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Abstract. SHACL is a W3C-proposed language for expressing struc-
tural constraints on RDF graphs. In recent years, SHACL’s popularity
has risen quickly. This rise in popularity comes with questions related
to its place in the semantic web, particularly about its relation to OWL
(the de facto standard for expressing ontological information on the web)
and description logics (which form the formal foundations of OWL). We
answer these questions by arguing that SHACL is in fact a description
logic. On the one hand, our answer is surprisingly simple, some might
even say obvious. But, on the other hand, our answer is also controver-
sial. By resolving this issue once and for all, we establish the field of
description logics as the solid formal foundations of SHACL.

Keywords: Shapes, SHACL, Description Logics, Ontologies

1 Introduction

The Resource Description Framework (RDF [21]) is a standard format for pub-
lishing data on the web. RDF represents information in the form of directed
graphs, where labeled edges indicate properties of nodes. To facilitate more ef-
fective access and exchange, it is important for a consumer of an RDF graph to
know what properties to expect, or, more generally, to be able to rely on certain
structural constraints that the graph is guaranteed to satisfy. We therefore need
a declarative language in which such constraints can be expressed formally.

Two prominent proposals in this vein have been ShEx [8] and SHACL [23].
In both approaches, a formula expressing the presence (or absence) of certain
properties of a node (or its neighbors) is referred to as a “shape”. In this paper,
we adopt the elegant formalization of shapes in SHACL proposed by Corman,
Reutter and Savkovic [9]. That work has revealed a striking similarity between
shapes and concept expressions, familiar from description logics (DLs) [5].

The similarity between SHACL and DLs runs even deeper when we account
for named shapes and targeting, which is the actual mechanism to express con-
straints on an RDF graph using shapes. A shape schema is essentially a finite
list of shapes, where each shape φs is given a name s and additionally associated
with a target query qs. The shape–name combinations in a shape schema specify,
in DL terminology, an acyclyc TBox consisting of all the formulas

s ≡ φs.



2 B. Bogaerts et al.

Given an RDF graph G, this acyclic TBox determines a unique interpretation
of sets of nodes to shape names s. We then say that G conforms to the schema
if for each query qs, each node v returned by qs on G satisfies s in the extension
of G.

Now interestingly, the types of target queries q considered for this purpose
in SHACL as well as in ShEx, actually correspond to simple cases of shapes φqs
and the actual integrity constraint thus becomes

φqs v s.

As such, in description logic terminology, a shape schema consists of two parts:
an acyclic TBox (defining the shapes in terms of the given input graph) and a
general TBox (containing the actual integrity constraints).

2 The Wedge

Despite the strong similarity between SHACL and DLs, and despite the fact that
in a couple of papers, SHACL has been formalized in a way that is extremely
similar to description logics [9,3,14], this connection is not recognized in the
community. In fact, some important stakeholders in SHACL recently even wrote
the following in a blog post explaining why they use SHACL, rather than OWL:

“OWL was inspired by and designed to exploit 20+ years of re-
search in Description Logics (DL). This is a field of mathemat-
ics that made a lot of scientific progress right before creation
of OWL. I have no intention of belittling accomplishments of
researchers in this field. However, there is little connection be-
tween this research and the practical data modeling needs of
the common real world software systems. — [19]

”
thereby suggesting that SHACL and DLs are two completely separated worlds
and as such contradicting the introductory paragraphs of this paper. On top of
that, SHACL is presented by some stakeholders [25] as an alternative to the Web
ontology language OWL [16], which is based on the description logic SROIQ [10].

This naturally begs the question: which misunderstanding is it that drives
this wedge between communities? How can we explain this discrepancy from a
mathematical perspective (thereby patently ignoring strategic, economic, social,
and other aspects that play a role).

