
Family-Based Fingerprint Analysis:
A Position Paper

Carlos Diego N. Damasceno1[0000−0001−8492−7484] and Daniel
Strüber1,2[0000−0002−5969−3521]

1 Radboud University, Nijmegen, NL
d.damasceno@cs.ru.nl

2 Chalmers University of Technology, Gothenburg, SE
danstru@chalmers.se

Abstract. Thousands of vulnerabilities are reported on a monthly ba-
sis to security repositories, such as the National Vulnerability Database.
Among these vulnerabilities, software misconfiguration is one of the top
10 security risks for web applications. With this large influx of vul-
nerability reports, software fingerprinting has become a highly desired
capability to discover distinctive and efficient signatures and recognize
reportedly vulnerable software implementations. Due to the exponen-
tial worst-case complexity of fingerprint matching, designing more effi-
cient methods for fingerprinting becomes highly desirable, especially for
variability-intensive systems where optional features add another expo-
nential factor to its analysis. This position paper presents our vision of
a framework that lifts model learning and family-based analysis princi-
ples to software fingerprinting. In this framework, we propose unifying
databases of signatures into a featured finite state machine and using
presence conditions to specify whether and in which circumstances a
given input-output trace is observed. We believe feature-based signatures
can aid performance improvements by reducing the size of fingerprints
under analysis.

Keywords: Model Learning · Variability Management · Family-Based
Analysis · Software Fingerprinting

1 Introduction

Automatically recognizing vulnerable black-box components is a critical require-
ment in security analysis, especially considering the fact that modern systems
typically include components borrowed from free and open-source projects. Be-
sides, with the large influx of versions released over time and vulnerabilities
reported in security data sources, such as the National Vulnerability Database
(NVD) [25], engineers should dedicate a special attention to the efficiency and
the scalability of techniques for automated software analysis. Providing such a
capability can dramatically reduce engineer’s workload and greatly increase the
efficiency as well as the accuracy of security analysis. One of such techniques is
software fingerprinting [33].

ar
X

iv
:2

20
9.

15
62

0v
1

 [
cs

.C
R

]
 2

7
Se

p
20

22

2 Damasceno and Strüber

Software fingerprinting aims to produce a distinctive and efficient signature
from syntactic, semantic, or structural characteristics of a system under test
(SUT). It is an important technique with many security applications, ranging
from malware detection, digital forensics, copyright infringement, to vulnerabil-
ity analysis [3]. To produce a signature that is both expressive and identifiable,
fingerprint discovery and matching can be pursued using different techniques
[3], such as text-based models (e.g., code instruction or strings), structural mod-
els (e.g., call graphs or control/data-flow graphs), and behavioral-based models
(e.g., execution traces and finite state machines). When source code is unavail-
able, model learning [4,38] and testing [8] techniques may be used as means to
capture the behavioral signatures of an SUT in terms of states and transitions
of a finite state machine.

Model learning has emerged as an effective bug-finding technique for black-
box hardware and software components [38]. In active model learning [4], a
learning algorithm interacts with an SUT to construct and validate a hypothesis
H about the “language” of its external behavior. In general, this hypothesis is
expressed as a Mealy finite state machine (FSM) that, once established, can be
deployed as a behavioral signature to recognize an SUT. Model learning has been
reported effective in building models of different network protocols, including
TCP [16], TLS [31,20], Bluetooth [29], and MQTT [34].

Once a group of fingerprints is produced for a set of SUTs, two naive ap-
proaches may take place to identify whether an unidentified SUT matches with
any of the signatures in a group of fingerprints [20]: (a) re-run model learning
over the unidentified SUT and compare the resulting hypothesis to all known
signatures; (b) perform conformance testing [8] for each model to see which one
matches. While both methods can be effective, they are resource and time inten-
sive and hence, inefficient for large groups of candidate fingerprints. As a matter
of fact, active group fingerprinting has an exponential worst-case complexity
for the number of fingerprints in a database of signatures [33]. Therefore, find-
ing more efficient ways to perform fingerprint group matching becomes highly
desirable.

Fingerprinting is especially challenging in variability-intensive systems, in
which particular system variants can be generated by switching features on or
off. Optional features lead a combinatorial explosion of the overall set of possible
system variants and hence, significant challenges for software analyses [14]. A
recent survey indicates that software security of variability-intensive systems
is an under-studied topic [22]. To the best of our knowledge, fingerprinting in
particular has not been addressed in this context. To date, Shu et al. [33] and
Janssen [20] are the most prominent studies exploring model learning [7] and
conformance testing [23] in fingerprint group matching. Nevertheless, further
investigations are still needed to evaluate the efficiency and scalability of their
approaches in large fingerprint databases [20], as expected in variability-intensive
systems. In this paper, we envision optimizing fingerprinting techniques towards
variability-intensive and evolving systems.

