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Abstract. A long-standing ambition in artificial intelligence is to inte-
grate predictors’ inductive features (i.e., learning from examples) with
deductive capabilities (i.e., drawing inferences from symbolic knowledge).
Many algorithms methods in the literature support injection of symbolic
knowledge into predictors, generally following the purpose of attaining
better (i.e., more effective or efficient w.r.t. predictive performance) pre-
dictors. However, to the best of our knowledge, running implementations
of these algorithms are currently either proof of concepts or unavailable
in most cases. Moreover, an unified, coherent software framework sup-
porting them as well as their interchange, comparison, and exploitation
in arbitrary ML workflows is currently missing. Accordingly, in this pa-
per we present PSyKI, a platform providing general-purpose support to
symbolic knowledge injection into predictors via different algorithms.

Keywords: symbolic knowledge injection · explainable AI · XAI · neural
networks · PSyKI.

1 Introduction

Within the scope of supervised machine learning (ML), it is a common practice
to rely upon sub-symbolic predictors such as neural networks (NN) to mine the
useful information buried in data. However, given that they do not provide any
intelligible representation of what they learn from data, they are considered as
black boxes [13]. This is becoming troublesome in many application scenarios
(e.g., domains concerning healthcare, law, finance)—the reason being: it is non-
trivial to forecast what will black-box predictors actually learn from data, or
whether and to what extent they will learn general, reusable information.

State-of-the-art solutions currently address this issue by supporting a plethora
of methods for “opening the black-box” [9]—i.e. inspecting or debugging the in-
ner functioning of NN. Along this line, a common strategy is to perform symbolic
knowledge extraction (SKE) – producing human-interpretable information – on
sub-symbolic predictors. For instance, PSyKE [15] is a technological tool sup-
porting SKE via several algorithms—dual in its intents to what we propose here.
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Another strategy to deal with opaque predictors is to prevent them from
becoming black boxes. To do so, the training process of a NN is controlled in
such a way that the designer suggests what -(prior knowledge) predictor might
(not) learn. In other words, the intent is to transfer the designer’s common-sense
into the predictor. Along this line, we call symbolic knowledge injection (SKI)
the task of letting a sub-symbolic predictor exploit formal, symbolic information.

Notably, SKI brings a number of key benefits to the training of sub-symbolic
predictors, possibly mitigating the issues arising from their opacity. In partic-
ular, SKI is expected to: (i) prevent predictors from becoming complete black
boxes during their training; (ii) reduce learning time by immediately provid-
ing the knowledge predictors should otherwise struggle to learn by processing
huge amount of data; (iii) mitigate the issues arising from the lack of sufficient
amounts of training data (as under-represented situations can be suitably rep-
resented in symbols); (iv) improve predictors’ predictive performance in corner
cases—such as in presence of unbalanced and overlapping classes.

As further discussed in Section 2, virtually all SKI methods proposed in lit-
erature share a general workflow (Section 2.3), which can be briefly summarised
as: (i) identify a suitable predictor w.r.t. the ML task at hand, (ii) produce
some symbolic knowledge aimed at describing corner cases or notable situations,
(iii) apply the SKI method that given the given predictor and knowledge, hence
generating a new predictor that encapsulates the knowledge, (iv) train the new
predictor on the available data, as usual. Hence, in principle, SKI methods are
interchangeable at the functional level—despite each method may more (or less)
adequate to particular classes of ML tasks/problems. However, to the best of our
knowledge, running implementations of SKI algorithms are currently either proof
of concepts or unavailable in most cases. Moreover, an unified, coherent software
framework supporting them all – as well as their interchange, comparison, and
exploitation in arbitrary ML workflows – is currently missing.

To mitigate this issue, in this paper we present the design of PSyKI, a Plat-
form for Symbolic Knowledge Injection. PSyKI is conceived as an open library
where different sorts of knowledge injection algorithms can be realised, exploited,
or compared. PSyKI is a tool for data scientists willing to experiment already ex-
isting SKI algorithms, or to invent new ones while making them available under
a general API. In this sense, PSyKI is complementary w.r.t. PSyKE.