3 SHACL, OWL, and Description Logics

Our answer is that there are two important differences between OWL and
SHACL that deserve attention. These differences, however, do not contradict
the central thesis of this paper, which is that SHACL is a description logic.
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1. The first difference is that in SHACL, the data graph (implicitly) rep-
resents a first-order interpretation, while in OWL, it represents
a first-order theory (an ABox). Of course, viewing the same syntactic
structure (an RDF graph) as an interpretation is very different from view-
ing it as a theory. While this is a discrepancy between OWL and SHACL,
theories as well as interpretations exist in the world of description logic and
as such, this view is perfectly compatible with our central thesis. There is,
however, one caveat with this claim that deserves some attention, and that
is highlighted by the use of the world “implicitly”. Namely, to the best of
our knowledge, it is never mentioned that the data graph simply represents
a standard first-order interpretation, and it has not been made formal what
exactly the interpretation is that is associated to a graph. Instead, SHACL’s
language features are typically evaluated directly on the data graph. There
are several reasons why we believe it is important to make this translation
of a graph into an interpretation explicit.
– This translation makes the assumptions SHACL makes about the data

explicit. For instance, it is often informally stated that “SHACL uses
closed-world assumptions” [13]; we will make this statement more pre-
cise: SHACL uses closed-world assumptions with respect to the relations,
but open-world assumptions on the domain.

– Once the graph is eliminated, we are in familiar territory. In the field
of description logics a plethora of language features have been studied.
It now becomes clear how to add them to SHACL, if desired. The 20+
years of research mentioned in [19] suddenly become directly applicable
to SHACL.

2. The second difference, which closely relates to the first, is that OWL and
SHACL have a different (default) inference task: the standard infer-
ence task at hand in OWL is deduction, while in SHACL, the main task is
validation of RDF graphs against shape schemas. In logical terminology, this
is evaluating whether a given interpretation satisfies a theory (TBox), i.e.,
this is the task of model checking.
Of course, the fact that a different inference task is typically associated
with these languages does not mean that their logical foundations are sub-
stantially different. Furthermore, recently, other researchers [14,17,18] have
started to investigate tasks such as satisfiability and containment (which are
among the tasks typically studied in DLs) for SHACL, making it all the
more obvious that the field of description logics has something to offer for
studying properties of SHACL.

In the next section, we develop our formalization of SHACL, building on the
work mentioned above. Our formalization differs form existing formalizations of
SHACL in a couple of small but important ways. First, as we mentioned, we
explicitly make use of a first-order interpretation, rather than a graph, thereby
indeed showing that SHACL is in fact a description logic. Second, the semantics
for SHACL we develop would be called a “natural” semantics in database the-
ory [1]: variables always range over the universe of all possible nodes. The use
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of the natural semantics avoids an anomaly that crops up in the definitions of
Andreşel et al. [3], where an “active-domain” semantics is adopted instead, in
which variables range only over the set of nodes actually occurring in the input
graph. Unfortunately, such a semantics does not work well with constants. The
problem is that a constant mentioned in a shape may or may not actually occur
in the input graph. As a result, the semantics adopted by Andreşel et al. violates
familiar logic laws like De Morgan’s law. This is troublesome, since automated
tools (and humans!) that generate and manipulate logic formulas may reason-
ably and unwittingly assume these laws to hold. Also other research papers (see
Remark 4) contain flaws related to not taking into account nodes that do not
occur in the graph. This highlights the importance of taking a logical perspective
on SHACL.

A minor caveat with the natural semantics is that decidability of validation
is no longer totally obvious, since the universe of nodes is infinite. A solution to
this problem is well-known from relational databases [1, Theorem 5.6.1]. Using
an application of solving the first-order theory of equality, one can reduce, over
finite graphs, an infinite domain to a finite domain, by adding symbolic constants
[4,11]. It turns out that in our case, just a single extra constant suffices.

In this paper, we will not give a complete syntactic translation of SHACL
shapes to logical expressions. In fact, such a translation has already been de-
veloped by Corman et al. [9], and was later extended to account for all SHACL
features by Jakubowski [12]. Instead, we show very precisely how the data graph
at hand can be viewed as an interpretation, and that after this small but crucial
step, we are on familiar grounds and know well how to evaluate expressions.