Family-Based Fingerprint Analysis 3

In our vision, we propose principles from variability-aware software analysis
[37] as means to achieve an efficient framework for family-based fingerprint dis-
covery and matching. The term family-based [37] refers to an analysis that is
performed at the level of the whole product line, instead of individual products,
thus allowing to efficiently derive statements about all products. In our proposed
framework, we combine groups of behavioral signatures into a family model, e.g.,
featured finite state machine [18], and use presence conditions to specify whether
(and in which circumstances) a given input-output (IO) trace can be observed.
In combination with SAT/SMT solvers and state-based model comparison al-
gorithms [40,12], this family-based representation can pave the way for efficient
fingerprint discovery and matching techniques where the size of the fingerprints
under analysis can be reduced in orders of magnitude. It would also contribute
to addressing the general lack of family-based analyses in the field: Kenner et
al’s survey [22] mentions a single previous family-based security analysis [27].

This position paper is organized as follows: In section 2, we introduce software
fingerprinting, with an emphasis in active model learning [38]. In section 3, we
draw our vision of family-based fingerprint analysis upon the concept of family-
based analysis [37] and testing [18]. We close this article, in section 4, with our
final remarks about this framework for family-based fingerprint analysis.

2 Software Fingerprinting

Software fingerprinting aims at discovering a distinctive and efficient signature of
syntactic, semantic, or structural characteristics of a SUT and matching uniden-
tified SUTs against one or more fingerprints in a database. It is a fundamental
approach with various applications in software security, including malware de-
tection, software infringement, vulnerability analysis, and digital forensics [3].
To construct signatures that are both expressive and identifiable, fingerprint
discovery and matching can be addressed using different kinds of techniques. In
this work, we focus on active model learning [4] as a means to achieve fingerprint
discovery and matching [33,20].

2.1 Model Learning

Active model learning [4] has been proven effective in fingerprinting behav-
ioral signatures from black-box software implementations [15,20,33,31]. For an
overview on model learning, we refer the interested reader to Frits Vaandrager’s
cover article3 of the Communications of the ACM Volume 60 [38]. Active model
learning is often described in terms of the Minimally Adequate Teacher (MAT)
framework [4] shown in Fig. 1.

In the MAT framework, a learning algorithm is used to interact with a black-
box system and construct a hypothesis H about the “language” of a system’s

3 In fact, we would like to thank for this well-crafted introduction that sparked our
interest to the topic and led to the initial ideas of the first author’s doctoral thesis.

4 Damasceno and Strüber

Teacher

CTT

Learning Algorithm

All pass / Failed test Yes / Counterexample

Perform tests Equivalence Query (EQ)

Outputs Query Output

Reset + inputs Membership Query (MQ)

Observation Table

E
S

S · I

SUT

R
eset + inputs

O
utputs Formulates

MW P

Fig. 1: The MAT framework (adapted from [38])

external behavior. To construct H, the learning algorithm poses membership
queries (MQ) formed by prefixes and suffixes to respectively access and distinguish
states in the SUT. Traditionally, these input sequences are maintained in an
observation table that guides the formulation of a hypothesis H of the SUT
behavior as a finite state machine (FSM) [8].

Once a hypothesis is formulated, equivalence queries (EQ) are used to check
whether H fits in the SUT behavior, otherwise it replies a counterexample that
exposes any differences. EQs are typically derived using conformance testing tech-
niques [8]. To handle more complex behavior, learning algorithms can also enrich
hypotheses with time intervals [35,1] and data guards [33]. Whenever a hypoth-
esis is consistent with an SUT, it can be deployed as a fingerprint [38,20,3].

2.2 A methodology and taxonomy for formal fingerprint analysis

Software fingerprinting has been the focus of previous research from multiple
angles [3]. A formal methodology for fingerprinting problems is introduced by
Shu et al. [33]. They introduce the Parameterized Extended Finite State Ma-
chine (PEFSM) model as an extension of the FSM formalism that incorporates
state variables, guards, and parameterized IO symbols to represent behavioral
signatures of network protocols. Using the PEFSM model, the authors discuss a
taxonomy of network fingerprinting problems where these are distinguished by
their type (active or passive experiments), and goal (matching or discovery). A
summary of the taxonomy for fingerprinting problems is shown in Table 1.

