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Abstract. Answer Set Programming (ASP) is a well-established declar-
ative Al formalism for knowledge representation and reasoning. ASP sys-
tems were successfully applied to both industrial and academic problems.
Nonetheless, their performance can be improved by embedding domain-
specific heuristics into their solving process. However, the development
of domain-specific heuristics often requires both a deep knowledge of the
domain at hand and a good understanding of the fundamental working
principles of the ASP solvers. In this paper, we investigate the use of deep
learning techniques to automatically generate domain-specific heuristics
for ASP solvers targeting the well-known graph coloring problem. Em-
pirical results show that the idea is promising: the performance of the
ASP solver wASP can be improved.
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1 Introduction

Answer Set Programming (ASP) [5] is a well-established declarative AI formal-
ism for knowledge representation and reasoning. ASP is a popular paradigm for
solving complex problems mainly because it combines high modeling power with
efficient solving technology [7]. The rich language, the intuitive semantics and
the availability of efficient solvers are the key ingredients of the success of ASP
on solving several industrial and academic problems [10].

Modern ASP solvers employ an extended version of the Conflict-Driven
Clause Learning (CDCL) algorithm [16]. As a matter of fact, the performance of
a CDCL solver heavily depends on the adoption of heuristics that drive the search
for solutions. Among these, the heuristic for the selection of the branching literal
(i.e., the criterion determining the literal to be assumed true at a given stage
of the computation) can dramatically affect the overall performance of an im-
plementation [8]. As default strategies, ASP implementations feature very good
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general purpose heuristics belonging to the family of VSIDS [9]. However, they
may fail to compute solutions of the hardest problems in a reasonable amount of
time. Nonetheless, it is well-known that the performance of ASP solvers can be
improved by embedding domain-specific heuristics into their solving process |2,
8,11], and this is particularly true in the case of real-world industrial prob-
lems [24]. However, the development of domain-specific heuristics often requires
both a deep knowledge of the domain at hand and a good understanding of
the fundamental working principles of the ASP solvers. Thus, one might wonder
whether it is possible to ease the burden of the ASP developer by leaving the task
of defining proper heuristics to a machine that can learn effective heuristics from
the observation of the behavior of solvers on instances from the same domain.
A first positive answer to this question was provided by Balduccini in [3] who
proposed the DORS framework, where the solver learns domain-specific heuris-
tics while solving instances of a given domain [3]. The DORS framework was
implemented in SMODELS, yielding interesting performance improvements. How-
ever, DORS was tailored for DPLL-style algorithms and we are not aware of any
attempt to experiment with automatic learning of domain heuristics in modern
solvers. Starting from the observation that the recent success of Al technology
was largely propelled by the developments in deep neural networks [4], which
proved to be very effective tools for solving tasks where the presence of humans
was considered fundamental; we decided to investigate the use of deep learning
techniques to automatically generate domain-specific heuristics for CDCL-based
ASP solvers.

This paper presents our first results on employing neural networks to improve
the performance of an ASP solver, and to this end, we targeted the well-known
graph coloring problem as a use case. The heuristic is learned by observing
the behavior of the ASP solver WASP [1] on a test set of instances randomly
sampled from a population, where each sample corresponds to an ASP instance.
The proposed neural network model takes inspiration from previous experiments
conducted by Selsam and Bjgrner in [22] and possesses a particular structure
specifically designed for being invariant to permutations between literals and
their negations, between literals belonging to the same rule and, finally, between
rules themselves. The neural network is then trained on the test set, and the
resulting model is used to alter the initial values of the heuristic counters used
by WASP default heuristics so to make the most promising choices first. Empirical
results show that the idea is promising: the performance of WASP can be improved
by plugging-in automatically-generated neural domain heuristics.

2 Background

2.1 Graph coloring problem

The graph coloring problem consists of assigning colors to nodes of a graph, such
that two connected nodes do not share the same color. More formally, let C' be
a set of colors and let G = (N, L) be an undirected graph, where N is a set
of natural numbers representing the nodes of G, and L. C N x N be a set of
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links between nodes in N. The graph coloring problem consists of finding a total
function col : N — C such that col(ny) # col(ng) for each (n1,nq) € L. The
following example shows an ASP encoding of the graph coloring problem. Note
that the encoding represents a simplified version of the one used in the recent
ASP Competitions [7].