As already mentioned before, our formalization of SHACL differs in a couple
of ways from existing work. These design choices are grounded in true SHACL:
with each of them we will provide actual SHACL specifications that prove that
SHACL validators indeed behave in the way we expected. All our examples have
been tested on three SHACL implementations: Apache Jena SHACL3 (using
their Java library) TopBraid SHACL4 (using their Java library as well as their
online playground), and Zazuko5 (using their online playground). The raw files
encoding our examples (SHACL specifications and the corresponding graphs) are
available online.6 All our SHACL examples will assume the following prefixes are
defined:

@prefix ex: <http://www.example.org/> .

@prefix sh: <http://www.w3.org/ns/shacl#> .

3 https://jena.apache.org/documentation/shacl/index.html
4 https://shacl.org/playground/
5 https://shacl-playground.zazuko.com/
6 https://vub-my.sharepoint.com/:f:/g/personal/bart bogaerts vub be/

Eicv10DwSnVEnT0BWNwEW8QBFuQjYTbwYYct1WYrkoefKQ?e=XhE8o0.

https://jena.apache.org/documentation/shacl/index.html
https://shacl.org/playground/
https://shacl-playground.zazuko.com/
https://vub-my.sharepoint.com/:f:/g/personal/bart_bogaerts_vub_be/Eicv10DwSnVEnT0BWNwEW8QBFuQjYTbwYYct1WYrkoefKQ?e=XhE8o0
https://vub-my.sharepoint.com/:f:/g/personal/bart_bogaerts_vub_be/Eicv10DwSnVEnT0BWNwEW8QBFuQjYTbwYYct1WYrkoefKQ?e=XhE8o0
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Fig. 1. An example graph to illustrate language features of SHACL.

4 SHACL: The Logical Perspective

In this section of the paper we begin with the formal development. We define
shapes, shape schemas, and validation. Our point of departure is the treatment
by Andreşel et al. [3], which we adapt and extend to our purposes.

From the outset we assume three disjoint, infinite universes N , S, and P
of node names, shape names, and property names, respectively.7 We define path
expressions E and shapes φ by the following grammar:

E ::= p | p− | E ∪ E | E ◦ E | E∗ | E?

φ ::= > | s | {c} | φ ∧ φ | φ ∨ φ | ¬φ | ≥n E.φ | eq(p,E) | disj (p,E) | closed(Q)

where p, s, and c stand for property names, shape names, and node names,
respectively, n stands for nonzero natural numbers, and Q stands for finite sets
of property names. In description logic terminology, a node name c is a constant,
a shape name is a concept name and a property name is a role name.

As we will formalize below, every property/role name evaluates to a binary
relation, as does each path expression. In the path expressions, p− represents
the inverse relation of p, E ◦ E represents composition of binary relations, E∗

the reflexive-transitive closure of E and E? the reflexive closure of E. As we
will see, shapes (which represent unary predicates) will evaluate to a subset of
the domain. The three last expressions are probably the least familiar. Equality
(eq(p,E)) means that there are outgoing p-edges (edges labeled p) exactly to
those nodes for which there is a path satisfying the expression E (defined below).
Disjointness (disj (p,E)) means that there are no outgoing p-edges to which there
is also a path satisfying E. For instance in the graph in Figure 1, eq(p, p∗) would
evaluate to {c}, since c is the only node that has direct outgoing p-edge to all
nodes that are reachable using only p-edges, and disj (p, p−) would evaluate to
{d} since d is the only node that has no symmetric p-edges. Closedness is also
a typical SHACL feature: closed(Q) represents that there are no outgoing edges
about any predicates other than those in Q. In our example figure closed({p})
would evaluate to {a, b, c, d} and closed({q}) to the empty set.

7 In practice, node names, shape names, and property names are IRIs [21], hence the
disjointness assumption does not hold. However, this assumption is only made for
simplicity of notation.
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E JEKI

p− {(a, b) | (b, a) ∈ JpKI}
E1 ∪ E2 JE1KI ∪ JE2KI

E1 ◦ E2 {(a, b) | ∃c : (a, c) ∈ JE1KI ∧ (c, b) ∈ JE2KI}
E∗ the reflexive-transitive closure of JEKI

E? JEKI ∪ {(a, a) | a ∈ ∆I}
Table 1. Semantics of a path expression E in an interpretation I over Σ.