Fingerprinting Experiment type
problem Active Passive

Single matching Conformance testing Passive testing

Group matching Online matching separation Concurrent passive testing

Discovery with spec. Model enumeration and separation Back-tracking based testing

Discovery without spec. Model learning No efficient solution

Table 1: Taxonomy of fingerprinting problems (adapted from [33])

In active fingerprinting, security analysts are able to pose queries to an
unidentified SUT whenever they want. In contrast, in passive experiments, fin-

Family-Based Fingerprint Analysis 5

gerprint analysis is limited to a finite set of IO traces as source of information.
While active experiments are known to be more effective for providing freedom
to query as much as wanted, passive experiments have the advantage that the
SUT stays completely unaware that it is under analysis. The process of building
a fingerprint signature for an SUT is named fingerprint discovery.

In fingerprint discovery [33], the goal is to systematically build a distinctive
and efficient fingerprint for a SUT. This can be performed by retrieving as much
information as possible with the guidance of a pre-existing specification. Oth-
erwise, if no specification is available, model learning [38] can be still applied
to build behavioral signatures. Once a database of signatures is established, the
task of fingerprint matching can take place.

Typically, the goal of fingerprint matching is to determine whether the be-
havior of an unidentified SUT matches a single fingerprint signature. However,
in cases where there are multiple signatures, it may be interesting to consider
matching the SUT against a set of fingerprints of different versions of an imple-
mentation [33].

Active group fingerprinting has been reported to require an exponential worst-
case execution time defined by the number of fingerprints in a group [33]. There-
fore, it is highly desirable to have group matching approaches that are more
efficient than checking fingerprints one by one.

Example 1. (Running example of fingerprint analysis) In Fig. 2, we depict three
alternative versions of an FSM describing the behavior of characters in a game
platform, namely v1, v2, v3.

end/0

 start/1

 start/0
end/0

(v1)

end/0

 start/1

 end/1

 start/0
(v2)

end/0
pause/0

 end/1

 start/1

 start/0

 pause/1

 pause/1

 start/0
end/0

(v3)

Fig. 2: Family of product FSMs

In the first version v1, we have a character that stays in constant movement,
once it starts walking. In version v2, the character can toggle its moving mode.
And, in version v3, the character skills are extended with another feature to
temporary pause its movement. To distinguish versions v1 and v2, we have the
input sequence start · end.

6 Damasceno and Strüber

Limitations and Related Work The algorithms for fingerprint matching
introduced by Shu et al. [33] have been specifically designed for PEFSMs. Hence,
they cannot be directly applied to other notations, such as Mealy machines
[38,39] and timed automata [35,1]; that have more consolidated and ongoing
research. To fill this gap, Janssen [20] introduced two novel methods for group
fingerprinting matching in his Master’s dissertation, under the supervision of
prof. Frits Vaandrager.

In this work, Janssen [20] explores state-of-the-art conformance testing tech-
niques [7] in active fingerprint group matching. Despite the empirical evidences
using an extensive list of TLS implementations, the author points out that fur-
ther research is still needed to evaluate the efficiency and scalability of their
fingerprint matching methods when models are added over time [20]. This limi-
tation becomes particularly interesting if we consider the large number of release
versions that can emerge over time and the influx of vulnerability reports avail-
able in security databases. For instance, at the moment this manuscript was
produced, the GitHub repository of the OpenSSL project [26] has 338 release
versions and more than 31 thousand commits and, the NVD has more than 300
vulnerabilities associated with the keyword “openssl”. This reinforces the need
for designing fingerprinting techniques able to efficiently handle large sets of
signatures.

3 Family-Based Fingerprint Analysis

As previously discussed, the efficiency of fingerprinting heavily depends on the
number of fingerprints under analysis. In fact, the size of a candidate group of
fingerprints is an exponential factor in the worst-case complexity of fingerprint
group matching [33]. In variability-intensive systems, this factor may become
more noticeable because the number of valid products is up-to exponential in
the number of features [37]. Thus, to minimize costs and effort, while maximizing
the effectiveness, we propose looking at fingerprint discovery and matching from
a feature-oriented perspective [21].

Feature modeling allows software engineers to design and manage families of
similar, yet customized products by enabling or disabling features. A feature is
any prominent or distinctive user-visible behavior or characteristic of a software
system [21]. Features are typically managed in association with other assets,
including feature models [21], source code [5], and test models [18].

