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Coopetition Against an Amazon

Ronen Gradwohl∗ Moshe Tennenholtz†

Abstract

This paper studies cooperative data-sharing between competitors vying to predict a con-

sumer’s tastes. We design optimal data-sharing schemes both for when they compete only with

each other, and for when they additionally compete with an Amazon—a company with more,

better data. We show that simple schemes—threshold rules that probabilistically induce ei-

ther full data-sharing between competitors, or the full transfer of data from one competitor to

another—are either optimal or approximately optimal, depending on properties of the informa-

tion structure. We also provide conditions under which firms share more data when they face

stronger outside competition, and describe situations in which this conclusion is reversed.

1 Introduction

A key challenge to firms competing in today’s electronic marketplace is competition against Big Tech

companies that have considerably more data and so better predictive models. One way in which

smaller firms may overcome this hurdle and survive or even thrive in such a market is to engage in

coopetitive strategies—namely, to cooperate with other small firms that are its competitors. Such

coopetitive strategies have increasingly become a field of study by both academics and practitioners

(see, for example, Brandenburger and Nalebuff (2011) and Bengtsson and Kock (2000)), but they

largely focus on industrial applications such as healthcare, IT, and service industries. In this paper,

we study coopetition between e-commerce companies, and focus on the possibility of data sharing

as a way to deal with their data imbalance vis-à-vis Big Tech.

Such coopetitive data-sharing can be undertaken by the firms themselves or by external service-

providers. To facilitate the former, the newly burgeoning area of federated machine learning has as

its goal the design of mechanisms that generate predictive models for firms based on such shared

data (Yang et al., 2019). The assumption underlying federated learning is that these firms actually

∗Department of Economics and Business Administration, Ariel University. Email: roneng@ariel.ac.il. Grad-

wohl gratefully acknowledges the support of National Science Foundation award number 1718670.
†Faculty of Industrial Engineering and Management, The Technion – Israel Institute of Technology. Email:

moshet@ie.technion.ac.il. The work by Moshe Tennenholtz was supported by funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant number 740435).

1

http://arxiv.org/abs/2005.10038v3


want predictive models based on all shared data, but in competitive scenarios this need not be

the case. Although each firm certainly desires its own model to be as predictive as possible, it

most likely does not wish the same for its competitors. So when is full data-sharing, leading to

maximally predictive models for all firms, optimal? When is partial or no sharing better? And do

these answers differ when firms compete against an Amazon?

In addition to using federated machine learning, coopetitive data-sharing can also be facilitated

by an external service-provider. While tools for data sharing are prevalent—and include plat-

forms such as Google Merchant and Azure Data Share—they are currently undergoing even further

development. For example, in its European Strategy for Data, the European Commission plans

the following: “In the period 2021-2027, the Commission will invest in a High Impact Project on

European data spaces and federated cloud infrastructures. The project will fund infrastructures,

data-sharing tools, architectures and governance mechanisms for thriving data-sharing and Artifi-

cial Intelligence ecosystems” (European Commission, 2020). But just as with federated learning,

the potential benefits from data sharing may arise under partial, rather than full, sharing. For

instance, one industry white paper urges service providers to

“...analyze the combined, crowdsourced data and generate benchmark analyses and

comparative performance reports. Each participating client gains insights that it could

not otherwise access, and each benefits from the service-host provider’s ability to slice

and dice the aggregated data and share the results that are relevant to each client”

(Loshen, 2014).

What is the optimal way for such service providers to combine, slice and dice, and share e-commerce

firms’ data in order to facilitate successful coopetition against an Amazon?

Regardless of how coopetitive data-sharing is achieved—via federated learning or through a

service provider—the answer to whether or not firms desire maximally predictive models for all

depends on how these predictions are eventually used. If the firms involved act in completely

unrelated markets, then of course full data-sharing is optimal—it yields a maximally predictive

model for a firm, and that firm is not harmed by others’ better predictions. This is no longer true if

the firms are competitors, since then a firm may be harmed by an improvement in its competitors’

predictions. In this case, whether or not the tradeoff is worthwhile depends on the details of the

market in which firms compete.

In this paper we focus on one such market, which is motivated by recommender systems for

online advertising and Long Tail retail. In our model, there are many types of consumers, and

firms use their data to infer and take a tailored action for each consumer type. In the online

advertising market, for example, firms use their data to personalize advertisements in order to

maximize the probability that a consumer clicks on their ad. Data sharing is common in this

market, and platforms such as Google Merchant and Azure Data Share specifically facilitate such
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sharing across clients in order to improve personalization and increase clickthrough rates.

For another concrete application, consider retailers in a Long Tail market—a market with

an enormous number of low-demand goods that collectively make up substantial market share—

interested in finding consumers for their products. Success in such markets crucially relies on

retailers’ abilities to predict consumers’ tastes in order to match them to relevant products (Ander-

son, 2006; Pathak et al., 2010). On their own, smaller firms can be destroyed by giants with vastly

greater amounts of data and thus a clear predictive advantage. In cooperation with other small

firms, however, this data imbalance may be mitigated, possibly granting smaller firms a fighting

chance. (We do not discuss here antitrust issues surrounding data sharing; the reader is referred

to Martens et al. (2020) for a discussion thereof in the context of the EU’s European Strategy for

Data.)

In this paper we study such cooperation between competing firms, and design data-sharing

schemes that are optimal—ones that maximize total firm profits subject to each firm having the

proper incentives to participate. More specifically, we study two settings, one without and the other

with an Amazon. In the former, in which smaller firms compete only with one another, we show

that coopetition is beneficial to the extent that firms can share data to simultaneously improve

their respective predictions. In the optimal data-sharing scheme firms benefit from sharing because

it allows them to better predict the tastes of consumers for whom no firm predicts well on its own.

In the latter setting, in which smaller firms compete with one another but also with an Amazon,

sharing data about consumers for whom no firm predicts well can be beneficial, but is not optimal.

We show that, in the optimal scheme, firms share data with others and weaken their own market

positions on some market segments, in exchange for receiving data from others and strengthening

their market positions on other segments.

The following simple example illustrates our model and previews some of our results. The

example is framed as retailers offering goods to consumers who may make a purchase, but can also

be interpreted as advertisers displaying advertisements to consumers who may click on the ads. In

either case, suppose the market consists of two goods, g0 and g1, that consumers may desire. Each

consumer is described by a feature vector in {0, 1} × {0, 1} that determines that consumer’s taste:

Consumers of types 00 and 11 are only interested in g0, whereas consumers of types 01 and 10 are

only interested in g1. A priori, suppose the distribution of consumers in the market is such that an

α fraction are of type 00, a β fraction of type 01, a γ fraction of type 10, and a δ fraction of type

11.

When a consumer shows up to the market, a retailer may offer him one of the goods (as a

convention, we use masculine pronouns for consumers and feminine pronouns for retailers/players).

If the retailer has data about the consumer’s type, she will offer the good desired by that consumer.