Ezample 1 (ASP encoding of the graph coloring problem.). Let C be a set of
colors and G = (N, L) be a graph. Let Hg be the following program:

col(n, c) < ~ncol(n, c) Vn € N,ce C
neol(n, ¢) < col(n,ca), ¢ # ca Vne N,ceC
neol(n, ¢) < col(nz, c) VY(na,n) € L s.t. na <n,ceC

colored(n) < col(n,c) Yn € N,ce C
L+ ~colored(n) Yn e N

If C = {b,g} and G = ({1,2},{(1,2)}), then II§ is the following program:

r1 :+ col(1,b) < ~ncol(1,b) ro ¢ col(1,g) < ~ncol(1,g)
rg @ col(2,b) « ~ncol(2,b) rg : col(2,g) + ~ncol(2,g)
rs :  neol(1,b) « col(1,g) ré : ncol(l,g) + col(1,b)
7+ ncol(2,b) + col(2,9) rg :  ncol(2,g) + col(2,b)
rg :  ncol(2,b) + col(1,b) ri0:  necol(2,g) + col(1,g)
r11:  colored(1) < col(1,b) ri2:  colored(1) < col(1, g)
r13:  colored(2) < col(2,b) r14:  colored(2) < col(2, g)
r15: L < ~colored(1) ri6: L < ~colored(2)

I admits two solutions, i.e., {col(1, g),col(2,b),ncol(1,b),ncol(2, g),colored(1),
colored(2)} and {col(1,b), col(2, g), ncol(1, g), ncol(2,b), colored(1), colored(2)}
corresponding to the ones of the graph coloring problem. <

Moreover, in the following, an ASP program modeling the graph coloring
problem is coherent if it admits a solution, i.e. there is a function col satisfying
the requirements, otherwise it is incoherent.

2.2 Stable model search

Modern algorithms for computing stable models of a given ASP program IT
employ a variant of the CDCL algorithm [16], whose idea is to build a stable
model step-by-step starting from a set of literals S initially empty.

During the execution of the algorithm, some of the literals to be added in S
(called branching literals) are selected according to a heuristic. Modern imple-
mentations use the MINISAT [9] heuristic (or one of its variants), whose key idea
is to associate each atom to an activity value, that is initially set to 0. This value
is incremented by a value inc, whenever the atom (or its corresponding literal) is
used to compute a learned constraint. Then, after each learning step, the value
of inc is multiplied by a constant greater than 1, to promote variables that occur
in recently-learned constraints. When a branching literal must be selected, the
heuristic chooses ~a (denoted as negative polarity), where a is the undefined
atom with the highest activity value (ties are broken randomly).
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2.3 Deep neural networks

Machine Learning (ML) comprises by now a huge number of algorithms to tackle
several different problems [12,23]. In particular, ML algorithms observe a given
data set and refine iteratively their understanding of it through measurable er-
ror’s estimation. The data set is characterized by an input space X C RP and
an output space ). The goal consists in determining the unknown function f,
associating input and output spaces f : X — Y. If ) is not empty the problem
can be defined supervised and it determines an ease error estimation [23].

Within this context, the supervised training approach is applied to a popular
ML algorithm called Deep Neural Network (DNN) [12], that can be seen as a
black-box model able to extract and approximate the function f*, governing the
data set under analysis. The DNN, often called also Deep Feedforward Neural
Network or Multilayer Perceptrons (MLPs), maps y = f(x;6), where x is the set
of input features and 6 the set of parameters that need to be learned in order to
better approximate the function f [12]. The neural adjective takes inspiration
from neuroscience, since the simplest unit of such a model (i.e., the neuron) is
connected to previous and following units similarly to biological neurons [12].
The neurons are organized in layers, whose number determines the depth of the
network under development [12]. The number of neurons per layer defines the
width of the model and neurons belonging to the same layer act in parallel [12].
Each unit computes the weighted sum of the previous layer’s outputs in addition
to an optional bias value [12]. The result will be then processed by a function,
also called activation function to emulate the firing activity of the biological
neuron, and will be passed to the next layer or to the model’s output according
to its position within the network. The equation y = o(wTx + b) summarizes
the computations performed by each neuron, where w represents the vector
of weights connecting each neuron with previous layer’s ones, x is the vector
of inputs coming from previous layer, b corresponds to the bias, o identifies the
activation function characterizing the current neuron and all its layer’s neighbors
and, finally, y is the neuron’s output. As described above, y can be passed as
input to following neurons or can be directly interpreted as the model’s output.
Typically, in a binary classification scenario [23] like the one proposed in this
paper, the DNN is asked to determine if the given input belongs or not to
a specific class. Consequently, the output space J € {0,1} [23]. Even though
DNNs and MLPs give the human practitioners the possibility not to identify the
precise function to estimate the desired non-linearity, as it can be inferred from
the universal approximation theorem [15], it is still their responsibility to design
the architecture and to tune properly its hyperparameters H through a Model
Selection (MS) procedure [20]. It is fundamental to perform a reasoned MS and
to choose properly the values to be assigned to the hyperparameters in order
to obtain reasonable results and a good level of generalization. Thereafter, the
resulting model will pass through an Error Estimation (EE) phase [20], during
which its performances will be evaluated on a specific test set.