In fingerprinting, the notion of features may be used to capture variability
in IO interfaces, optional build parameters, or even release version identifiers.
However, when fingerprinting variability-intensive, evolving software systems, it
becomes essential to represent behavioral signatures in a way that is succinct
[9,17] and aid the design and implementation of variability-aware analysis strate-
gies [37]. To pursue performance improvements, there is a research direction
dedicated to raise variability-awareness in software analysis by lifting modeling
languages and analysis strategies to the so called family-based level [37].

Family-Based Fingerprint Analysis 7

3.1 Family-Based Modeling and Analysis

In family-based analysis, domain artifacts, such as feature models [21], are ex-
ploited to efficiently reason about product variants and feature combinations.
To make it feasible, software modeling and analysis principles are extended to
become aware of variability knowledge and avoid redundant computations across
multiple products; an issue that typically occurs when standard software analysis
is applied in an exhaustive, product-based fashion [37].

Product-based analysis techniques are known to be effective but infeasible
because of the potentially exponential number of valid implementations; or, in
the best case, inefficient, due to redundant computations over assets shared
among multiple products [37].

Family-based analysis operates on a unified representation of a family of
product-specific representations, namely the family model. A Featured Finite
State Machine (FFSM) [18] is one example of variability-aware modeling nota-
tion proposed to express families of FSMs as a unified artifact. In FFSMs, states
and transitions are annotated with presence conditions described as proposi-
tional logic formulae defined over the set of features. These FSM fragments are
called conditional transition [18] as they occur only when the feature constraints
involved in a concerned state or transition are satisfied.

Using SAT solvers, family models are amenable to automated derivation of
product-specific models [17], family-based model checking [9], and configurable
test case generation [18], where redundant analysis over shared states/transitions
are mitigated. Thus, the cost of family-based analysis becomes determined by
the feature size and amount of feature sharing, instead of the number of valid
products [37].

To guide the creation and maintenance of family models, recent studies have
proposed the application of model comparison algorithms, such as LTS diff [40]
and FFSM diff [12], to match and merge product-specific FSMs. These ap-
proaches can provide efficient means to find differences between models [40]
and produce succinct FFSM representations from families of FSMs [11,12].

Motivated by these benefits, we introduce our vision of how family-based
learning [11,12] and testing [9,18] principles could be lifted to behavior-based
fingerprint analysis. These notions should aid an efficient framework for family-
based fingerprint analysis where a group of behavioral signatures are handled,
matched and merged as a family model, rather than a group of individual sig-
natures.

Example 2. (Running example of behavioral variability models) In Fig. 3, we
depict a family-based representation for the set of alternative product FSMs
shown in the previous example.

3.2 A Framework for Family-Based Fingerprint Analysis

In this paper, we propose the development of a framework for family-based fin-
gerprint analysis. We suggest principles from model learning [11,12] and testing

8 Damasceno and Strüber

end[v1|v2|v3]/0
pause[¬v1|¬v2|v3]/0

start[v1|v2|v3]/1

end[¬v1|v2|v3]/1

start[v1|v2|v3]/0
end[v1|¬v2|¬v3]/0

pause[¬v1|¬v2|v3]/1

pause[¬v1|¬v2|v3]/1

start[¬v1|¬v2|v3]/0
end[¬v1|¬v2|v3]/0

Fig. 3: Example of family model expressed as a FFSM

[9,18] as means to kick-off the automated creation and maintenance of family-
based signatures from a set of SUT binaries. In Fig. 4, we depict this framework,
which, inspired by [33,32], we divided in two stages: (a) Fingerprint discovery,
where a family signature is generated by learning, matching, and merging SUT-
specific signatures; and (b) Fingerprint Matching, where the family signature is
employed as a configuration oracle to answer if or under which circumstances a
given IO trace has been observed.