Assume that when a consumer is offered the correct good he makes the purchase, and that this

leads to a profit of 1 to the retailer. If there are two retailers offering this good to the consumer
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Figure 1: Data sharing: An example

he chooses one at random from whom to make the purchase. A retailer whose good is not chosen

gets profit 0.

Suppose now that there are two retailers pursuing the same consumer, but that they do not

fully know the consumer’s type. Instead, the first retailer only knows the first bit of the consumer’s

type, and the second retailer only knows the second bit. This situation is summarized in Figure 1,

where the first retailer knows the row bit and the second knows the column bit. Which goods

should the competing retailers offer the consumer? For this example, suppose for simplicity that

α > 2β ≥ 2γ > 4δ. Then each of the retailers has a dominant strategy: If the bit they know is 0,

offer g0, and if the bit they know is 1, offer g1.

To see that this is a dominant strategy, consider for example the row retailer, and suppose she

learns that a consumer’s row bit is 0. She thus knows that the correct good is g0 with probability

α/(α+β) and g1 with probability β/(α+β). Her utility, however, depends also on the good offered

by the column retailer. The row retailer’s worst-case utility from offering g0 is α/(2α+ 2β), which

occurs when the column player also offers g0. Her best case utility from offering g1 is β/(α + β).

Since we assumed α > 2β, offering g0 is best for the row player regardless of the other retailer’s

offer, and is thus dominant. The analyses for the case in which the row retailer’s bit is 1, as well

as for the column retailer’s strategy, are similar.

The result from deployment of these dominant strategies is that consumers of type 00 will be

offered the correct good by both retailers, and will thus choose one at random. Consumers of types

01 and 10 will be offered the correct good by only one of the retailers, whereas consumers of type

11 will not make a purchase as they will not be offered the correct good. The expected profit of

the first retailer will thus be α/2 + γ, and of the second retailer α/2 + β.

Does data sharing improve retailers’ profits? Suppose retailers could share their respective

information with one another, so that both always knew the consumer’s type. This would lead

to both always offering the correct good, and hence to expected profits of 1/2 for each. However,

this would be detrimental to the second retailer whenever α/2 + β > 1/2, since her profits with

data sharing would be lower than without. Such cooperation is thus not individually rational – the

second retailer will not want to cooperate with the first.

Instead, suppose there is a mediator—a trusted third-party that may represent either a ser-

vice provider or a cryptographic protocol (such as a federated learning algorithm) run by the two
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retailers. The European Commission calls mediators common data spaces European Commission

(2020), and describes them as “third-parties [who] may act as intermediaries and apply new tech-

nologies and ways of organising markets in order to...enable transactions that were previously not

feasible. They can be private, public or community organisations that are neutral with respect to

data uses...” (Martens et al., 2020). Given such a mediator, consider the following data-sharing

scheme: both retailers share their data with the mediator, who then passes along the data to all

retailers only if the consumer’s type is 11. If the consumer is not of type 11 then each retailer

has her original data, and additionally infers that the consumer’s type is not 11 (for otherwise she

would have learned that the type is 11).

How does this scheme affect retailers’ strategies? Clearly, when retailers learn that the con-

sumer’s type is 11, both offer g0. What happens if a retailer learns that the consumer’s type is not

11? Consider the row retailer. If her bit is 0, then learning that the consumer’s type is not 11 does

not provide any new information, and so she still has the same dominant strategy of offering g0. If

her bit is 1, however, then she learns that the consumer’s type must be 10. But note that in this

case, her best strategy is to offer g1, which is the same as her dominant strategy absent a mediator.

Thus, the mediator changes the row retailer’s behavior only when the consumer is of type 11. A

similar analysis and conclusion hold for the column retailer.

Since retailers offer the same goods with and without data sharing in all cases except when the

consumer is of type 11, this scheme changes retailer’s profits only in this latter case. In particular,

it leads to an additional (ex ante) profit of δ/2 for each retailer beyond her original profit—with

probability δ the consumer is of type 11, in which case the retailers split the additional surplus

of 1—and is thus beneficial to both. Observation 1 shows that such a scheme is, in fact, not only

individually rational but also optimal.

Suppose now that the two retailers are also competing against an Amazon for the consumer.

Since the Amazon is a giant it has more data, and, in particular, we assume that it has complete

information about each consumer’s type. In this three-way competition, the original dominant

strategies of our two smaller retailers do not perform as well: They lead to profits of α/3 + γ/2

and α/3 + β/2 to the first and second retailer, respectively, since when they offer the correct good

the consumer now chooses amongst up to 3 retailers. The mediator described above, which reveals

information when the type is 11, leads to higher profits, since now there is an additional δ/3 to

each of the smaller retailers. However, that mediator is no longer optimal, and the retailers can

actually do better.

To see this, observe that, conditional on consumer type 01, the total profit to the small retailers

is β/2, since only the second makes the correct offer g1 and then competes with the Amazon. In

contrast, if both retailers were to know the type and offer the correct good, then their total profit

would be 2β/3, namely β/3 each. This is harmful to the second retailer as it involves a loss of

profit, but a gain for the first and the sum. But the second retailer can be compensated by getting
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data from the first elsewhere, for instance on consumer type 10.

For simplicity of this example, suppose that β = γ, and consider a mediator that facilitates full

data-sharing, in which both retailers learn each other’s data and thus have complete information

about consumers’ types. Here, the profit of each is 1/3 > α/3 + β/2 = α/3 + γ/2, so both gain

from this data sharing. Furthermore, the total profit of the retailers is 2/3, which is the maximal

utility they can obtain when competing against an Amazon. Thus, this data-sharing scheme is

individually rational and optimal. Observe that it leads to higher retailer welfare than the optimal

scheme absent a mediator.

Full data-sharing is not always individually rational, however. If β is much greater than γ, then

the second retailer is not sufficiently compensated by the first for sharing data about consumer

01. The second retailer will consequently be harmed by such data sharing, and so the scheme will

not be individually rational. However, in Theorem 4 we show that there is a different data-sharing

scheme that is individually rational and optimal, a scheme in which the first retailer shares all her

data and the second shares some of her data. Overall, we show that such data-sharing coopetition

against an Amazon is beneficial to the small retailers.

1.1 Contribution

Our model is more general than the simple example above, and involves many goods and many

types of consumers. For the example it was useful to think of each consumer as having a feature

vector describing his type, but in the model we take a more general approach that allows for a

wider class of information structures. Furthermore, in general the retailers will not have dominant

strategies, either with or without a mediator. Instead, we suppose that, absent a mediator, players

play an arbitrary Bayesian Nash equilibrium, and construct mediators that lead to higher expected

utilities in equilibrium.