Remark 1. Andreşel et al. [3] also have the construct ∀E.φ, which can be omitted
(at least for theoretical purposes) as it is equivalent to ¬ ≥1 E.¬φ. In our
semantics, the same applies to φ1∧φ2 and φ1∨φ2, of which we need only one as
the other is then expressible via De Morgan’s laws. However, here we keep both
for the sake of our later Remark 3. In addition to the constructors of Andreşel
et al. [3], we also have E?, disj , and closed , corresponding to SHACL features
that were not included there. ut

A vocabulary Σ is a subset of N ∪ S ∪ P . A path expression or shape is
said to be over Σ if it only uses symbols from Σ. On the most general logical
level, shapes are evaluated in interpretations. We recall the familiar definition:
An interpretation I over Σ consists of

1. a set ∆I , called the domain of I;
2. for each constant c ∈ Σ, an element JcKI ∈ ∆I ;
3. for each shape name s ∈ Σ, a subset JsKI of ∆I ; and
4. for each property name p ∈ Σ, a binary relation JpKI on ∆I .

On any interpretation I as above, every path expression E over Σ evaluates to
a binary relation JEKI on ∆I , and every shape φ over Σ evaluates to a subset of
∆I , as defined in Tables 1 and 2.

φ JφKI

> ∆I

{c} {cI}
φ1 ∧ φ2 Jφ1KI ∩ Jφ2KI

φ1 ∨ φ2 Jφ1KI ∪ Jφ2KI

¬φ1 ∆I \ Jφ1KI

≥n E.φ1 {a ∈ ∆I | ](Jφ1KI ∩ JEKI(a)) ≥ n}
eq(p,E) {a ∈ ∆I | JpKI(a) = JEKI(a)}
disj (p,E) {a ∈ ∆I | JpKI(a) ∩ JEKI(a) = ∅}
closed(Q) {a | JpKI(a) = ∅ for every p ∈ Σ \Q}

Table 2. Semantics of a shape φ in an interpretation I over Σ. For a set X, we use
]X to denote its cardinality. For a binary relation R and an element a, we use R(a) to
denote the set {b | (a, b) ∈ R}.
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As argued above, we define a shape schema S over Σ as a tuple (D,T ), where

– D is an acyclic TBox [5], i.e., a finite set of expressions of the form s ≡ φs
with s a shape name in Σ and φs a shape over Σ and where
1. each s occurs exactly once as the left-hand-side of such an expression

and
2. the transitive closure of the relation {(s, t) | t occurs in φs} is acyclic.

– T is a TBox, i.e., a finite set of statements of the form φ1 v φ2, with φ1 and
φ2 shapes.

If S = (D,T ) is a shape schema over Σ and I an interpretation over Σ \ S,
then there is a unique interpretation I�D that agrees with I outside of S and that
satisfies D, i.e., such that for every expression s ≡ φs ∈ D, JsKI�D = JφsKI�D. We
say that I conforms to S, denoted by I |= S, if Jφ1KI�D is a subset of Jφ2KI�D,
for every statement φ1 v φ2 in T . In other words, I conforms to S if there exists
an interpretation that satisfies D ∪ T that coincides with I on N ∪ P .

Remark 2. In real SHACL, a shape schema is called a “shapes graph”. There
are some notable differences between shapes graphs and our shape schemas.

First, we take abstraction of some features of real SHACL, such as checking
data types like numbers and strings.

Second, in real SHACL, the left-hand side of an inclusion statement in T
is called a “target” and is actually restricted to shapes of the following forms:
a constant (“node target”); ∃r.{c} (“class-based target”, where r is ‘rdf:type’);
∃r.> (“subjects-of target”); or ∃r−.> (“objects-of target”). Our claims remain
valid if this syntactic restriction imposed.