Accordingly, the remainder of this paper is organised as follows. In Section 2
we summarise the background of SKI, eliciting a number of related works. Then
in Section 3 we describe the design of PSyKI. Section 4 reports a case study of
injection in a well known domain. Finally, conclusion are drawn in Section 5.

2 Knowledge Injection Background

Many methods and techniques for injecting symbolic knowledge into ML predic-
tors have been proposed into the literature. Virtually all of them assume

– knowledge is encoded via some subset of first order logic (FOL),
– while ML predictors consist of neural networks (NN).
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Arguably, possible motivations behind these choices are the flexibility of logic
(and FOL in particular) in expressing symbolic information, and the malleability
and composability of NN—which can the structured in manifold ways, to serve
disparate purposes.

However, the many SKI methods from the literature can be categorised into
two major groups, depending on how they perform the injection of symbolic
knowledge into neural networks. Namely, some methods perform injection by
constraining neural networks’ training, while others affect their inner structure.
Approaches from first group perform injection during the network’s training, us-
ing the symbolic knowledge as either a constraint or a guide for the optimization
process. Conversely, approaches of the second sort perform injection by struc-
turing the network’s architecture to make it mirror the symbolic knowledge.

In the following subsections, we non-exhaustively enumerate and describe
some major SKI techniques from the literature, evenly distributed among both
groups. A summary of the surveyed approaches is reported in Table 1.

2.1 Constraining Neural Networks

The key idea of SKI techniques based on constraints is to induce a penalty during
the training process of the predictor. A cost is applied in some way whenever the
network violates the prior knowledge. A common way to do is by interpreting
logic formulæ as fuzzy logic functions so that the penalty is proportional to the
degree of violation.

Through back propagation, the weights of the NN are optimised to minimise
both the prediction error and the additional penalty. In this way the predictor
is constrained to be compliant to the prior knowledge with a certain extent.

CODL (COnstrained Driven Learning) [4], for instance, is an early work
concerning the injection of custom symbolic rules into a hidden Markov model
(HMM) for a natural language process (NLP) task. Constraints encode structural
information and interdependencies among labels. Then, they are injected in the
semi-supervised learning process of the HMM within a distance function between
the actual output and the output space that is compliant to the knowledge
constraints.

SBR (Semantic Based Regularisation) [5] is a framework for knowledge in-
jection in form of FOL rules into kernel machines (KM) such as support vector
machines (SVM). Knowledge is a set of constraints – transformed in fuzzy func-
tions – that must be satisfied in addition to the traditional smoothness regular-
ization term. The semantic inference can be back-propagated down to the kernel
machines using any gradient-based schema during training.

A development of SBR is the work presented in [6] that enables the injection
of knowledge into NN. SBR is used as underlying framework to represent prior
knowledge. Constraints are integrated into the loss function of the NN so that
the model minimizes both the error between real and expected value and the
cost introduced by the constraints.

SLF (Semantic Loss Function) [18] is a technique to derive a semantic loss
function that bridges NN output vectors and logical constraints that are provided
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in form of simple propositional logic. Experimental results show an improvement
of the NN ability to predict structured objects, such as rankings and paths.

Table 1: Summary of the presented SKI techniques.
Algorithm Typology Predictor Knowledge Task

C-IL2P Structuring NN propositional logic classification
CODL Contraining HMM custom logic rules classification
Fibring Structuring NN first order logic mimic LP
GFNN Hybrid NN propositional logic classification, regression

KBANN Structuring NN propositional logic classification
SBR Constraining KM and NN first order logic classification
SLF Constraining NN propositional logic classification

Student-Teacher Structuring NN first order logic classification

2.2 Structuring Neural Networks

Differently from the constraining techniques, the idea of SKI based on structuring
is to alter the architecture of the predictor to integrate the prior knowledge. In
other words, structural components of the predictor are built or modified in such
a way that they can mimic to a certain extent the behaviour of the provided
knowledge. The structural modification may occur at several levels: (i) impose
constraints on the values of weights, (ii) add additional neurons that resemble
the knowledge to be injected, (iii) generate the entire NN from logic rules.