In Section 3, we design optimal mediators for coopetitive data-sharing. In addition to max-

imizing total retailer profits, all our mediators are individually rational—retailers attain higher

utilities when they use the mediators—and incentive compatible—in equilibrium, each retailer’s

best strategy is to follow the mediators’ recommendations. One of our main results is that the

optimal schemes are simple. In particular, instead of relying on the details of retailers’ data or

on their strategies in equilibrium sans data-sharing (as in the introductory example above), our

mediators consist of threshold rules that probabilistically induce either full data-sharing between

retailers, or the full transfer of data from one retailer to another.

The analysis in Section 3 retains one of the assumptions present in the example above—that

the joint data of the small retailers is sufficient to uniquely identify each consumer’s type. In

Section 4 we drop this assumption, leading to a new set of challenges. This is because, when the

assumption holds, there is no conflict between welfare maximization and equilibrium, and so the
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main hurdle in designing optimal mediators is the individual rationality constraint. Without the

assumption, however, participants’ incentive compatibility constraints impose a limit on the total

welfare that can be achieved. Nonetheless, our main results in this section are that variants of the

simple mediators from Section 3 are approximately optimal here as well. We also provide examples

showing that our approximation factor is tight.

Finally, in Section 5 we delve into the intriguing question of whether players share more data

in the presence of an Amazon or in its absence. First, under the assumption that the joint data

of the small retailers is sufficient to uniquely identify each consumer’s type, we show that if data

sharing is strictly beneficial in the absence of an Amazon, then it is also strictly beneficial in its

presence. This confirms the intuition that players share more data when facing stronger outside

competition. However, we also show that this conclusion may be reversed when the assumption

does not hold. In this latter case, we show that sometimes data sharing can be strictly beneficial

in the absence of an Amazon, but not in its presence. We show that the reason this may happen

depends on whether or not players’ equilibrium considerations conflict with welfare maximization.

The rest of the paper proceeds as follows. First we survey the related literature, and then, in

Section 2, develop the formal model. This is followed by our main analyses in Sections 3, 4, and 5.

Concluding notes appear in Section 6.

1.2 Related Literature

Most broadly, our paper contributes to a burgeoning literature on competition in prediction and

machine learning. Within this literature, papers such as Mansour et al. (2018), Ben-Porat and

Tennenholtz (2019), and Feng et al. (2019) study different models of learning embedded in settings

where participants compete with others in their predictions. They take participants’ data as given,

and point to the effect competition has on optimal learning algorithms. Our focus, in contrast, is

on the effect of data sharing on competitive prediction.

Because of its focus on data sharing, our paper is also related to the more established literature

on strategic information-sharing, a literature that focuses on a number of distinct applications:

oligopolistic competition (Clarke, 1983; Raith, 1996), financial intermediation (Pagano and Jappelli,

1993; Jappelli and Pagano, 2002; Gehrig and Stenbacka, 2007), supply chain management (Ha and

Tong, 2008; Shamir and Shin, 2016), price discrimination (Liu and Serfes, 2006; Jentzsch et al.,

2013), and competition between data brokers (Gu et al., 2019; Ichihashi, 2020). Much of this

literature revolves around the question of whether it is beneficial for participating firms to pool

all their data, or whether they would prefer to pool only some or none at all. As Bergemann and

Morris (2013) demonstrate, however, more finely tuned data sharing can be beneficial even when

full or partial pooling is not, and so the existing schemes do not exhaust the potential benefits of

data sharing. In this paper we analyze precisely such finely tuned sharing.
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A different paper that does consider more finely tuned sharing is that of de Zegher and Lo

(2020), who study an infinitely repeated setting in which firms compete for market share. Their

main result is the construction of a data sharing scheme that Pareto improves all participants’

welfare. Like our results, their scheme also only reveals partial information to participants. Unlike

our approach, however, de Zegher and Lo (2020)’s scheme relies on the repeated nature of the

interaction, and uses folk-theorem-type arguments to show that cooperation can be sustained. In

addition, their focus is on data sharing between many small firms, and they do not consider the

possible presence of an Amazon.

In terms of modeling and techniques, our paper falls into the literature on information design.

Information design, recently surveyed by Bergemann and Morris (2019), is the study of how the

allocation of information affects incentives and hence behavior, with a focus on the extent and

limits of purely informational manipulation. The information design problem encompasses work

on communication in games and on Bayesian persuasion. When the mediator is assumed to have

only the information held by the players, or only the information they are willing to share with

him, the problem maps to the one studied in the literature on communication in games. The goal

of these studies is to characterize the equilibrium outcomes achievable when players are allowed

to communicate prior to playing a fixed game, and where communication is captured by players’

interaction with a mediator. Myerson (1991) and Forges (1993) provide useful overviews. Our

paper builds on this model by endowing the mediator with the specific aim of maximizing (some

of) the players’ utilities.

A different setting, called Bayesian persuasion (Kamenica and Gentzkow, 2011), is one in which

only the mediator (here called the sender) has payoff-relevant information, and in which he can

commit to a particular information structure prior to observing that information. Initial work

on Bayesian persuasion focused on the case of a single sender and a single player (Kamenica and

Gentzkow, 2011), but more recent research also consists of settings with multiple senders (such

as Gentzkow and Kamenica (2016)) and multiple players. Our paper is most closely related to

the latter, and specifically to Bergemann and Morris (2016) and Galperti and Perego (2018), who

develop a linear programming approach to study the effect of different information structures on

the Bayes correlated equilibria of the subsequent game, as well as Mathevet et al. (2020), who

extend the belief-based approach of Kamenica and Gentzkow (2011) to study optimal information

structures under different solution concepts.

A closely related strand of the literature, recently surveyed by Bergemann and Bonatti (2019),

focuses on the sale of information by a data broker. Most of this work differs from our paper in

that it focuses on a market with one-sided information flow, with information going only from one

party to another, whereas we study a market where information flow is bidirectional across firms.

Nonetheless, the insights arising from that literature are related to ones we develop in this paper.

For example, Bimpikis et al. (2019) consider a monopolistic data broker who sells data to firms who
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compete in a downstream market. A major insight in that paper is that the amount of information

optimally sold by the data broker depends on the nature of downstream competition, and, in

particular, that more (resp., less) data is sold if that competition features strategic complements

(resp., substitutes). While our paper studies data sharing as opposed to data sale, our results also

shed light on the effect the nature of competition has on the amount of data shared. In our model

firms’ actions are strategic substitutes—when more firms offer the correct good to a particular

consumer (e.g., due to the presence of an Amazon), the value of offering the correct good decreases.

Our results indicate that sometimes there is more data sharing in the absence of an Amazon and

hence when strategic substitutes are weaker, which is consistent with the insight of Bimpikis et al.

(2019). However, we also show that sometimes the opposite holds.

There is also a relationship between information sale and information sharing, which is pointed

out by Bergemann and Bonatti (2019). These authors relate their general model of a market for

information to incentives for information sharing, and point to the study of finely tuned sharing

schemes as an open problem.