Fingerprint matching

Fingerprint discovery
② Model Merging

Models to compare

Comparison algorithm

Product configurations

Merging assumptions

🄱🄱 Filtration

Alphabet # Filter

Configuration # Filter

Logs and traces # FilterTarget SUT
binary

① Model Extraction

🄰🄰 Model assumptions

Input alphabets

Learning algorithm

Feature model

Known models

Logs and IO traces

Merging Assumptions

③ Family Signature Generation

🄲🄲 Signature detection

Configuration database

Configuration Oracle

Set of SUT
binaries

⌛ 🏃

end[v1|v2|v3]/0
pause[v3]/0

end[v2|v3]/1
start[v1|v2|v3]/1

start[v1|v2|v3]/0
end[v1]/0

🛑pause[v3]/1
pause[v3]/1

start[v3]/0
end[v3]/0

Fig. 4: A framework for family-based fingerprint analysis

Family Fingerprint Discovery When fingerprinting a set of SUT binaries
that are akin, it is reasonable to assume that they share behavioral commonal-
ities due to similar requirements or even reused components. Hence, we believe
adaptive model learning [19] is a variant that can aid in reducing the costs re-
quired for fingerprint discovery. In adaptive learning, pre-existing models are
used to derive MQs to steer learning algorithms to states maintained after up-
dates, and potentially speed up the model learning process for systems evolving
over time [10] and in space [36]. Hence, we believe these benefits may also hold
in fingerprint discovery.

Once a group of signatures is obtained, fingerprint matching may be per-
formed in its standard way. However, as the cost for fingerprint group matching
may increase exponentially to the number of alternative versions and the size
of its candidate signatures, we suggest a model merging step to combine a set

Family-Based Fingerprint Analysis 9

of behavioral signatures into a unified FFSM representation [18]. To support
this step, we find that state-based model comparison algorithms (e.g., LTS diff
[40], FFSM diff [12]) can provide efficient means to construct a family signature.
Merging assumptions can be used to preset state pairs matching [40] and aid the
creation of a more succinct representation [12] for groups of fingerprints. This
concept of family signature provides the basis for a key entity in family-based
fingerprinting experiments, namely the configuration oracle (CQ).

Our idea for a CQ is an abstract entity able to report if or under which cir-
cumstances (e.g., feature combinations, versions) a given IO trace has been previ-
ously observed. We believe that CQs can also be repurposed to recommend con-
figurable test cases for distinguishing SUT versions from their observed outputs
or satisfiable presence conditions. Thus, family-based signatures are amenable
to be deployed in both passive and active fingerprint experiments for discovery
and matching.

Family Fingerprint Matching Once a family signature is created, variability-
aware, model-based testing concepts can enable an efficient fingerprint matching.
Particularly, we see that family-based testing principles, such as configurable
test suites [18], could be repurposed as queries to check whether a particular
IO trace has been previously observed. If so, the presence conditions assigned
to the conditional transitions traversed by an IO trace can be used to con-
straint the configuration space of a family of SUT binaries, e.g., “the follow-
ing presence conditions must hold because the IO traces matches with this list
of conditional state/transition”. To automate the task of fingerprint matching,
SAT/SMT solvers can be used to reply what (or even how many) configurations
can potentially match to a given SUT behavior, as EQs do.

Example 3. (Example of fingerprint matching) In Fig. 5, we illustrate an example
of configurable test cases derived from the FFSM in Fig. 3.

Fig. 5: Example of configurable test case for fingerprint matching

From this configurable test case, we can find that the trace start/1 · end/1
implies the constraint (v1|v2|v3) ∧ (¬v1|v2|v3) and, from it, we can discard a
match between the SUT and version v1. Also, we can find that this same input is
able to distinguish versions v1 and v2. In this case, if the trace start/1 · end/0
is observed, then the constraint (v1|v2|v3) ∧ (v1|¬v2|¬v3) is derived and hence,
a match to v1 is found.

10 Damasceno and Strüber

3.3 Practical and Theoretical Implications

In this section, we outline a few implications of this framework on software anal-
ysis. These include (a) Combining passive and active fingerprinting experiments,
(b) Family-based fingerprinting in model learning, and (c) Fingerprint Analysis
in the Open-World.

Hybrid fingerprinting experiments. When fingerprinting, traces from pas-
sive experiments can be incorporated in fingerprint matching to constraint the
configuration space of family-based fingerprints. Then, presence conditions de-
rived from these IO traces can be used to steer fingerprint analysis to parts
of the signature to reduce the uncertainty of what configuration is inside some
unidentified SUT. Similar concepts have been used in adaptive learning to speed
up update learning and should also aid performance improvements.

Family Signatures In Active Model Learning. Family-based fingerprints
may also support active model learning, particularly by providing EQs based
on multiple merged hypotheses. Typically, equivalence queries are approximated
via conformance testing techniques applied over a single hypothesis [4]. How-
ever, some learning techniques may construct hypothesis non-deterministically
[39] and hence, potentially lead to “hypotheses mutants”. Aichernig et al. [2] has
shown that EQs can be efficiently generated using mutation analysis over hypoth-
esis. We believe these results may also hold when combined with family models.
In fact, a similar idea has been already investigated by Devroey et al. [13] within
the context of family model-based testing where behavioral variability models
have been deployed to optimize the generation, configuration and execution of
mutants. Nevertheless, there are still no studies deploying family model-based
testing in active learning.