One of the earliest works that performing SKI in this way is KBANN [16].
Logic rules with limited expressiveness – propositional, variable-free and not
recursive – are successfully embedded in NN. Each entity of the knowledge base
is mapped into a neuron and relations between entities into edges.

Conversely, in [17], the authors discuss how simple rule-based logical ex-
pressions can be approximated as Gaussian basis functions that represent the
certainty of given rules. Outputs of such functions are then weighted together
to obtain the output of the NN (we call such networks GFNN), representing the
composition of activated rules. This is an example of SKI approach with both
constraining and structuring.

C-IL2P system is presented in [8], aiming at integrating inductive learning
with deductive learning. The system provides a straightforward translation al-
gorithm from grounded propositional logic programs to neural networks that are
then trained over examples.

An interesting student–teacher approach for SKI is presented in [11] and
[12]. Authors inject grounded FOL rules into the weights of NN using a two
networks training strategy. This is achieved by forcing a student (first network)
to emulate the predictions of a rule-regularized teacher (second network) evolving
both models iteratively.
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Fibred neural networks are introduced in [7] and [2]. Authors propose to
represent FOL programs as fibred NN, capable of implementing recursion and
enabling them to perform symbolic computation. A fibred NN is a network
composed by two (or possibly more) networks, A and B, where the output of
ith neuron of network A is given by the output of network B and it is defined a
function φi : I → W from A to B, I is the input of neuron ith of A and W is
the set of weights of B.

2.3 Workflow

All the aforementioned methods focus on specific types of predictors and logic
formulæ that can be quite different from each others: however, all methods share
the same general workflow, overviewed in Figure 1. Injection algorithms accept
both a predictor P and prior symbolic knowledge ϕ as input, and they generate
a new predictor P ′ as output, which is then trained over data. If knowledge
injection is made via constraining and constraints affect the actual prediction
value, then they could be removed after the training, as they are not necessary
anymore. We underline that the final trained predictor P ′′ can be re-used to start
a new cycle of SKI with possibly different knowledge or injection algorithm.

Symbolic knowledge ϕ is usually provided as logic formulæ, yet it can have
other representations. However, it is unlikely that knowledge in this form cannot
be directly injected into a sub-symbolic predictor. It must be first embedded
into a machine injectable form. The embedding process is depicted in Figure 2
and it is composed of two operations: parsing (Π) and fuzzification (ζ). Parsing
transforms symbolic knowledge into a visitable data structure, for example in
the case of logic formulæ into abstract syntax trees (AST). Knowledge in form
of visitable data structure ϕ′ can then be processed by a software component
– that we call fuzzifier – that create sub-symbolic (injectable) objects ϕ′′. The
fuzzification process it is necessary to transform a crispy symbolic formula into
a fuzzy interpretation, in other words transform a Boolean function that outputs
a Boolean value into a function (or other sub-symbolic objects) that outputs a
continuos value. We do not impose limits on the nature of ϕ′′ that can be func-
tions, sets of structural components (e.g. NN layers, whole NN, etc.), basically
anything that is sub-symbolic and therefore can be used in conjunction with P .

Literature is far less rich when software applications that support SKI algo-
rithms or the developing of new ones are concerned. LYRICS [14] is an example
of interface for the integration of logic inference and deep learning. The appli-
cation targets NN as ML predictors and logic rules represented in FOL, and it
performs injection via constraining. In the next section we present the design of
a more general software inspired by the workflow in Figure 1, so not imposing
any constraint on the nature of predictors or the form of symbolic knowledge.