Our paper is also related to a set of papers that focuses on designing mediators to achieve various

goals, such as to improve the incentives of players, make equilibria robust to collusion, or implement

correlated equilibria while guaranteeing privacy Monderer and Tennenholtz (2004, 2009); Kearns

et al. (2014). The first two differ from our work in that they make stronger assumptions about the

mediator’s capabilities, such as changing payoffs or limiting player actions, and the third focuses

on a setting with many players that is quite different from our own.

Finally, our work is conceptually related to research on federated learning, and in particular

on cross-silo federated learning Kairouz et al. (2019). This framework consists of a set of agents

with individual data whose goal is to jointly compute a predictive model. A recent emphasis

within federated learning is on incentivizing the agents to participate, sometimes through monetary

transfers Zhan et al. (2021) and sometimes by providing different models to different agents Lyu

et al. (2020). The focus of these papers is on fairness—agents that provide more data should

be compensated more generously. Our paper differs, in that agents are assumed to utilize the

resulting models in some competition, and this subsequent competition drives agents’ incentives to

participate. Our work is thus orthogonal to that surveyed in Zhan et al. (2021): we do not focus on

the algorithmic aspects of computing a joint model, but rather on the incentives and joint benefits

of participating even when other agents are competitors.

2 Model and Preliminaries

There is a set G of goods and a population of consumers interested in obtaining one of them. Each

consumer has one of a finite set of types, ω ∈ Ω, that describe the good gω ∈ G in which he is

interested. There are three players who compete for consumers: two regular players indexed 1
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and 2, and an Amazon, a player indexed 0. We will separate the analysis to two settings: first,

when the Amazon player 0 is not present and players 1 and 2 compete only with one another; and

second, when they additionally compete with Amazon. The model and definitions here apply to

both settings.

Player 0 (if present) has complete information of the consumer’s type. In Section 3 we assume

that players 1 and 2 have jointly complete information—that, when combined, their respective data

uniquely identifies each consumer’s type—but that each player on her own may only be partially

informed. In Section 4 we remove this assumption.

To model this informational setting, we represent players’ data using the information partition

model of Aumann (1976): Each player i is endowed with a partition Πi of Ω, where Πi is a set of

disjoint, nonempty sets whose union is Ω. For each ω ∈ Ω we denote by Pi(ω) the unique element

of Πi that contains ω, with the interpretation that if the realized type of consumer is ω, each player

i only learns that the type belongs to the set Pi(ω).

Framing the example from the introduction within this model would associate Ω with {0, 1}2 and

the partitions P1(00) = P1(01) = {00, 01}, P1(10) = P1(11) = {10, 11}, P2(00) = P2(10) = {00, 10},

and P2(01) = P2(11) = {01, 11}.

In this model, player 0’s complete information means that P0(ω) = {ω} for all ω ∈ Ω, and

players 1 and 2’s jointly complete information means that P1(ω) ∩ P2(ω) = {ω} for all ω ∈ Ω. We

further assume that, before obtaining any information, all players have a common prior π over Ω.

To model data sharing between players 1 and 2 we suppose there is a mediator that gathers each

player’s information and shares it with the other in some way. Formally, a mediator is a function

M : 2Ω × 2Ω 7→ ∆
(

M2
)

, where M is an arbitrary message space. The range is a distribution over

pairs of messages, where the first (respectively, second) is the message sent to player 1 (respectively,

player 2).

We begin with an informal description of the game: Players offer consumers a good, and

consumers choose a player from whom to acquire the good. Consumers are single-minded: For

each ω there is a unique gω ∈ G such that the consumer will only choose a player who offers good

gω. If there is more than one such player, the consumer chooses uniformly at random between

them. One interpretation of this consumer behavior is that he chooses by “satsificing”—making

a random choice among options that are “good enough” Simon (1956), where gω represents these

good-enough options. See Ben-Porat and Tennenholtz (2019) for a similar approach.

We assume that prices and costs are fixed, and normalize a player’s utility to 1 if she is chosen

and to 0 otherwise. So, for example, in the online advertising application of our model, consumers

are assumed to click on a random ad amongst those ads that are most relevant; once they click, the

expected profit to the advertiser (conversion rate times profit from a sale) is 1. The normalization

to 1 is actually without loss of generality. If we had a different profit pω for each consumer type ω,

then we could change every pω to 1, modify the prior probability π(ω) of type ω to pω · π(ω), and
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then renormalize the prior to be a proper distribution. This would leave all of our analysis intact.

The following is the order of events, given a fixed mediator M. It applies both to the case in

which there are only two players {1, 2} and to the case in which there is an additional Amazon

player, indexed 0.

1. Each of players 1 and 2 chooses whether or not to opt into using the mediator.

2. If one or both players {1, 2} did not opt into using the mediator, then each player i obtains

her base value, the utility vi (described below).

3. If both players {1, 2} opted into using the mediator, then:

(a) A consumer of type ω is chosen from Ω with prior distribution π.

(b) If present, player 0 learns P0(ω).

(c) Messages (M1,M2) are chosen from the distribution M(P1(ω), P2(ω)), and each i ∈

{1, 2} learns Pi(ω) and Mi.

(d) Each player simultaneously chooses a good to offer the consumer, and then the consumer

chooses a player from whom to obtain the good.

There are several ways to interpret the base values v1 and v2. Our main interpretation is that

these are the expected utilities of the players in the game without data sharing. To formalize

this, consider the unmediated game Γ =
(

Ω,P, G|P|, (Pi(·))i∈P , (ui)i∈P , π
)

, where P is the set of

participating players, and is either {1, 2} or {0, 1, 2}, G is the set of actions, Pi(·) is the information

of player i (which consists of the partition element of the realized type), ui is i’s utility function

(described below), and π is the common prior over Ω. Given this Bayesian game, let v = (v1, v2) be

the expected utilities in some Bayesian Nash equilibrium (BNE) of Γ—a profile (s1, s2) in which si

is the best strategy for each player i conditional on her information and the assumption that the

other player plays the strategy sj.

Although this is the main interpretation of the base values, our model and results permit

additional and more general interpretations as well. One additional interpretation is to suppose

each vi is the minimax value of player i in the unmediated game. In this second interpretation,

we could imagine player j “punishing” player i if the latter does not opt into using the mediator,

by playing a strategy that minimizes the latter’s payoff (off the equilibrium path). A third, more

general interpretation is that the base values also depend on factors outside of the specific game,

such as firm size, customer base, and so on, in addition to the primitives of the game Γ.

In our constructions of mediators in Sections 3 and 4, the interpretation of v will not matter—our

mediators will be optimal given any such values, regardless of whether they are derived endogenously

as the equilibrium utilities of the game absent a mediator, or whether they arise exogenously from

factors outside of the specific game. However, in Section 5, in which we compare data sharing
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across two different environments—with and without a mediator—we will stick with the main

interpretation of base values as equilibrium payoffs absent a mediator. This is because, when

we compare two different environments, the payoffs players could attain in equilibrium without a

mediator will differ across these environments.