The width and the depth of the model, the activation functions of the var-
ious layers and the connections between neurons all fall into the architectural
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parameters to be defined. In addition to these, developers should choose the
proper optimization algorithm, the size of the samples’ batch to be processed
before a backward propagation phase [21], the learning rate, the cost function
and the regularization approach to adopt in order to guarantee a good level of
generalization and to prevent under and overfitting [13].

3 Generation of domain-specific heuristics in ASP

In this section, we describe the main challenges to face in order to automatically
generate domain-specific heuristics, that are: finding a suitable representation of
ASP instances in order to be used by deep learning algorithms, which usually
operate on matrices (Section 3.1); generating a meaningful set of training in-
stances (Section 3.2); creating a deep learning model to generate the heuristics
(Section 3.3); embedding the heuristics into an ASP solver (Section 3.4).

3.1 Representation of ASP instances

In order to create a representation of the input program that is suitable for
the deep learning model, we used a variant of the matrix representation used in
NeuroCore [22]. In particular, a given program IT is represented as a |[II| x 2 -
|atoms(II) U { L}| sparse matrix denoted with letter G, where the rows are the
rules of IT and the columns are all literals occurring in I7 (including L and ~1).
Then, a triple (r,/,-1) represents that the literal £ occurs in the head of rule r;
a triple (r,4,1) represents that the literal ¢ occurs in the body of rule r; and a
triple (r,¢,0) represents that the literal £ does not occur in 7.

Ezxample 2. Consider again program [T g of Example 1. The first row of G is rep-
resented by the following triples: (r1,col(1,b),-1), (r1,~ncol(1,b),1), and (r1,£,0)
for each other literal £ occurring in /1§ . Similarly, the last row of G is repre-
sented by the following triples: (rig,1,-1), (r16,~colored(2),1), and (r14,¢,0) for
each other literal ¢ occurring in Hg .

3.2 Generation of the training set

Deep learning algorithms operate on a set of labeled examples, referred to as
training set. In our setting, the training set is composed by a set of tuples (11,
I), where IT represents an instance of the graph coloring problem, and [ is a
stable model of II. The generation of a meaningful set of training instances
is a challenging problem since deep learning algorithms require huge sets of
examples to be successfully trained. Moreover, instances must be easily solvable
for the ASP solver, since it is required to compute one stable model. Note that in
principle one could also enumerate a fixed number of stable models, however in
our preliminary experiments we observed this was not beneficial for the solver.

Our generation strategy is as follows. Given a graph G = (N, L), a set C of
colors, and a positive number k; we build a set of programs P representing the
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training set, where each program in the set is a smaller portion of G. In particular,
as first step, we block L and we randomly select n% of the nodes in N (with
n € {10, 20, 30, 40, 50}). For each value of n, we randomly generate k new graphs,
whose corresponding programs are added to I7. Similarly, we block N and we
randomly select (% of the links in L (with [ € {10, 20, 30,40,50}). As before,
for each value of [, we randomly generate k new graphs, whose corresponding
programs are added to I1. Finally, we randomly select n% of the nodes in N and
1% of the links in L (with n,l € {10, 20, 30,40, 50}, and for each combination of n
and [ we randomly generate k new graphs. Hence, this strategy 35 - k programs
starting from a single input graph. In order to generate the training set, we
considered all the sixty instances submitted to a recent ASP Competition [7]
and we set the value of k£ to 100, for a total of 210 000 training instances.