3 PSyKI

PSyKI is a software library that provides support for the injection of prior sym-
bolic knowledge into sub-symbolic predictors by letting the users choose the
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Fig. 1: Common workflow of symbolic knowledge injection.

Fig. 2: Symbolic knowledge embedding into sub-symbolic form.

most adequate method with respect to the ML task to accomplish. PSyKI is a
tool for data scientists who want to experiment already existing SKI algorithms
or who want to invent new ones. Source code of PSyKI is publicly available at
https://github.com/psykei/psyki-python.

3.1 Architecture

Essentially, PSyKI is designed around the notion of injector, whose API is showed
in Figure 3. An injector is any algorithm accepting a ML predictor and prior
symbolic knowledge – predominantly logic formulæ – as input that produces a
new predictor as output. In order to properly perform injection, injectors may
require additional information such as algorithm specific hyperparameters. The
general workflow for SKI with PSyKI that we propose is compliant to the one
presented in Section 2.3.

PSyKI offers support for the processing of the symbolic knowledge repre-
sented via logic formulæ. Based on the sort of logic, user can build an abstract
syntax tree (AST) for each formula. The AST can be inspected through a fuzzi-
fier via pattern visitor to encode the symbolic knowledge to a sub-symbolic form
(e.g. fuzzy logic functions, ad-hoc layers). The resulting sub-symbolic object can
finally be used by an injector to create a new predictor. This process – denoted
with ζ in Figure 2 – is injector specific; instead, the same parser Π can be used
for logic formulæ of the same sort independently of the injector.

The software is organized into well-separated packages to ensure easy exten-
sibility towards new sort of logic and fuzzifiers—see Figure 4. AST is a formula

https://github.com/psykei/psyki-python
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Fig. 3: PSyKI design.

object and obviously it can have different language specific elements w.r.t. the
logic form that is covered. Each formula implementation is self-contained inside
a stand alone package so that if a user wants to add a new logic form it is suf-
ficient to add its implementation in a new package. Similarly, a fuzzifier object
that targets a specific logic form can be add inside the same package of the logic,
there can be any number of fuzzifiers for a given logic.

3.2 Knowledge Parsing

A crucial point in the SKI workflow is the embedding of knowledge from symbolic
into sub-symbolic form. Ideally, there is no constraint on the formalism used to
represent the prior knowledge (e.g. logic formulæ, knowledge graph, etc.).

The most common knowledge representation form that SKI algorithms claim
to support is FOL (or subsets of FOL). However, there are characteristics of
FOL that are not ideal for some predictors. Recursion and function symbols –
that allow recursive structures – cannot be easily integrated into a predictor
that is acyclic (no recursive) by construction such as conventional NN (virtually
all NN, with few exceptions like fibred [2]). Conversely, we consider one of the
most general and expressive logic formalism that does not support recursion and
function symbols: stratified Datalog with negation.

Stratified Datalog logic formulæ with negation is a subset of FOL without
recursive clause definition where knowledge is represented via function-free Horn
clauses [1]. Horn clauses, in turn, are formulæ of the form φ ← ψ1 ∧ ψ2 ∧ . . .
denoting a logic implication (←) stating that φ (the head of the clause) is implied
by the conjunction among a number of atoms ψ1, ψ2, . . . (the body of the clause).
Since we rely on Datalog with negation, we allow atoms in the bodies of clauses
to be negated. In case the ith atom in the body of some clause is negated, we
write ¬ψi. There, each atom φ, ψ1, ψ2, . . . may be a predicate of arbitrary arity.

An l-ary predicate p denotes a relation among l entities: p(t1, . . . , tl) where
each ti is a term, i.e. either a constant (denoted in monospace) representing a
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Fig. 4: Class diagram of PSyKI. Main entities are Injector, Formula, and Fuzzifier.
Package logic.datalog is an exemplification showing two Injector implementations and
their relationships.
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particular entity, or a logic variable (denoted by Capitalised Italic) representing
some unknown entity or value. Well-known binary predicates are admissible
too, such as >, <, =, etc., which retain their usual semantics from arithmetic.
For the sake of readability, we may write these predicates in infix form—hence
> (X, 1) ≡ X > 1.