Now, as noted above, data sharing is modeled by a mediatorM : 2Ω× 2Ω 7→ ∆
(

M2
)

. Without

loss of generality we invoke the revelation principle and assume that M = G, the set of possible

goods. We interpret the messages of the mediator as recommended actions to the players, one

recommendation for each player.

Formally, if both players 1 and 2 opt into using the mediator M, then all play the mediated

Bayesian game ΓM =
(

Ω,P, G|P|,IM, (ui)i∈P , π
)

. P is the set of participating players, and is

either {1, 2} or {0, 1, 2}. The function IM : Ω 7→ ∆(T |P|) denotes the information of players in the

game for each state, where T = 2Ω ×M is the set of possible pieces of information a player may

have—a partition element and a message from the mediator. For player 0, this information consists

of the realized type of consumer only, and so IM(·)0 = (P0(·), ∅) (where the ∅ means player 0 gets

no message from the mediator). For players 1 and 2, the information consists of both the partition

element of the realized type of consumer and the action recommended to her by the mediator, and

so IM(·)i = (Pi(·),M(P1(·), P2(·))i).

Next, each player’s set of actions in the mediated game is G, and her utility function ui = ui :

Ω × G|P| 7→ R. The latter is equal to 0 if player i’s action g 6= gω, and otherwise it is equal to

1/k, where k is the total number of players who play action gω. The nonzero utility corresponds to

utility 1 if a consumer chooses the player’s good, which occurs if a player offers the consumer the

correct good and the consumer chooses uniformly amongst all players that do so. We often write

E[ui(·)] when the expectation is over the choice of ω, in which case we omit the dependence of ui

on ω for brevity. Finally, (mixed) strategies of players in Γ are functions si : T 7→ ∆(G). We also

denote by si(ω) = si(Ii(ω)).

An important note about the mediator is in order. We assume that when players opt into

participating, they truthfully reveal their data Pi(ω) to him. Players’ strategic behavior is relevant

in their choice of opting in or not, and then in whether or not they follow the mediator’s recommen-

dation in their interaction with the consumer. While truthful reporting is clearly restrictive, it is a

natural assumption in our context—for instance, when service providers act as mediators, they are

typically also the ones who host retailers’ data in the cloud, and so already have the (true) data on

their servers. Similarly, federated machine learning algorithms work based on the assumption that

participants share their true data. Furthermore, truthful reporting can be justified by the repeated

nature of the interaction. Observe that if a firm is not truthful in its reporting, the other firm will

discover this at some point, as the mediator’s recommendations will not pan out as well as they

should. Thus, if firms have the ability to opt out of using the mediator at some point in the future,

then each firm can use the threat of opting out to incentivize the other to report truthfully.
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Individual rationality, incentive compatibility, and optimality A first observation is that

player 0, if present, has a dominant strategy:

Lemma 1 In any game ΓM, player 0 has the unique dominant strategy s0(ω) = gω.

The proof is straightforward: playing action gω leads to positive utility to player 0, regardless of

the other firms’ actions. Playing any other action leads to utility zero. This implies that always

offering the correct good is the unique dominant strategy for player 0. We will thus take that

player’s strategy as fixed throughout.

We will be interested in designing mediators that players actually wish to utilize, and so would

like them to satisfy two requirements: first, that players want to follow the mediator’s recommenda-

tions, and so that following these recommendations forms an equilibrium; and second, that players

prefer their payoffs with the mediator over their payoffs without (the base values). Formally, we

say that:

• M is incentive compatible (IC) if the strategy profile s in which players 1 and 2 always follow

M’s recommendation is a BNE of ΓM.

• M is individually rational (IR) if the expected utility of each player i ∈ {1, 2} under s in ΓM

is (weakly) greater than vi.

Observe that if a mediator is both IC and IR, then in equilibrium players will opt in and then

follow the mediator’s recommendations.

Finally, as we are interested in the extent to which data sharing benefits players 1 and 2, we will

study optimal mediators, namely, ones in which the sum of these two players’ utilities is maximal

subject to the IC and IR constraints. To this end, denote by W (M) the sum of players 1 and 2’s

expected utilities under s in ΓM. Then:

Definition 1 Mediator M is optimal if W (M) ≥W (M′) for any other M′ that is IC and IR.

3 Jointly Complete Information

3.1 Coopetition Without an Amazon

We begin our analysis with the case of jointly complete information and without an Amazon. We

first consider the question, under what base values v does there exist an IR, IC mediator? We then

turn to our main result for the section, the construction of an optimal mediator.

3.1.1 When does an IR, IC mediator exist?

We begin with a simple observation. Since for any mediator M and conditional on any realized

type ω the total payoff to players is at most 1, it must be the case that W (M) ≤ 1. Thus, if

v1 + v2 > 1, then there does not exist any IR mediator.
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However, even if v1 + v2 ≤ 1, there may not exist a mediator that is both IR and IC. In the

example from the introduction, for instance, in the simple case without an Amazon and where

α > 2β ≥ 2γ > 4δ, the row retailer can guarantee herself a payoff of (α + γ)/2 by ignoring the

mediator and playing her dominant actions. This implies that the most the column retailer can

obtain is 1 − (α + γ)/2. Any mediator that leads to a higher payoff to the column retailer must

therefore fail to satisfy the IC constraints.

Theorem 1 below generalizes the bound in this example. But first, some notation: Consider

the strategy s′j of player j that, for every Pj(ω), chooses one of the goods that is most likely to be

correct: s′j(ω) ∈ argmaxg∈G Pr[g = gω|Pj(ω)]. Note that s
′
j is a best-response to a player i 6= j who

always chooses the correct good gω. Furthermore, let αj be the overall probability that s′j chooses

the correct good: αj = Pr
[

s′j(ω) = gω

]

.

Theorem 1 Suppose vi ≥ vj . Then an IR, IC mediator exists only if v1 + v2 ≤ 1 and vi ≤

E
[

ui(gω, s
′
j(ω))

]

.

In words, the theorem states that an IR, IC mediator exists only if each player’s base value is

bounded above by her utility in the hypothetical situation in which she always offers the correct

good, and the other player best-responds conditional only on Pj(ω) (in addition to the obvious

constraint v1 + v2 ≤ 1). In Theorem 2 below we will see that these conditions are also sufficient.

We note that if the base values v are the equilibrium expected utilities of the game without

a mediator, then the conditions in Theorem 1 are always satisfied. To see this, observe that the

mediator that recommends to each player her equilibrium action (and nothing more) is IC, by the

definition of a BNE. It is also IR, since players’ utilities are the same whether or not they opt into

using this mediator.

Proof: Proof. The condition v1+v2 ≤ 1 must hold for any IR mediatorM, sinceW (M) ≤ 1. Now,

suppose towards a contradiction that there exists an IC mediator for which vi > E
[

ui(gω, s
′
j(ω))

]

.