3.3 Generation of the deep learning model

In this section we provide the details for training a DNN model to learn the
heuristic characterizing a set of graph coloring instances expressed according to
the ASP formalism. After the tuning phase, the resulting model is then queried
to estimate the best initial configuration to be submitted to the WASP solver to
enhance the CDCL branching routine and, consequently, the solving process.
The DNN model designed in this context takes inspiration from the Neuro-
Core architecture proposed by Selsam and Bjgrner in [22]. Despite the different
targets, NeuroCore model shows distinctive characteristics that can fit this pa-
per’s needs. Recalling section 3.1 and Example 2, we know that we have to
deal with matrix representations. NeuroCore is able to manage problems of such
matrix form thanks to its architecture, comprising three different MLPs:

2d d 3d d 2d
Rupdate : IR™ = IRY, Lypdate : IR™ — IRY, V05 : RT = IR

where d is a fixed parameter and identifies the embedding associated with each
atom and rule during model’s iterations. In a nutshell, at each training step the
model goes through T iterations of message passing, during which the rules’
and literals’ embeddings are continuously updated. The MLPs involved within
these operations are Rypdate and Lypdate, respectively. For the sake of clarity,
the term embedding is usually exploited by practictioners to identify the vector
exploited to translate a feature or a variable characterizing a data set in order to
make the training process easier. In this context, we build a mono-dimensional
vector with size d to represent each rule and each literal to be ingested by the
latter MLPs. At each iteration, the output matrices of Lypdate and Rypdate are
recursively combined and concatenated with the matrix G, introduced in section
3.1. These continuous combinations are necessary to guarantee the robustness of
the DNN model against rules’ and literals’ permutations, allowed in this context.
Moreover, the embedding’s exploitation is crucial to manage ASP programs with
different number of atoms and rules, since, in this way, the number of neurons of
the different MLP’s layers involved can be fixed and the only varying dimension
is the number of row of the input matrices. This does not represent a problem
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since each program is managed singularly as a batch. Consequently, each batch
represents the set of embeddings characterizing the literals or rules belonging to
the same ASP program. After 7' iterations, Lypdate’s output is horizontally split
and the two even sub matrices, corresponding to each literal’s and its negated
correspondent’s embeddings respectively, are vertically merged in order to build
a matrix V, whose dimensions are n, x 2d and where each row intuitively cor-
responds to a atom. At this point, V' goes through the last MLP V..; and 0 is
finally obtained, which consists of a numerical score for each atom and it is fi-
nally passed to the softmax function to build a suitable probability distribution
over the atoms. Concerning the embedding’s size d, the number of iterations
T and depth and width of the MLPs, the original values assigned by Selsam
and Bjgrner in [22] have been kept and are the following: 4 Iterations (T); 80
Embedding (d); 2 Cypdate layers; 2 Lypdate layers; 4 Vi layers; 80 hidden
layers neurons. The activation function exploited between each MLP’s hidden
layer is ReLU and the optimization algorithm adopted for training purpose is
the ADAM one [17] with a constant learning rate of 107%. The considerations
regarding V.;’s output layer and ¢ interpretation need a further explanation.
This paper’s aim consists in determining a promising heuristic starting point for
the solver’s activity, which means that a value between 0 (false) and 1 (true)
should be assigned to every literal of the instance under analysis. Moreover, it
is fundamental to underline that literals corresponding to candidate colors for
the same node are inevitably correlated and mutually exclusive. Due to this rea-
son, the model should be able to assign a value of 1 exclusively to one of such
literals in order to avoid contradictory scenarios. Consequently, V.,;’s output
activation function is kept linear and the softmax function is selectively applied
to each group of atoms referring to the same node. Thereafter, the maximum
value within each group is identified and assigned the value of 1, while Os are
assigned indistinctly to the remaining literals.

Furthermore, it is worth noting that, differently from Selsam and Bjgrner’s
attempt in [22], the shape of the training instances, referring to the number of
literals characterizing each of them, has not been fixed to a unique value. The
data set considered in this context includes instances with varying sizes in the
range comprised between 510 and 6032. It is feasible thanks to the NeuroCore
architecture that is able to manage different shape instances through embed-
ding representation. Nonetheless, it complicates the training process and poses
important challenges to the generalization search.