Towards Fingerprinting Highly-Configurable Systems. As our long term
vision, we aim at making our approach suitable for highly-configurable systems,
where it is infeasible to enumerate all variants or the complete SUT behavior.
Hence, fingerprinting must rely on samples of traces. Currently, if the SUT does
not have an exact match with any signature, Shu et al. [33] recommends ap-
plying model learning [4] to the SUT. However, in highly-configurable systems,
exhaustive learning becomes impractical due to the potentially exponential num-
ber of valid configurations. Thus, it becomes interesting to inform whether an
unindetified trace has an inexact match with patterns associated to a particular
configuration or parameter. To address this, we believe that other variability-
aware representations, e.g., composition-based models [6] or control-flow graphs
[30], and analysis techniques, e.g., statistical classification or clustering [28], may
be more suitable to capture fingerprints as small behavioral or structural pat-
terns, rather than an exact annotative-based model [9,17] of the SUT behavior.

Family-Based Fingerprint Analysis 11

4 Final Remarks

This paper discusses a generic framework for lifting fingerprint analysis to the
family-based level. We suggest that state-based model comparison algorithms
[40] can aid the creation of concise FFSM representations [11,12] from a set
of fingerprints and enable efficient fingerprint analysis. We envision there are a
plenty of real-world artifacts and alternative analysis and modeling approaches
that could be used to start exploring and expanding this problem. Many artifacts
are available in the Automata Wiki [24]. We believe this repository constitutes
a great opportunity to future investigations in this novel topic which we call
family-based fingerprinting analysis.

References

1. Aichernig, B.K., Pferscher, A., Tappler, M.: From Passive to Active: Learning
Timed Automata Efficiently. In: Lee, R., Jha, S., Mavridou, A., Giannakopoulou,
D. (eds.) NASA Formal Methods. Lecture Notes in Computer Science, Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-55754-6 1

2. Aichernig, B.K., Tappler, M.: Efficient active automata learning via muta-
tion testing. Journal of Automated Reasoning 63(4), 1103–1134 (Dec 2019).
https://doi.org/10.1007/s10817-018-9486-0

3. Alrabaee, S., Debbabi, M., Wang, L.: A Survey of Binary Code Fingerprinting
Approaches: Taxonomy, Methodologies, and Features. ACM Computing Surveys
55(1) (Jan 2022). https://doi.org/10.1145/3486860

4. Angluin, D.: Learning regular sets from queries and counterexamples. Information
and Computation 75(2) (1987). https://doi.org/10.1016/0890-5401(87)90052-6

5. Apel, S., Batory, D., Kästner, C., Saake, G.: Feature-Oriented Software Prod-
uct Lines. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
37521-7

6. Benduhn, F., Thüm, T., Lochau, M., Leich, T., Saake, G.: A Survey on Modeling
Techniques for Formal Behavioral Verification of Software Product Lines. In: Pro-
ceedings of the Ninth International Workshop on Variability Modelling of Software-
intensive Systems. pp. 80:80–80:87. VaMoS ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2701319.2701332, event-place: Hildesheim, Germany

7. van den Bos, P., Vaandrager, F.: State identification for labeled transition systems
with inputs and outputs. Science of Computer Programming 209, 102678 (Sep
2021). https://doi.org/10.1016/j.scico.2021.102678

8. Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A.: Model-
Based Testing of Reactive Systems: Advanced Lectures, Lecture Notes
in Computer Science, vol. 3472. Springer, Berlin, Heidelberg (2005).
https://doi.org/10.1007/b137241

9. Classen, A., Cordy, M., Schobbens, P.Y., Heymans, P., Legay, A., Raskin, J.F.: Fea-
tured Transition Systems: Foundations for Verifying Variability-Intensive Systems
and Their Application to LTL Model Checking. IEEE Transactions on Software
Engineering 39(8) (Aug 2013). https://doi.org/10.1109/TSE.2012.86

10. Damasceno, C.D.N., Mousavi, M.R., da Silva Simao, A.: Learning to Reuse: Adap-
tive Model Learning for Evolving Systems. In: Ahrendt, W., Tapia Tarifa, S.L.
(eds.) Integrated Formal Methods. Lecture Notes in Computer Science, Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-34968-4 8

https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/s10817-018-9486-0
https://doi.org/10.1145/3486860
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1145/2701319.2701332
https://doi.org/10.1016/j.scico.2021.102678
https://doi.org/10.1007/b137241
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1007/978-3-030-34968-4_8