This implies that, under M, the expected utility of player j = 3 − i is strictly less than 1 −

E
[

ui(gω, s
′
j(ω))

]

. However, player j then has a profitable deviation to s′j. When playing s′j, on

each partition element Pj(ω) player j will get utility at least

Pr
[

s′j(ω) = gω
]

/2 = E
[

uj(s
′
j(ω), gω)

]

≥ 1− E
[

ui(gω, s
′
j(ω))

]

,

and exactly this utility whenever i always chooses the correct good gω. Since this is a profitable

deviation, the mediatorM is not IC, a contradiction.

For the rest of Section 3.1, denote a pair v that satisfies the conditions in Theorem 1 as a feasible

v.
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3.1.2 An optimal mediator

We now describe an optimal mediator, at the same time showing that the conditions on v in

Theorem 1 are also sufficient. We begin with a simple observation:

Observation 1 IfM is IR, IC, and W (M) = 1, thenM is optimal.

This observation implies that the mediator in the example of the introduction, for the case without

an Amazon, is optimal (when the base values are retailers’ utilities under their dominant strategies).

One drawback of that mediator, however, is that it depends on the retailers’ strategies in the

unmediated game—in particular, it utilizes the fact that, in equilibrium, neither retailer offers the

correct good in the bottom-right cell of the matrix. Our aim here is to design a mediator that does

not depend on such strategies, but only on players’ respective information and base values.

The idea underlying the mediator we construct is the following. Suppose vi ≥ vj . Then if

vi ≤ 1/2, then the mediator will facilitate full data-sharing, and so each player will offer the correct

good in every state. If vi > 1/2 then player i will obtain all the information and player j will

obtain only partial information: she will get recommendation gω with probability less than 1, and

otherwise will get recommendation s′j(ω). We now formally describe the mediator, and then show

that it is indeed IR, IC, and optimal.

Mediator 1 Mediator for P = {1, 2} with jointly complete information

1: procedureMv
noA(V,W ) ⊲ V = P1(ω) and W = P2(ω) for realized ω ∈ Ω

2: ω ← V ∩W

3: i← argmaxk∈{1,2} vk

4: j ← 3− i

5: if vi ≤ 1/2 then return (gω, gω) ⊲ Full data-sharing

6: else

7: gj ← s′j(ω)

8: Choose γ ∈ [0, 1] uniformly at random.

9: if γ <
2−2vi−αj

1−αj
then

10: return (gω, gω)

11: else if i = 1 then return (gω, gj)

12: else return (gj , gω)

Theorem 2 For any feasible v, the mediator Mv
noA above is IR, IC, and optimal.

Proof: First, consider the case in which vi ≤ 1/2. In this case, strategy s in ΓMv
noA leads to

expected utility 1/2 to each player, and so the mediator is IR. Furthermore, the strategy s is a BNE,

since each player always chooses gω, which is dominant, and so the mediator is also IC. Finally,

since in this case W
(

ΓMv
noA

)

= 1, Observation 1 implies that the mediator is optimal.

15



Next, suppose vi > 1/2. Observe that, conditional on line 10 being activated, the expected

utility of player j is 1/2, whereas conditional on line 11 or 12, the expected utility of player j

is αj/2 (since with probability αj she chooses the correct good, and player i always chooses the

correct good). Thus, overall the expected utility of player j is

2− 2vi − αj

1− αj
·
1

2
+

(

1−
2− 2vi − αj

1− αj

)

·
αj

2
= 1− vi.

Since player i always chooses the correct good, it must be the case that W
(

ΓMv
noA

)

= 1, and so

the utility of player i is vi. Finally, since v1 + v2 ≤ 1, this implies that the utility of player j is at

least vj. Thus, the mediator is IR.

Next, observe that s in ΓMv
noA is dominant for player i, since she always chooses gω. It is also

optimal for player j, since she either also chooses gω, or chooses the best response conditional on

her information Pj(ω). Thus, the strategy s is a BNE, and so the mediator is IC.

Finally, since W
(

ΓMv
noA

)

= 1, Observation 1 implies that the mediator is optimal.

3.2 Coopetition Against an Amazon

In this section we analyze the game with an Amazon. As in Section 3.1, we first consider the

question, under what base values v does there exist an IR, IC mediator? We then turn to our main

result for the section, the construction of an optimal mediator.

3.2.1 When does an IR, IC mediator exist?

Once again, we begin with a simple observation. Since for any mediator M and any type ω the

total welfare of players 1 and 2 is at most 2/3 (since Amazon always knows the type, offers the

correct good, and gets at least 1/3 of the surplus), it must be the case that W (M) ≤ 2/3. Thus,

if v1 + v2 > 2/3, then there does not exist any IR mediator.

However, and again as above, even if v1 + v2 ≤ 2/3 there may still not exist a mediator that

is both IR and IC. In the example from the introduction, for instance, in the simple case with an

Amazon and where α > 2β ≥ 2γ > 4δ, the row retailer can guarantee herself a payoff of (α+ γ)/3

by ignoring the mediator and playing her dominant actions. This implies that the most the column

retailer can obtain is 2/3 − (α + γ)/3. Any mediator that leads to a higher payoff to the column

retailer must therefore fail to satisfy the IC constraints.

The result below consists of bounds on the base values under which an IR, IC mediator exists.

Theorem 3 Suppose vi ≥ vj. Then an IR, IC mediator exists only if vi ≤ E
[

ui(gω, s
′
j(ω))

]

and

vj ≤ 1− 2vi.

As with Theorem 1, we note that if the base values v are the equilibrium expected utilities of

the game without a mediator, then the conditions in Theorem 3 are satisfied. Again, this follows
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from the observation that the mediator that recommends to each player her equilibrium action is

both IR and IC.

Before proving the theorem we develop some notation and intuition. For any mediatorM and

player k ∈ {1, 2} let βM
k = Pr [(M(ω)k = gω) ∩ (M(ω)3−k 6= gω)] and βM = Pr [M(ω)k =M(ω)3−k = gω].

With this notation, the expected utility of player k under s in ΓM is βM
k /2 + βM/3: For any ω, if

player k offers gω and the other player, 3− k, does not, then the consumer chooses between players

k and 0, and so each gets 1/2. If both offer gω, the consumer chooses between players k, 3− k, and

0, and so each gets 1/3.

An IR, IC mediatorM is one for which s is a BNE, and in which βM
k /2 + βM/3 ≥ vk for both

players. In addition to the incentive constraints, we also have the constraints βM
i + βM

j + βM ≤ 1,

and all three variables non-negative.

Finally, the total welfare of players 1 and 2 inM is W (M) = (βM
1 + βM

2 )/2 + 2βM/3, and so

an optimal mediator is one that maximizes this sum subject to the IC and IR constraints above.

Denote the linear program above, disregarding the IC constraint, as LP(v1, v2):

maximize β1+β2

2 + 2β
3

subject to βi

2 + β
3≥ vi, i = 1, 2

βi≥ 0, i = 1, 2

β≥ 0

β1 + β2 + β≤ 1

To prove Theorem 3, we need to identify conditions on v under which the LP is feasible. To do

this, it will be helpful to begin with some lemmas that characterize the LP’s optimal solution:

Lemma 2 Suppose vi ≥ vj and that LP(v1, v2) is feasible. Then any optimal solution (β1, β2, β)

to LP(v1, v2) satisfies:

(a) β1 + β2 + β = 1.