3.4 Integration of the deep learning model in WASP

The integration of the domain-heuristic in WASP is based on the algorithm
reported as Algorithm 1. In a nutshell, the algorithm takes as input a pro-
gram IT and a set of parameters (namely, k1, ko, ks, h1, and hs, such that
0 <k; <1(i=][1.3]),and hy, ho € N, hy > hy) and returns as output a set
of heuristic assignments for the atoms of the form col(_, ) € atoms(II). Such
assignments will be used later on by WASP as initial activities of the atoms. In
more details, it first invokes the deep learning model to obtain the predictions
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Algorithm 1: Integration of the heuristic

Input : A program I, parameters ki, k2, ks, hi, and hg
Output: A set of pairs H
1 H:=0;
2 (Pr, Conf) := DeepLearning(II); // Returns predictions and confidences
3 N := {node | col(node, ) € atoms(II)}; // Nodes of the graph
4 for node € N do
5 S := {col(node, )| col(node, ) € atoms(II)};
6 (first, second) := ComputeAtomWithMaxConfidence(S, Conf);
7 if Pr(first) is true and Conf(first) > ki1 then
8 H:=HU{(first,h1)} ;
9 diff := Conf(first) — Conf (second);

10 sum = (3 ,cq Conf(p)) — diff;
11 if diff < k2 and Conf(second) > ks - sum then
12 L H :=H U {(second, h2)};

13 return H;

(Pr) and confidences (Conf) for the atoms of the form col(_, ) (line 2), where
a prediction can be either true (if the atom must be selected as positive) or false
(if the atom must be selected as negative), and a confidence is a positive (dec-
imal) number less than 1, where for a given node n the sum of the confidences
of the atoms of the form col(n, ) is equal to 1. Then, the algorithm computes
the set N of the nodes of the graph by processing the program IT (line 3; in
particular, a node n is added to the set if an atom of the form col(n, ) occurs
in IT). Later on, for each node n in N, the algorithm collects the set of atoms,
say S, of the form col(n, ) (line 5). Then, it computes the two atoms in S
associated to the highest confidences, say first the atom with the highest value,
and second the other one (line 6). At this point, if the prediction of first is true
and its confidence is greater than a given threshold (k1), then the atom first
is associated to the initialization hy (line 8). Moreover, an additional check is
performed to provide a heuristic score also for the atom second. In particular, if
the difference between the confidence associated to first and the one associated
to second is less than or equal to a given threshold (k2) and the confidence of
second is greater than a threshold (k3) times the sum of the confidences of all
other atoms in S, then the atom second is associated to the initialization ho
(line 12). Then, the default polarity of the MINISAT heuristic is set to positive
for atoms in H. Intuitively, for each node, the atom with the highest confidence
(first) is used only if its confidence is greater than k;. In this way, if the deep
learning model is not sufficiently confident about the color to assign to the node
then the heuristic is not applied to the node. Similarly, the atom with the second
highest confidence (second) is used only if its confidence is similar to the one of
first (i.e., their difference is smaller than ks) and is greater than the confidence
of all other atoms multiplied by k3. Finally, the initialization of the activities of
first and second to hy and he permits the solver to select first the most promising
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atoms, and then thanks to the decay of the MINISAT heuristic the activities are
progressively reduced if the atoms are not used during the search.

4 Experiment

Hardware and software settings. With respect to the NeuroCore’s-related model
introduced in section 3.3, the 210 000 instances obtained after the data gen-
eration process of 3.2 have been randomly split into training, validation and
test sets. More specifically, 60% of the instances have been picked to build the
training set and the remaining 40% has been equally divided between validation
and test sets. The training has been performed on a NVIDIA A100 Tensor Core
GPU, dividing the training samples in batches of 128 instances and applying the
backward propagation algorithm in relation to the binary cross entropy (BCE)
loss measured on each batch. The stopping criterion adopted to this extent has
been designed to monitor the BCE loss on the validation set and to interrupt
the execution in case of consecutive lack of improvements.