Consider for instance the case of a rule aimed at defining when a Poker hand
can be classified as a pair—the example may be useful in the remainder of this
paper. Assuming that a Poker hand consists of 5 cards, each one denoted by a
couple of variables Ri, Si – where Ri (resp. Si) is the rank (resp. seed) of the
ith card in the hand –, hands of type pair may be described via a set of clauses
such as the following one:

pair(R1, S1, . . . , R5, S5)← R1 = R2

pair(R1, S1, . . . , R5, S5)← R2 = R3

...
pair(R1, S1, . . . , R5, S5)← R4 = R5

To support injection into a particular predictor, we further assume the input
knowledge base defines at least one outer relation – say output or class – in-
volving as many variables as the input and output features the predictor has
been trained upon. Such a relation may be defined via one or more clauses, and
each clause may possibly leverage on other predicates in their bodies. In turn,
each predicate may be defined through one or more clause. In that case, since
we rely on stratified Datalog, we require the input knowledge to not include any
(directly or indirectly) recursive clause definition.

For example, for a 3-class classification task, any provided knowledge base
should include a clause such as the following one:

class(X̄, y1)← p1(X̄) ∧ p2(X̄)
class(X̄, y2)← p′1(X̄) ∧ p′2(X̄)
class(X̄, y3)← p′′1 (X̄) ∧ p′′2 (X̄)

where X̄ is a tuple having as many variables as the neurons in the output layer,
and yi is a constant denoting the ith class.

Once that the logic has been formalized, the implementation of a Formula –
visitable data structure like an AST – is quite straight forward, see Figure 5. It
is convenient to define a custom adapter from a generated AST by a third part
library – such as ANTLR – to Formula object. Knowledge in Formula form can
be embedded with a fuzzifier into a sub-symbolic form and finally injected into
a predictor.

3.3 Knowledge Fuzzification

In this section we propose two possible fuzzifications of Formula objects suitable
for injection via constraining and structuring.

In the former method – which we call Lukasiewicz – each Formula is con-
verted into a real-valued function aimed at computing the cost of violating that
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Fig. 5: Class diagram of the Formula implementation for Datalog logic formulæ.

formula. To serve this purpose, we rely on a multi-valued interpretation of logic
inspired to Lukasiewicz’s logic [10]. Accordingly, we encode each formula via
the J·K function, mapping logic formulæ into real-valued functions accepting real
vectors of size m+n as input and returning scalars in R as output. These scalars
are then clipped into the [0, 1] range, via the η : R→ [0, 1], defined as follows:

η(x) =


0 if x ≤ 0

x if 0 < x < 1

1 if x ≥ 1

(1)

Hence, the penalty associated with the ith predictor’s output violating rule φi can
be written as ci(x, yi) = η(JφiK(x, yi)). The J·K encoding function is recursively
defined in Table 2. Such functions can be integrated into a predictor to constraint
its training — it is unlikely that P ′′ makes predictions that violate ϕ.

The second method – namely SubNetworkBuilder – transforms each Formula
into a neural network (modules). Each modules is responsible to mimic the be-
haviour of a single logic formula, more precisely to evaluate the truth degree of
the right hand side of the formula. To do so, all logic operators of the formulæ
have to be mapped into an ad-hoc layer that computes the associated fuzzy
function for the specific operator (like in the previous fuzzification method, but
values are not necessary intended to be penalties). Layers are then recursively
combined following the AST to build a NN. Finally, modules can be perma-
nently integrated inside a NN predictor able to exploit both prior knowledge
and induction by examples.

