confusion is not found in any critical states,
indicating that πcorrect does not rely on any spurious correlations (Table 4).

7 Discussion and future work

In this work, we explored the problem of causal confusion in RL and proposed
ReCCoVER, a method for detecting spurious correlations in agent’s reasoning
before deployment. We evaluated our approach in two RL environments, where
ReCCoVER located situations in which reliance on spurious correlations was
damaging agent’s performance, and proposed a different subset of features that
should instead be used in that area of state space. Our work is, however, of
exploratory nature, and its purpose was to perform initial analysis of if and how
detecting causal confusion can aid in developing more transparent RL agents.
As such, certain stages of ReCCoVER algorithm are simplified and manual –
for example, we examine agent’s behavior only in critical states, and limit the
search for causal confusion to a subset of alternative environments.

For ReCCoVER to be applicable beyond benchmark scenarios, it needs to
be extended in two main directions – increasing and verifying its scalability and
automating the verification of ReCCoVER. In future work, we hope to explore
ways for narrowing down the feature subset search space G, while training the
feature-parametrized policy, to make this stage of ReCCoVER more feasible.
Additionally, we hope to automate parts of the process which currently require
manual attention, such as verification of critical states or extraction of areas of
the state space where causal confusion is damaging. Once fully automated, we
will explore applicability of our approach beyond explainability, due to its focus
on correcting mistakes in agent’s reasoning. Mistake detection and correction is
useful in transfer learning, to ensure that knowledge that is being reused is not
prone to causal confusion. Additionally, it can help improve robustness of RL
policies, either through human-in-the-loop approaches or as auto-correction.



ReCCoVER: Detecting Causal Confusion for Explainable RL 17

Acknowledgement

This publication has emanated from research conducted with the financial sup-
port of a grant from Science Foundation Ireland under Grant number 18/CRT/6223.
For the purpose of Open Access, the author has applied a CC BY public copy-
right licence to any Author Accepted Manuscript version arising from this sub-
mission.

References

1. Amir, D., Amir, O.: Highlights: Summarizing agent behavior to people. In: Pro-
ceedings of the 17th International Conference on Autonomous Agents and Multi-
Agent Systems. pp. 1168–1176 (2018)

2. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)

3. Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine
learning. Journal of Artificial Intelligence Research 70, 245–317 (2021)

4. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: A
survey on methods and metrics. Electronics 8(8), 832 (2019)

5. Chevalier-Boisvert, M., Willems, L., Pal, S.: Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid (2018)

6. Coppens, Y., Efthymiadis, K., Lenaerts, T., Nowé, A., Miller, T., Weber, R., Mag-
azzeni, D.: Distilling deep reinforcement learning policies in soft decision trees.
In: Proceedings of the IJCAI 2019 workshop on explainable artificial intelligence.
pp. 1–6 (2019)

7. Dethise, A., Canini, M., Kandula, S.: Cracking open the black box: What observa-
tions can tell us about reinforcement learning agents. In: Proceedings of the 2019
Workshop on Network Meets AI & ML. pp. 29–36 (2019)

8. Gajcin, J., Nair, R., Pedapati, T., Marinescu, R., Daly, E., Dusparic, I.: Contrastive
explanations for comparing preferences of reinforcement learning agents. arXiv
preprint arXiv:2112.09462 (2021)

9. Greydanus, S., Koul, A., Dodge, J., Fern, A.: Visualizing and understanding atari
agents. In: International conference on machine learning. pp. 1792–1801. PMLR
(2018)

10. de Haan, P., Jayaraman, D., Levine, S.: Causal confusion in imitation learning.
Advances in Neural Information Processing Systems 32, 11698–11709 (2019)

11. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
Advances in neural information processing systems 30 (2017)

12. Lyle, C., Zhang, A., Jiang, M., Pineau, J., Gal, Y.: Resolving causal confusion in re-
inforcement learning via robust exploration. In: Self-Supervision for Reinforcement
Learning Workshop-ICLR 2021 (2021)

13. Madumal, P., Miller, T., Sonenberg, L., Vetere, F.: Explainable reinforcement
learning through a causal lens. In: Proceedings of the AAAI conference on artificial
intelligence. vol. 34, pp. 2493–2500 (2020)

14. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013)

15. Olson, M.L., Neal, L., Li, F., Wong, W.K.: Counterfactual states for atari agents
via generative deep learning. arXiv preprint arXiv:1909.12969 (2019)

https://github.com/maximecb/gym-minigrid


18 Jasmina Gajcin and Ivana Dusparic

16. Pearl, J.: Causality. Cambridge university press (2009)
17. Peters, J., Janzing, D., Schölkopf, B.: Elements of causal inference: foundations

and learning algorithms. The MIT Press (2017)
18. Puiutta, E., Veith, E.: Explainable reinforcement learning: A survey. In: Interna-

tional cross-domain conference for machine learning and knowledge extraction. pp.
77–95. Springer (2020)

19. Puri, N., Verma, S., Gupta, P., Kayastha, D., Deshmukh, S., Krishnamurthy, B.,
Singh, S.: Explain your move: Understanding agent actions using specific and rel-
evant feature attribution. arXiv preprint arXiv:1912.12191 (2019)

20. Sequeira, P., Gervasio, M.: Interestingness elements for explainable reinforcement
learning: Understanding agents’ capabilities and limitations. Artificial Intelligence
288, 103367 (2020)

21. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034 (2013)

22. Şimşek, Ö., Barto, A.G.: Using relative novelty to identify useful temporal abstrac-
tions in reinforcement learning. In: Proceedings of the twenty-first international
conference on Machine learning. p. 95 (2004)

23. Verma, A., Murali, V., Singh, R., Kohli, P., Chaudhuri, S.: Programmatically inter-
pretable reinforcement learning. In: International Conference on Machine Learning.
pp. 5045–5054. PMLR (2018)

24. van der Waa, J., van Diggelen, J., Bosch, K.v.d., Neerincx, M.: Contrastive ex-
planations for reinforcement learning in terms of expected consequences. arXiv
preprint arXiv:1807.08706 (2018)


	ReCCoVER: Detecting Causal Confusion for Explainable Reinforcement Learning