Third, in real SHACL not every shape name needs to occur in the left-hand
side of a defining rule. The default that is taken in real SHACL is that shapes
without a definition are always satisified. On the logical level, this means that
for every shape s name that has no explicit definition, a definition s ≡ > is
implicitly assumed. The example that illustrates that our chosen default indeed
corresponds to actual SHACL. ut

Example 1. The following SHACL shape ex:MyShape states that all nodes with
an ex:r-edge must conform to the ex:NoDef and ex:AlsoNoDef shapes which
we do not define.

ex:MyShape a sh:NodeShape ;

sh:and ( ex:NoDef ex:AlsoNoDef ) .

ex:MyShape sh:targetSubjectsOf ex:r .

In our formal notation, this shapes graph corresponds to the shape schema

ex:MyShape ≡ ex:NoDef ∧ ex:AlsoNoDef

∃ex:r.> v ex:MyShape

where the first line is the definition of ex:MyShape, and the second line its target.
When validating a graph containing only the triple ex:a ex:r ex:b (as we

will show later, this corresponds to an interpretation in which the property name
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ex:r has the interpretation {(ex:a, ex:b)} and the interpretation of all other
property names is empty), and thus targeting the node ex:a, it validates without
violation. This supports our observation that shapes without an explicit
definition are assumed to be satisfied by all nodes (i.e., are interpreted
as >).

To further strengthen this claim, if instead we consider the SHACL shapes
graph

ex:MyShape a sh:NodeShape ;

sh:not ex:NoDef .

ex:MyShape sh:targetSubjectsOf ex:r .

i.e., the shape schema

ex:MyShape ≡ ¬ex:NoDef

∃ex:r.> v ex:MyShape

validation on the same graph yields the validation error that “node ex:a does
not satisfy ex:MyShape since it has shape ex:NoDef”. ut

5 From Graphs to Interpretations

Up to this point, we have discussed the logical semantics of SHACL, i.e., how to
evaluate a SHACL expression in a standard first-order interpretation. However,
in practice, SHACL is not evaluated on interpretations but on RDF graphs. In
this section, we show precisely and unambiguously how to go from a graph to a
logical interpretation (in such a way that the actual SHACL semantics coincides
with what we described above). A graph is a finite set of facts, where a fact is
of the form p(a, b), with p a property name and a and b node names. We refer
to the node names appearing in a graph G simply as the nodes of G; the set
of nodes of G is denoted by NG. A pair (a, b) with p(a, b) ∈ G is referred to as
an edge, or a p-edge, in G. The set of p-edges in G is denoted by JpKG (this set
might be empty).

We want to be able to evaluate any shape on any graph (independently of
the vocabulary the shape is over). Thereto, we will unambiguously associate, to
any given graph G, an interpretation I over N ∪ P as follows:

– ∆I equals N (the universe of all node names).
– JcKI equals c itself, for every node name c.
– JpKI equals JpKG, for every property name p.

If I is the interpretation associated to G, we use JEKG and JφKG to mean JEKI
and JφKI , respectively.

RDF also has a model-theoretic semantics [20]. These semantics reflect the
view of an RDF graph as a basic ontology or logical theory, as opposed to the
view of an RDF graph as an interpretation. Since the latter view is the one
followed by SHACL, it is thus remarkable that SHACL effectively ignores the
W3C-recommended semantics of RDF.
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Remark 3. Andreşel et al. [3] define JφKG a bit differently. For a constant c, they
define J{c}KG = {c} like we do. For all other constructs, however, they define
JφKG to be JφKI , but with the domain of I taken to be NG, rather than N . In
that approach, if c /∈ NG, J¬¬{c}KG would be empty rather than {c} as one
would expect. For another illustration, still assuming c /∈ NG, J¬(¬φ ∧ ¬{c})KG
would be JφKG rather than JφKG ∪ {c}, so De Morgan’s law would fail. The next
examples shows that actual SHACL implementations indeed coincide with our
semantics. ut

Example 2. The following SHACL shape ex:MyShape states that it cannot be
so that the node ex:MyNode is different from itself (i.e., that it must be equal to
itself, but specified with a double negation).

ex:MyShape a sh:NodeShape ;

sh:not [ sh:not [ sh:hasValue ex:MyNode ] ] .

ex:MyShape sh:targetNode ex:MyNode .