(b) βj = 0.

(c) If vi > 1/3 then i’s IR constraint binds: βi/2 + β/3 = vi.

Proof: Suppose (a) does not hold, and that β1 + β2 + β < 1. This means we can increase β to

β′ > β without violating any of the constraints. The value of the LP is now (β1 + β2)/2 + 2β′/3 >

(β1 + β2)/2 + 2β/3, contradicting the optimality (β1, β2, β).

Now suppose (a) holds, but (b) does not. If βi < βj then the solution (β2, β1, β) is also

feasible and optimal, so assume without loss of generality that βi ≥ βj . Consider now the solution

β′
i = βi − βj, β

′
j = 0, and β′ = β + 2βj . Since

β′
i/2 + β′/3 = (βi − βj)/2 + (β + 2βj)/3 > βi/2 + β/3 ≥ vi
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and

β′
j/2 + β′/3 = (β + 2βj)/3 > βj/2 + β/3 ≥ vj,

this new solution is feasible. Moreover,

(β′
1 + β′

2)/2 + 2β′/3 > (β1 + β2)/2 + 2β/3,

contradicting the optimality of (β1, β2, β).

Now suppose (a) and (b) hold, but that (c) does not. Then there is some ε > 0 such that

β′
i/2 + β′/3 > vi, where β′

i = βi − ε and β′ = β + ε, and so (β′
1, β

′
2, β

′) is also a feasible solution.

Furthermore,

β′
i/2 + 2β′/3 > βi/2 + 2β/3,

contradicting the optimality of (β1, β2, β).

One implication of Lemma 2 is that at an optimal solution, β is maximized. This follows from

the observation that the objective function is (β1+β2+β)/2+β/6 = 1/2+β/6 when β1+β2+β = 1.

In addition, Lemma 2 pins down the value of the optimal solution to LP(v1, v2):

Lemma 3 Suppose vi ≥ vj and that LP(v1, v2) is feasible. Then the value opt(v1, v2) of an optimal

solution to LP(v1, v2) is one of the following:

• If vi ≤ 1/3 then opt(v1, v2) = 2/3.

• If vi > 1/3 then opt(v1, v2) = 1− vi.

Proof: Lemma 2 implies that at the optimal solution we have βi+β = 1, and so the value at the

optimum is βi/2 + 2β/3. In the first case, the optimal solution occurs at the point β1 = β2 = 0,

β = 1: it maximizes the objective, while both IR constraints remain slack since vi ≤ 1/3 = β/3.

In the second case, Lemma 2 implies that βi/2 + β/3 = vi and that βi = 1 − β. These imply

that vi = (1 − β)/2 + β/3, and so that β = 3 − 6vi and βi = 1 − 3 + 6vi. Plugging these into the

objective yields

opt(v1, v2) =
βi
2

+
2β

3
=

1− 3 + 6vi
2

+
2(3 − 6vi)

3
= 1− vi.

Lemmas 2 and 3 characterize the maximal values attainable by an IR mediator, and are the

analogues of the condition that v1 + v2 ≤ 1 when there is no Amazon. However, before proving

Theorem 3, we need two additional lemmas. Fix a mediator M, and consider the hypothetical

situation in which player i obtains additional information, and in each state ω she fully learns that

the state is ω and so plays the dominant strategy ŝi(ω) = gω. In this new game, denote the best
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response of player j as s′j(M), the strategy that, for every Pj(ω) andM(ω)i, chooses some g that

is most-likely correct conditional on Pj(ω) and M(ω)i. Also observe that here, player j is never

the only player to choose gω, since player i always plays gω.

Player j is worse off in this hypothetical game than when all followM’s recommendations:

Lemma 4 E[uj(s
′
j(M), ŝi)] ≤ E[uj(sj , si)] for any mediator M.

Proof: Fix a particular state ω. For every action g of player j, who conditions on Pj(ω) and

M(ω)j , the utility E[uj(g, ŝi)|Pj(ω),M(ω)j ] ≤ E[uj(g, si)|Pj(ω),M(ω)j ], since i makes correct

choices more often in the former. This implies that E[uj(s
′
j(M), ŝi)|Pj(ω),M(ω)j ] ≤ E[uj(sj , si)|Pj(ω),M(ω)j ],

since in both sides of the inequality j chooses an optimal action conditional on her information,

but in the RHS the utility from every choice g is higher than its corresponding utility in the LHS.

This implies that E[uj(s
′
j(M), ŝi)] ≤ E[uj(sj, si)].

Although in the hypothetical game player j is worse off, the sum of players’ utilities is higher:

Lemma 5 The sum of players’ utilities is higher under (s′j(M), ŝi) than under (sj, si) in M.

Proof: Again, we show that this holds conditional on every Pj(ω) and M(ω)j . Fix ω, and

observe that

Pr [ŝi(ω) = sj(ω) = gω|Pj(ω),M(ω)j ] ≥ Pr [si(ω) = sj(ω) = gω|Pj(ω),M(ω)j ] ,

since ŝi always correctly chooses gω. Furthermore,

Pr
[

ŝi(ω) = s′j(M) = gω|Pj(ω),M(ω)j
]

≥ Pr [ŝi(ω) = sj(ω) = gω|Pj(ω),M(ω)j ] ,

since s′j chooses the good that maximizes the probability of choosing gω. Thus,

Pr
[

ŝi(ω) = s′j(M) = gω|Pj(ω),M(ω)j
]

≥ Pr [si(ω) = sj(ω) = gω|Pj(ω),M(ω)j ] .

Now recall that LP(v1, v2) is maximized when β, the probability that both players correctly

choose gω is maximized. Thus, the value of LP(v1, v2), the sum of players’ utilities, is higher under

(s′j, ŝi) than under (s1, s2).

We can now prove Theorem 3.

Proof: For the first condition, the upper bound on vi, fix some IR, IC mediator M. We will

argue that the utility to player i under M is at most E
[

ui(gω, s
′
j(M))

]

. Lemma 4 implies that

player j’s utility decreases if player i additionally obtains all the information (even when j responds

optimally), and Lemma 5 implies that in this same situation the sum of utilities increases. Together,

these lemmas imply that i’s utility is higher when she obtains all the information and j only learns
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Pj(ω) and M(ω)j , than when i also only learns Pi(ω) and M(ω)i. Furthermore, when i has all

the information, she is best off when j has the least information—that is, when M(ω)j = Pj(ω).

This is because any additional information that causes j to improve upon her payoff will do so

at the expense of player i’s payoff (by transferring weight from βM
i to βM). Thus, in any IR, IC

mediator, the highest possible utility to player i is E
[

ui(gω, s
′
j(ω))

]

, sinceM(ω)j = Pj(ω) and so

s′j(ω) = s′j(M).