12 Damasceno and Strüber

11. Damasceno, C.D.N., Mousavi, M.R., Simao, A.: Learning from Difference: An Au-
tomated Approach for Learning Family Models from Software Product Lines [Re-
search]. In: Proceedings of the 23rd International Systems and Software Prod-
uct Line Conference - Volume A. SPLC ’19, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3336294.3336307

12. Damasceno, C.D.N., Mousavi, M.R., Simao, A.d.S.: Learning by sampling: learn-
ing behavioral family models from software product lines. Empirical Software En-
gineering 26(1) (Jan 2021). https://doi.org/10.1007/s10664-020-09912-w

13. Devroey, X., Perrouin, G., Papadakis, M., Legay, A., Schobbens, P.Y., Heymans, P.:
Featured model-based mutation analysis. In: Proceedings of the 38th International
Conference on Software Engineering. p. 655–666. ICSE ’16, New York, NY, USA
(2016). https://doi.org/10.1145/2884781.2884821

14. Elmaghbub, A., Hamdaoui, B.: LoRa Device Fingerprinting in the Wild: Disclosing
RF Data-Driven Fingerprint Sensitivity to Deployment Variability. IEEE Access
9 (2021). https://doi.org/10.1109/ACCESS.2021.3121606

15. Fiterau-Brostean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas, K., So-
morovsky, J.: Analysis of DTLS implementations using protocol state fuzzing.
In: 29th USENIX Security Symposium (USENIX Security 20). pp. 2523–
2540. USENIX Association (Aug 2020), https://www.usenix.org/conference/

usenixsecurity20/presentation/fiterau-brostean
16. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining Model Learning and

Model Checking to Analyze TCP Implementations. In: Chaudhuri, S., Farzan, A.
(eds.) Computer Aided Verification. Lecture Notes in Computer Science, Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41540-6 25

17. Fragal, V.H., Simao, A., Mousavi, M.R.: Validated Test Models for Software Prod-
uct Lines: Featured Finite State Machines. In: Kouchnarenko, O., Khosravi, R.
(eds.) Formal Aspects of Component Software: 13th International Conference,
FACS 2016. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4 13

18. Fragal, V.H., Simao, A., Mousavi, M.R., Turker, U.C.: Extending HSI Test Gen-
eration Method for Software Product Lines. The Computer Journal (May 2018).
https://doi.org/10.1093/comjnl/bxy046

19. Huistra, D., Meijer, J., van de Pol, J.: Adaptive Learning for Learn-Based Re-
gression Testing. In: Howar, F., Barnat, J. (eds.) Formal Methods for Industrial
Critical Systems. Springer (2018). https://doi.org/10.1007/978-3-030-00244-2 11

20. Janssen, E.: Fingerprinting TLS Implementations Using Model Learning. Master’s
thesis, Radboud Universit, Nijmegen (Mar 2021)

21. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)

22. Kenner, A., May, R., Krüger, J., Saake, G., Leich, T.: Safety, security, and config-
urable software systems: a systematic mapping study. In: Proceedings of the 25th
ACM International Systems and Software Product Line Conference - Volume A.
New York, NY, USA (Sep 2021). https://doi.org/10.1145/3461001.3471147

23. Lee, D., Yannakakis, M.: Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE 84(8), 1090–1123 (Aug 1996).
https://doi.org/10.1109/5.533956

24. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for Automata
Learning and Conformance Testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.)
Models, Mindsets, Meta: The What, the How, and the Why Not? Essays Dedicated
to Bernhard Steffen on the Occasion of His 60th Birthday. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-22348-9 23

https://doi.org/10.1145/3336294.3336307
https://doi.org/10.1007/s10664-020-09912-w
https://doi.org/10.1145/2884781.2884821
https://doi.org/10.1109/ACCESS.2021.3121606
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-57666-4_13
https://doi.org/10.1093/comjnl/bxy046
https://doi.org/10.1007/978-3-030-00244-2_11
https://doi.org/10.1145/3461001.3471147
https://doi.org/10.1109/5.533956
https://doi.org/10.1007/978-3-030-22348-9_23

Family-Based Fingerprint Analysis 13

25. NVD: The National Vulnerability Database (2022), https://nvd.nist.gov/
26. OpenSSL Foundation, Inc.: OpenSSL Releases on Github (2022), https://github.