In our formal notation, this shapes graph corresponds to the shape schema

ex:MyShape ≡ ¬¬{ex:MyNode}
{ex:MyNode} v ex:MyShape

Clearly, this shape should validate every graph, also graphs in which the node
ex:MyNode is not present and it indeed does so in all SHACL implementations
we tested. This supports our choice of the natural semantics, rather than
the active domain semantics of [3]. Indeed, in that semantics, this shape will
never validate any graph because the right-hand side of the inclusion will be
evaluated to be the empty set. ut

Example 3. Another example in the same vein as the previous, to show that the
natural semantics correctly formalizes is the one where [3]’s semantics does
not respect the De Morgan’s laws, as follows:

ex:MyShape a sh:NodeShape ;

sh:not [

sh:and (

[ sh:not [

sh:path ex:r ;

sh:minCount 1 ] ]

[ sh:not [ sh:hasValue ex:MyNode ] ] ) ] .

ex:MyShape sh:targetNode ex:MyNode .

This shapes graph corresponds to the shape schema

ex:MyShape ≡ ¬(¬∃ex:r.> ∧ ¬{ex:MyNode})
{ex:MyNode} v ex:MyShape

In the formalism of Andreşel et al. [3], this schema does not validate on graphs
that do not mention the node ex:MyNode, but in our formalism (and all SHACL
implementations), it does validate. ut
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Remark 4. The use of active domain semantics has also introduced some errors
in previous work. For instance [14, Theorem 1] is factually incorrect. The problem
originates with the notion of faithful assignment introduced by Corman et al. [9]
and adopted by Leinberger et al. This notion is defined in an active-domain
fashion, only considering nodes actually appearing in the graph. For a concrete
counterexample to that theorem, consider a single shape named s defined as
∃r.>, with target {b}. In our terminology, this means that

D = {s ≡ ∃r.>}, and
T = {{b} v s}.

On a graph G in which b does not appear, we can assign {s} to all nodes from
G with an outgoing r-edge (meaning that all these nodes satisfy s and no other
shape (names)), and assign the empty set to all other nodes (meaning that all
other nodes do not satisfy any shape). According to the definition, this is a
faithful assignment. However, the inclusion {b} v s is not satisfied in the inter-
pretation they construct from this assignment, thus violating their Theorem 1.

ut

The bug in [14], as well as the violation of De Morgan’s laws will only occur
in corner cases where the shape schema mentions nodes that not occur in the
graph. After personal communications, Leinberger et al. [14] included an errata
section where they suggest to fix this by demanding that (in order to conform)
the target queries do not mention any nodes not in the graph. While technically,
this indeed resolves the issue (under that condition, Theorem 1 indeed holds),
this solution in itself has weaknesses as well. Indeed, shape schemas are designed
to validate graphs not known at design-time, and it should be possible to check
conformance of any graph with respect to any shape schema. As the following
example shows, it makes sense that a graph should conform to a schema in
case a certain node does not occur in the graph (or does not occur in a certain
context), and that — contrary to the existing SHACL formalizations — the
natural semantics indeed coincides with the behaviour of SHACL validators in
such cases.

Example 4. Consider a schema with D = ∅ and T consisting of a single inclusion

{MarcoMaratea} v ¬∃(author ◦ venue).{LPNMR22},

which states that Marco Maratea (one of the LPNMR PC chairs) does not author
any LPNMR paper. If Marco Maratea does not occur in the list of of accepted
papers, this list should clearly8 conform to this schema. This example can be
translated into actual SHACL as follows:

ex:NotAnAuthor a sh:NodeShape ;

sh:not [

8 Technically, the standard is slightly ambiguous with respect to nodes not occurring
in the data graph.
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a sh:PropertyShape ;

sh:path (ex:author ex:venue) ;

sh:qualifiedValueShape [ sh:hasValue ex:LPNMR22 ] ;

sh:qualifiedMinCount 1 ] .

ex:NotAnAuthor sh:targetNode ex:MarcoMaratea .

where we simply give the name ex:NotAnAuthor to the shape that holds for
all nodes that do not author any LPNMR paper and subsequently enforce that
Marco Maratea satisfy this shape. We see that indeed, in accordance with our
proposed semantics, graphs without a node ex:MarcoMaratea validate with re-
spect to this SHACL specification. The fix in the erratum of Leinberger et al.
[14], on the other hand, specifies that this does not validate. ut