4 Case Study

In the following part of this manuscript we present how to effectively use PSyKI
in a ML task. We choose to apply knowledge injection in a domain where it
is easy to express correct logic rules and at the same time it is difficult for
sub-symbolic predictors to achieve optimal results.
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Table 2: Two logic formulæ’s encodings into real-valued functions (the first with 0
representing true and 1 false, vice versa in the second). There, X is a logic variable,
while x is the corresponding real-valued variable, whereas is X̄ a tuple of logic variables.
Similarly, k is a numeric constant, and k is the corresponding real value, whereas ki is
the constant denoting the ith class of a classification problem. Finally, expr(X̄) is an
arithmetic expression involving the variables in X̄.

Formula Continuos interpretation 1 Continuos interpretation 2

J¬φK η{1− JφK} η{1− JφK}
Jφ ∧ ψK η{max{JφK, JψK}} η{min{JφK, JψK}}
Jφ ∨ ψK η{min{JφK, JψK}} η{max{JφK, JψK}}
Jφ = ψK η{|JφK− JψK|} η{J¬(φ 6= ψ)K}
Jφ 6= ψK J¬(φ = ψ)K η{|JφK− JψK|}
Jφ > ψK η{1−max{0, JφK− JψK}} η{max{0, JφK− JψK}}
Jφ ≥ ψK J(φ > ψ) ∨ (φ = ψ)K η{J(φ > ψ) ∨ (φ = ψ)K}
Jφ < ψK J¬(φ ≥ ψ)K η{max{0, JψK− JφK}}
Jφ ≤ ψK J¬(φ > ψ)K η{J(φ < ψ) ∨ (φ = ψ)K}
Jφ⇒ ψK η{max{0, JψK− JφK}} η{min{1, 1− JψK + JφK}}
Jφ⇐ ψK η{max{0, JφK− JψK}} η{min{1, 1− JφK + JψK}}
Jφ⇔ ψK η{max{0, |JφK− JψK|}} η{min{1, 1− |JφK− JψK|}}
Jexpr(X̄)K expr(JX̄K) expr(JX̄K)
JtrueK 0 1
JfalseK 1 0
JXK x x
JkK k k
Jp(X̄)K∗∗ Jψ1 ∨ . . . ∨ ψkK Jψ1 ∨ . . . ∨ ψkK
Jclass(X̄, yi)← ψK JψK∗ JψK∗

∗ encodes the penalty for the ith output
∗∗ assuming predicate p is defined by k clauses of the form:

p(X̄)← ψ1, . . . , p(X̄)← ψk
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Poker hand dataset [3] subtends a multi-classification task on a finite – yet
very large – discrete domain, where classes are overlapped and heavily unbal-
anced, while exact classification rules can be written in logic formulæ. It consists
of a tabular dataset, containing 1,025,010 records—each one composed by 11 fea-
tures. Each record encodes a poker hand of 5 cards. Hence, each records involves
5 couples of features – denoting the cards in the hand –, plus a single categorical
feature denoting the class of the hand. Two features are necessary to identify
each card: suit and rank. Suit is a categorical feature (heart, spade, diamond and
club), while rank is ordinal feature—suitably represented by an integer between
1 and 13 (ace to king). The multi-classification task consists in predicting the
poker hand’s class. Each hand may be classified as one of 10 different classes
denoting the nature of the hand according to the rules of Poker (e.g., nothing,
pair, double pair, flush). We use 25,010 records for training and the remaining
million for testing, as shown in Table 3.

Table 3: Poker hand dataset statistics, per class.

Class
Train.

Instances
Train.