Then, the performance of WASP without heuristics (referred to as WASP-
DEFAULT) have been compared with the ones of WASP with the domain heuristics
introduced as Algorithm 1. In particular, we experimented with different values
of ky, ko, k3, h1, and hs. In the following, we report the two sets obtaining the
best performance overall, where k; = 0.15, ks = 0.15, k3 = 1.0, hy = 10, and
ho = 5 for the first strategy and k; = 0.15, ko = 0.35, ks = 1.0, hy = 10,
and ho = 5 for the second one, that are referred to as WASP-STRAT1 and WASP-
STRAT?Z2, respectively. All the variants of WASP have been executed on all the sixty
instances of the graph coloring problem submitted to a recent ASP Competition
[7]. Note that the training set is built on random subgraphs of the input ones
used in the ASP Competition, thus the experiment is not executed on instances
used during the training of the deep learning model. Time and memory limit
were limited to 1200 seconds and 8 GB, respectively.

Results deep learning. Table 1 reports DNN trained model’s performances mea-
sured on the test set. Recalling model’s generation of section 3.2, outputs can be
interpreted as the confidences of the model in stating that the value of 1 can be
assigned to a specific literal. The model has been evaluated in terms of TOP N
accuracy, where N € {1,2,3}, and it corresponds to the ratio between the pre-
dicted and expected 1s among the first NV most confident estimations. Moreover,
the percentage of predicted 1s for increasing confidence C' € {20, 30, 40,50} %
is measured. As expected, the percentage accuracy increases in agreement with
N and C, with approximately 80% for N = 3 and 70% for C' > 50%. The same
confidence levels is not guaranteed for all the instances under analysis, as it is
underlined by the performances measured for decreasing values of C' and N.
Nonetheless, it is fundamental to keep in mind the complexity of the proposed
target, continuously managing graphs with different shapes.

Result on ASP instances. Table 2 reports the results of the comparison of the
different approaches implemented in WASP, where for each heuristic, we show
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Accuracy (%)

TOP N Confidence > C%
N=1 N=2 N=3 C=20 C=30 C=40 C=50
39.59 63.62 79.55 39.59 51.66 63.08 70.74

Table 1. DNN’ EE on the test in terms of TOP N and Confidence Accuracies.

Coherent Incoherent
Heuristic # solved PARI0 # solved PARIO
WASP-DEFAULT 14 12 1744.90 24 24  449.43
WASP-STRAT 1 14 13 914.97 24 20 2393.44
WASP-STRAT2 14 14 82.94 24 19 2837.65

Table 2. Comparison of the different heuristics on ASP competition instances.

130 nodes 135 nodes 140 nodes

Heuristic # solved PAR10 +# solved PAR10 # solved PARIO
WASP-DEFAULT 60 60 15.24 89 77 170773 85 76 1322.17
WASP-STRAT1 60 60 3295 89 78 1609.21 85 76 1338.02
WASP-STRAT2 60 60 31.80 89 78 1620.13 85 78 1066.18

Table 3. Comparison of the different heuristics on generated instances.

the number of solved instances, and the PAR10. We recall that the PAR10 is
the average solving time where unsolved instances are counted as 10 - timeout.
PARI0 is a metric commonly used in machine learning and SAT communities,
as it allows to consider both coverage and solved time. As a first observation,
we mention that the call to the deep learning model requires on average less
than one second, thus it has no negative impact on the performance of the
domain-specific heuristics. Then, we observe that both WASP-STRAT1 and WASP-
STRAT2 are faster than WASP-DEFAULT on coherent instances, solving 1 and 2
more instances, respectively. Additionally, WASP-STRAT2 has a PAR10 equals to
82.94 and it is approximately 21 times lower than the one of WASP-DEFAULT. The
same result cannot be obtained for incoherent instances, where WASP-DEFAULT
solves 4 and 5 instances more than WASP-STRAT1 and WASP-STRAT2, and also
with a much lower PAR10. This result is expected since only coherent instances
were used during the training and also since the heuristic is oriented towards
finding a stable model. As an additional experiment, we generated, starting
from the set of known incoherent instances, another set of coherent instances by
randomly removing a certain number of links from the input instance. Table 3
reports the results of such an experiment, where we classified instances into three
sets according to the number of nodes, i.e., 130 nodes, 135 nodes, and 140 nodes.
Interestingly, domain-specific heuristics are not effective on instances with 130
nodes, which are solved quite fast by the default version of WASP. However, on
instances with 135 and 140 nodes the domain-specific WASP-STRAT2 outperforms
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WASP-DEFAULT solving three more instances overall and being faster in terms of
PARI0. Finally, concerning the usage of memory, we observe that all the tested
approaches never exceed memory limits.