The definition of I makes — completely independent of the actual language
features of SHACL — a couple of assumptions explicit. First of all, SHACL uses
unique names assumptions (UNA): each constant is interpreted in I as a different
domain element. Secondly, if p(a, b) does not occur in the graph, it is assumed
to be false. However, if a node c does not occur anywhere in the graph, it is not
assumed to not exist: the domain of I is infinite! Rephrasing this: SHACL makes
the Closed World Assumption (CWA) on predicates, but not on objects.

Effective evaluation Since the interpretation defined from a graph has the infinite
domain N , it is not immediately clear that shapes can be effectively evaluated
over graphs. As indicated above, however, we can reduce to a finite interpreta-
tion. Let Σ ⊆ N ∪ P be a finite vocabulary, let φ be a shape over Σ, and let
G be a graph. From G we define the interpretation I? over Σ just like I above,
except that the domain of I? is not N but rather

NG ∪ (Σ ∩N) ∪ {?},

where ? is an element not in N . We use JφKG? to denote JφKI? and find:

Theorem 1. For every x ∈ NG ∪ (Σ ∩ N), we have x ∈ JφKG if and only if
x ∈ JφKG? . For all other node names x, we have x ∈ JφKG if and only if ? ∈ JφKG? .

Hence, I conforms to S if and only if I? does.

Theorem 1 shows that conformance can be performed by finite model check-
ing, but other tasks typically studied in DLs are not decidable; this can be shown
with a small modification of the proof of undecidability of the description logic
ALRC, as detailed by Schmidt-Schauß [22].

Theorem 2. Consistency of a shape schema (i.e., the question whether or not
some I conforms to S) is undecidable.

Following description logic traditions, decidable fragments of SHACL have been
studied already; for instance Leinberger et al. [14] disallow equality, disjointness,
and closedness in shapes, as well as union and Kleene star in path expressions.
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6 Related Work and Conclusion

Formal investigations of SHACL have started only relatively recently. We already
mentioned the important and influential works by Corman et al. [9] and by
Andreşel et al. [3], which formed the starting point for the present paper. The
focus of these papers is mainly on the extending the semantics to recursive
SHACL schemas, which are not present in the standard yet, and which we also
do not consider in the current paper.

The connection between SHACL and description logics has also been ob-
served by several other groups of researchers [14,17,18,2]. There, the focus is on
typical reasoning tasks from DLs applied to shapes, and on reductions of these
tasks to decidable description logics or decidable fragments of first-order logic.
In its most general form, this cannot work (see Theorem 2), but the addressed
works impose restrictions on the allowed shape expressions.

Next to shapes, other proposals for adding integrity constraints to the seman-
tic web have been proposed, for instance by integrating them in OWL ontologies
[24,15]. There, the entire ontology is viewed as an incomplete database.

None of the discussed works takes the explicit viewpoint that a data graph
represents a standard first-order interpretation or that SHACL validation is
model checking. We took this viewpoint and in doing so formalized precisely
how SHACL relates to the field of description logics. There are (at least) three
reasons why this formalization is important. First, it establishes a bridge be-
tween two communities, thereby allowing to exploit the many years of research
in DLs also for studying SHACL. Second, our formalization of SHACL clearly
separates two orthogonal concerns:

1. Which information does a data graph represent? This is handled in the trans-
lation of a graph into its natural interpretation.

2. What is the semantics of language constructs? This is handled purely in the
well-studied logical setting.

Third, as we showed above, our formalization corresponds closer to actual SHACL
than existing formalizations, respects well-known laws (such as De Morgan’s) and
avoids issues with nodes not occurring in the graph requiring special treatment.
As such, we believe that by rooting SHACL in the logical setting, we have de-
vised solid foundations for future studies and extensions of the language. We
already build on the logical foundations of the current paper in our work on
extending the semantics to recursive shape schemas [6], as well as in an analysis
of the primitivity of the different language features of SHACL [7].
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