Freq. (%)
Test

Instances
Test

Freq. (%)

nothing 12,493 49.95 501,209 50.12
pair 10,599 42.38 422,498 42.25
two pairs 1,206 4.82 47,622 4.76
three of a kind 513 2.05 21,121 2.11
straight 93 0.37 3,885 0.39
flush 54 0.22 1,996 0.2
full house 36 0.14 1,424 0.14
four of a kind 6 0.024 230 0.023
straight flush 5 0.02 12 0.001
royal flush 5 0.02 3 1.2 · 10−5

Total 25,010 100 1,000,000 100

We define a class rule for each class, encoding the preferred way of classi-
fying a Poker hand. For example, let {S1, R1, . . . , S5, R5} be the logic variables
representing a Poker hand (S for suit and R for rank), then for class flush we
define the following rule:

class(R1, S1, . . . , R5, S5, flush)← flush(R1, S1, . . . , R5, S5)
flush(R1, S1, . . . , R5, S5)← S1 = S2 ∧ S1 = S3 ∧ S1 = S4 ∧ S1 = S5

(2)

All other rules have the same structure as equation 2: the left-hand side declares
the expected class, while the right-hand side describes the necessary conditions
for that class—possibly, via some ancillary predicates such as flush. Table 4
provides an overview of all the rules we rely upon in our experiments.
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Class Logic Formulation

Pair

class(R1, . . . , S5, pair)← pair(R1, . . . , S5)
pair(R1, . . . , S5)← R1 = R2

...
pair(R1, . . . , S5)← R4 = R5

Two of a Kind

class(R1, . . . , S5, two)← two(R1, . . . , S5)
two(R1, . . . , S5)← R1 = R2 ∧R3 = R4

...
two(R1, . . . , S5)← R2 = R3 ∧R4 = R5

Three of a Kind

class(R1, . . . , S5, three)← three(R1, . . . , S5)
three(R1, . . . , S5)← R1 = R2 ∧R2 = R3

...
three(R1, . . . , S5)← R3 = R4 ∧R4 = R5

Straight

class(R1, . . . , S5, straight)← royal(R1, . . . , S5)
class(R1, . . . , S5, straight)← straight(R1, . . . , S5)
straight(R1, . . . , S5)← (R1 +R2 +R3 +R4 +R5) = (5 ·min(R1, . . . , R5) + 10) ∧ ¬pair(R1, . . . , S5)
royal(R1, . . . , S5)← min(R1, . . . , R5) = 1 ∧ (R1 +R2 +R3 +R4 +R5 = 47) ∧ ¬pair(R1, . . . , S5)

Flush
class(R1, . . . , S5, flush)← flush(R1, . . . , S5)
flush(R1, . . . , S5)← S1 = S2 ∧ S1 = S3 ∧ S1 = S4 ∧ S1 = S5

Four of a Kind

class(R1, . . . , S5, four)← four(R1, . . . , S5)
four(R1, . . . , S5)← R1 = R2 ∧R2 = R3 ∧R3 = R4

...
four(R1, . . . , S5)← R2 = R3 ∧R3 = R4 ∧R4 = R5

Full House class(R1, . . . , S5, full)← three(S1, . . . , R5) ∧ two(S1, . . . , R5) ∧ ¬four(S1, . . . , R5)

Straight Flush
class(R1, . . . , S5, straight flush)← straight(R1, . . . , S5) ∧ flush(R1, . . . , S5)
class(R1, . . . , S5, straight flush)← royal(R1, . . . , S5) ∧ flush(R1, . . . , S5)

Royal Flush class(R1, . . . , S5, royal)← royal(R1, . . . , S5) ∧ flush(R1, . . . , S5)

Nothing class(R1, . . . , S5, nothing)← ¬pair(R1, . . . , S5) ∧ ¬flush(R1, . . . , S5) ∧ ¬straight(R1, . . . , S5) ∧ ¬royal(R1, . . . , S5)

Table 4: Datalog formulæ describing poker hands.

4.1 ΛLayer

ΛLayer is a constraining injection technique that targets NN of any shape. It
works by appending one further layer – the Λ-layer henceforth – at the output
end of the neural network – see Figure 6a –, and by training the overall network
as usual, via gradient descent or others strategies. The Λ-layer is in charge of
introducing an error (w.r.t. the actual prediction provided by the network’s
output layer) whenever the prediction violates the symbolic knowledge. The error
is expected to affect the gradient descent – or whatever optimisation function –
in such a way that violating the symbolic knowledge is discouraged. Once the
NN training is over, the injection phase is considered over as well, hence the
Λ-layer can be removed and the remaining network can be used as usual. Hence,
no architectural property of the original network is hindered by the addition of
the Λ-layer. The error computed in the Λ-layer is a fuzzy function derived from
the original symbolic knowledge. In this case, we use Lukasiewicz fuzzifier with
the first continuos interpretation of Table 2.