com/openssl/openssl/releases
27. Peldszus, S., Strüber, D., Jürjens, J.: Model-based security analysis of feature-

oriented software product lines. In: Proceedings of the 17th ACM SIGPLAN Inter-
national Conference on Generative Programming: Concepts and Experiences. pp.
93–106 (2018). https://doi.org/10.1145/3278122.3278126

28. Pereira, J.A., Acher, M., Martin, H., Jézéquel, J.M., Botterweck, G., Ven-
tresque, A.: Learning software configuration spaces: A systematic litera-
ture review. Journal of Systems and Software 182, 111044 (Dec 2021).
https://doi.org/10.1016/j.jss.2021.111044

29. Pferscher, A., Aichernig, B.K.: Fingerprinting Bluetooth Low Energy Devices via
Active Automata Learning. In: Huisman, M., Păsăreanu, C., Zhan, N. (eds.) Formal
Methods. LNCS, Springer (2021). https://doi.org/10.1007/978-3-030-90870-6 28

30. Rhein, A.V., Liebig, J., Janker, A., Kästner, C., Apel, S.: Variability-Aware Static
Analysis at Scale: An Empirical Study. ACM Transactions on Software Engineering
and Methodology 27(4) (Nov 2018). https://doi.org/10.1145/3280986

31. de Ruiter, J.: A Tale of the OpenSSL State Machine: A Large-Scale Black-Box
Analysis. In: Brumley, B.B., Röning, J. (eds.) Secure IT Systems, vol. 10014.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47560-8 11

32. Shirani, P., Wang, L., Debbabi, M.: BinShape: Scalable and Robust Binary Library
Function Identification Using Function Shape. In: Polychronakis, M., Meier, M.
(eds.) Detection of Intrusions and Malware, and Vulnerability Assessment. LNCS,
Springer (2017). https://doi.org/10.1007/978-3-319-60876-1 14

33. Shu, G., Lee, D.: A Formal Methodology for Network Protocol Fingerprint-
ing. IEEE Transactions on Parallel and Distributed Systems 22(11) (Nov 2011).
https://doi.org/10.1109/TPDS.2011.26

34. Tappler, M., Aichernig, B.K., Bloem, R.: Model-Based Testing IoT Commu-
nication via Active Automata Learning. In: 2017 IEEE International Con-
ference on Software Testing, Verification and Validation (ICST) (Mar 2017).
https://doi.org/10.1109/ICST.2017.32

35. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to Learn –
Learning Timed Automata from Tests. In: André, E., Stoelinga, M. (eds.)
Formal Modeling and Analysis of Timed Systems. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29662-9 13

36. Tavassoli, S., Damasceno, C.D.N., Khosravi, R., Mousavi, M.R.: Adaptive behav-
ioral model learning for software product lines. In: Proceedings of the 26th Inter-
national Systems and Software Product Line Conference. SPLC ’22 (2022)

37. Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A Classification and Survey
of Analysis Strategies for Software Product Lines. ACM Comput. Surv. 47(1) (Jun
2014). https://doi.org/10.1145/2580950

38. Vaandrager, F.: Model Learning. Commun. ACM 60(2) (Jan 2017).
https://doi.org/10.1145/2967606

39. Vaandrager, F., Garhewal, B., Rot, J., Wißmann, T.: A New Approach for Active
Automata Learning Based on Apartness. In: Proceedings of the 28th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS) (Jan 2022), http://arxiv.org/abs/2107.05419

40. Walkinshaw, N., Bogdanov, K.: Automated Comparison of State-Based Soft-
ware Models in Terms of Their Language and Structure. ACM Trans-
actions on Software Engineering and Methodology 22(2) (Mar 2013).
https://doi.org/10.1145/2430545.2430549

https://nvd.nist.gov/
https://github.com/openssl/openssl/releases
https://github.com/openssl/openssl/releases
https://doi.org/10.1145/3278122.3278126
https://doi.org/10.1016/j.jss.2021.111044
https://doi.org/10.1007/978-3-030-90870-6_28
https://doi.org/10.1145/3280986
https://doi.org/10.1007/978-3-319-47560-8_11
https://doi.org/10.1007/978-3-319-60876-1_14
https://doi.org/10.1109/TPDS.2011.26
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1145/2580950
https://doi.org/10.1145/2967606
http://arxiv.org/abs/2107.05419
https://doi.org/10.1145/2430545.2430549

	Family-Based Fingerprint Analysis: A Position Paper