5 Related Work

Several ways of combining domain heuristics and ASP are proposed in the liter-
ature. In [3], a technique which allows learning of domain-specific heuristics in
DPLL-based solvers is presented. The basic idea is to analyze off-line the behav-
ior of the solver on representative instances from the domain to learn and use
a heuristic in later runs. A declarative approach to definition of domain specific
heuristics in ASP is presented in [11]. The techniques presented in this paper
might be also applied in combination with such a framework by properly setting
the heuristic predicate. Andres et al. in [2] and Dodaro et al. in [8] proposed
domain-specific heuristics for tackling hard problems. However, their approach
was based on the implementation of the heuristic made by a domain expert.
ML-solutions have been also adopted to predict the best solver for a given in-
stance [6, 14, 19]. We are not aware of any attempt to experiment with automatic
learning of domain heuristics in modern CDCL-based solvers.

In the context of SAT, our work is related to the one of Selsam and Bjgrner
[22] and their system NeuroCore. In particular, our deep learning model takes
inspiration of their proposal. Nonetheless, in our model we do not fix the shape of
the training instances to a unique value. Another important difference is that our
training set contains coherent instances only, whereas the one used by NeuroCore
is instead based on (minimal) unsatisfiable cores. This difference was motivated
by the fact that the computation of (minimal) unsatisfiable cores is not currently
supported by state-of-the-art ASP solvers. The integration of such techniques
can be also beneficial in the context of domain-specific heuristics. Moreover, the
deep learning model introduced by NeuroCore is periodically queried during the
search to re-configure the branching heuristic. However, our preliminary experi-
ments (not included in the paper for space reason) show that considering learned
constraints deteriorate the performance of the solver, since multiple calls to the
deep learning model on larger and larger programs were counterproductive. Wu
in [25] pointed out the lack of efficiency of CDCL algorithm in solving formu-
lae of even moderate sizes, e.g. 300 to 500 variables involved, and proposes to
take advantage of ML techniques to train a model able to wisely assign initial
values to branching variables in order to prevent possible conflicts and to find a
solution in relatively short time. After the experimental phase, it was observed a
consistent decrease in the number of conflicts. However, the computational time
required to perform the preprocessing phase was non-negligible compared to the
timing necessary to run the enhanced version of the solver taken as a bench-
mark. Moreover, Liang et al. in [18] proposed a ML-based approach to predict
the so called Literal Block Distance (LBD), defined as the number of different
decision levels of the variables in the clause. They choose to exploit an Adam
SGD algorithm that autonomously triggers a restart if the next LBD exceeds the



12 Dodaro et al.

linear sample mean for 3.08 standard deviations (i.e. the 99.9"" percentile). The
experiments show that the proposed approach performs coherently with state-
of-the-art methods. Xu et al. in [26] proposed a ML-based strategy to evaluate
3-SAT instances on the phase transition. In particular, they trained a model
on a 3-SAT dataset comprising instances with varying number of variables in
the range 100 — 600. They initially opt for a random forest algorithm with the
aim of discriminating between SAT or UNSAT instances basing on 61 cheap-to-
compute features. Then, they progressively simplify their model and reduce the
number of features considered still achieving reasonable performances.

6 Conclusion

In this paper, we presented a strategy based on deep learning to automatically
generate domain-specific heuristics. In particular, we focus on one single bench-
mark, i.e. the graph coloring problem. This choice was motivated by the fact that
(i) the encoding does not include advanced features such as aggregates, choice
rules, and weak constraints; (i) the problem allows to control the hardness of
the instance by either reducing the number of nodes and /or the number of links.
Moreover, the training set used to automatically generate the heuristics contains
coherent instances only and, as expected, this lead to poor performance on inco-
herent ones. As future work, alternative strategies consist of exploiting minimal
unsatisfiable cores, or automatically tuning parameters used by Algorithm 1.
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