4.2 NetworkComposer

NetworkComposer is a straightforward structuring injection method that targets
NN of any shape. A neural network architecture is extended with additional neu-
ral modules, structured to reflect and mimic the symbolic knowledge provided
by designers. Here, we choose to encode the symbolic knowledge with SubNet-
workBuilder fuzzifier using the second continuos interpretation presented in Ta-
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X

H1 ... Y

Λ

(a) An example of a network’s ar-
chitecture after the insertion of Λ-
layer.

(b) An example of a network’s architecture after the inser-
tion of modules.

Fig. 6: Resulting predictors’ architectures after the injection of prior knowledge.

ble 2. There, a module is a sub-network having the same input layer and output
layers of the original network. Figure 6b shows the general architecture of the
resulting NN after the injection of m modules (represented as blue rectangles),
corresponding to as many rules to be injected. These modules can be arbitrarily
complex sub-networks, sharing the same input and output layers of the original
NN. White boxes represent arbitrary hidden layers H1, H2, . . . of the original
NN, whereas X is the input layer and Y is the output layer.

4.3 Results

We conduct SKI into a 3-layers fully-connected NN with random weights ini-
tialization. The predictor is always the same – all identical hyper parameters
– except for the knowledge injection part. The first and second layers have 64
neurons each, the output layer has 10 neurons, one for each class. Neurons’ ac-
tivation functions is the rectified linear unit, except for the neurons of the last
layer that have softmax. During training we choose Adam as optimiser, sparse
categorical crossentropy as loss function, and 32 as batch size. In total, for each
experiment we train predictors for 100 epochs.

Table 5: Test set accuracy, macro F1-score, and single class accuracies for all different
symbolic knowledge injection methods.
SKI Accuracy macro F1 nothing pair two p. three straight flush full four straight f. royal f.

No injection 0.966 0.436 0.994 0.966 0.848 0.871 0.159 0.012 0.248 0.052 0 0
ΛLayer 0.989 0.478 0.998 0.999 0.945 0.913 0.501 0.002 0.202 0.03 0 0
NetworkComposer 0.986 0.581 0.998 0.996 0.867 0.9 0.825 0.798 0.195 0.03 0.083 0

Results are reported in Table 5. We notice that the “classic” NN has high
accuracy values only for frequent classes, instead it cannot correctly label poker
hands for rare classes. Using the constraining ΛLayer method, the predictor has
general higher single-class accuracies, but for very under-represented classes it
continues to fail. This is a common limitation of all SKI methods of this kind,
because the knowledge is learnt by the predictor through examples — if there are
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too few examples, or, no examples at all, then it is impossible for the predictor to
learn. The structuring injector NetworkComposer has much higher single-class
accuracies and F1-measure. This is quite expected because this kind of injector
are less dependant to class frequency — prior knowledge is directly encoded
inside predictor’s structure, not learnt only during the training.

5 Conclusion

In this paper we present the design of PSyKI, a platform for symbolic knowledge
injection into sub-symbolic predictors. PSyKI allows users to follow the general
knowledge injection workflow common to virtually all SKI methods described
in Section 2.3. Practically, PSyKI offers SKI algorithms, and its extendability
does not require much effort. It is quite easy to create new algorithms and
new knowledge embedding methods. We provide a demonstration of PSyKI in
Section 4 using two different injectors in a ML classification task.

In the future we plan to enrich PSyKI with current state-of-the-art SKI
algorithms, comparison metrics between the implemented procedures and other
utilities—i.e. support for different logics.
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