The second condition, vj ≤ 1 − 2vi, follows from Lemma 3. If vi ≤ 1/3, then the maximal

welfare of any IR mediator is 2/3, and so vj ≤ 2/3 − vi ≤ 1 − 2vi. If vi > 1/3, then the lemma

implies that the maximal welfare of any IR mediator is at most 1− vi. Since player i gets at least

vi, player j can get at most 1− 2vi.

For the rest of Section 3.2, denote a pair v that satisfies the conditions in Theorem 3 as a feasible

v.

3.2.2 An optimal mediator

We now describe an optimal mediator, at the same time showing that the conditions in Theorem 3

are not only necessary but also sufficient.

We begin with a definition.

Definition 2 A mediator M is fully revealing to player i if the mediator’s recommendation to

player i always coincides with the optimal good: si(ω) = gω for every ω. A mediator facilitates full

data-sharing if it is fully revealing to both players P \ {0}.

Fix the set of players to be P = {0, 1, 2}. The idea underlying the mediator is the same as that

of Mv
noA. Suppose vi ≥ vj. Then if vi ≤ 1/3, then the mediator will facilitate full data-sharing,

and so each player will offer the correct good in every state. If vi > 1/3 then player i will obtain

all the information and player j will obtain only partial information: she will get recommendation

gω with probability less than 1, and otherwise will get recommendation s′j(ω). The challenge is to

maximize the probability of recommendation gω subject to the IR constraints, and to do this in

such a way that following the recommendations is a BNE.

We now formally describe the mediator, and then show that it is indeed IR, IC, and optimal.

The main differences fromMv
noA in Mediator 1 are lines 5 and 9.
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Mediator 2 Mediator for P = {0, 1, 2} with jointly complete information

1: procedureMv
A(V,W ) ⊲ V = P1(ω) and W = P2(ω) for realized ω ∈ Ω

2: ω ← V ∩W

3: i← argmaxk∈{1,2} vk

4: j ← 3− i

5: if vi ≤ 1/3 then return (gω, gω) ⊲ Full data-sharing

6: else

7: gj ← s′j(ω)

8: Choose γ ∈ [0, 1] uniformly at random.

9: if γ <
3−6vi−αj

1−αj
then

10: return (gω, gω)

11: else if i = 1 then return (gω, gj)

12: else return (gj , gω)

Theorem 4 For any feasible v, the mediator Mv
A above is IR, IC, and optimal.

An interesting feature of Mv
A is that it either facilitates full data-sharing, or is fully revealing

to one of the players. These features are inherent to any optimal IR mediator:

Theorem 5 For any feasible v and any optimal IR mediator M, one of the following holds:

• M is fully revealing to both players 1 and 2.

• M is fully revealing to one of the players, and the IR constraint binds for that player (i.e.,

she is indifferent between M and her base value).

Note that Mediator 1 for the case of no Amazon also satisfies the features described in Theorem 5.

In that case, however, these features do not characterize all mediators, as there exist mediators

that are optimal for the case of no Amazon that do not have them. One such mediator is the

one described in the example from the introduction. With an Amazon, in contrast, these features

characterize all optimal IR mediators.

We begin by showing that the mediator above is optimal. Our approach is to show that W (Mv
A)

is equal to the value of the optimal solution to LP(v1, v2), and that the strategy s inMv
A is a BNE.

Observe that LP(v1, v2) does not contain the IC constraints, implying that they are not binding,

and so only the IR constraints are relevant for optimality. This will no longer be the case without

the assumption of jointly complete information, analyzed in Section 4 below.

We already laid most of the groundwork for the proofs of Theorems 4 and 5 when we proved

Theorem 3, but do need one last lemma:

Lemma 6 Suppose v is feasible and vi > 1/3. Then αj = Pr
[

s′j(ω) = gω

]

≤ 3− 6vi.
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Proof: Since v is feasible, it holds that E
[

ui(gω, s
′
j(ω))

]

≥ vi. Next, note that E[ui(gω, s
′
j(ω))] =

αj/3 + (1− αj)/2. Together, these facts imply that αj ≤ 3− 6vi, as claimed.

We are now ready to prove Theorem 4.

Proof: First, consider the case in which vi ≤ 1/3. In this case, strategy s in ΓMv
A leads to

expected utility 1/3 to each player, which satisfies the IR constraint. Furthermore, strategy s is

a BNE, since each player always chooses gω, which is dominant. Finally, W (Mv
A) is maximal by

Lemma 3.

Next, suppose vi > 1/3. Observe that s in ΓMv
A is dominant for player i, since she always

chooses gω. It is also optimal for player j, since she either also chooses gω, or chooses the best

response conditional on her information Pj(ω). Thus, the mediator is IC.

We now show thatMv
A is optimal. For simplicity, henceforth denote byM =Mv

A. First note

that βM
j = 0. Next, by Lemma 6, it holds that αj ≤ 3 − 6vi. Since vi ∈ (1/3, 1/2], this implies

that αj ∈ [0, 1). These, in turn imply that

3− 6vi − αj

1− αj
∈ [0, 1],

so line 9 of Mediator 2 is valid. From that line we have that

βM = αj + (1− αj) ·
3− 6vi − αj

1− αj
= 3− 6vi,

since both players choose gω when s′j(ω) = gω and when s′j(ω) 6= gω but γ < (3−6vi−αj)/(1−αj).

This means that

W (M) =
βM
i

2
+

2βM

3
=

1− 3 + 6vi
2

+
2(3 − 6vi)

3
= 1− vi,

which, by Lemma 3, is the value of the optimal solution to LP(v1, v2).

Finally, since i’s utility is vi and so j’s utility is 1− 2vi, the mediator is IR.

Finally, we can also prove Theorem 5.

Proof: Suppose first that v is such that vj ≤ vi ≤ 1/3. In this case, full data-sharing is IC, and

so any optimal mediatorM must have W (M) ≥ 2/3. However, the maximum value of LP(v1, v2)

is 2/3, and the only way to obtain this is to have βM = 1. This is equivalent to full data-sharing,

and so the only mediator that is optimal is the full data-sharing one.

Now suppose that vi > 1/3. By the proof of Theorem 4, an optimal solution to LP(v1, v2)

is attainable by some mediator, in particular by Mv
A. Thus, any mediator M that is optimal

must also yield W (M) that is equal to the optimal value of LP(v1, v2). By Lemma 2, any optimal

solution to LP(v1, v2) must have βj = 0 and βi/2 + β/3 = vi. Thus, the mediatorM must satisfy

these as well: the first equality implying thatM is fully revealing to player i, and the second that

player i’s IR constraint binds.
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4 No Jointly Complete Information

We now drop the assumption that players 1 and 2 have jointly complete information. Formally, for

a given type ω let S(ω) = P1(ω) ∩ P2(ω), and call each such S(ω) a segment. The assumption of

jointly complete information states that all segments are singletons, and in this section we consider

the more general setting in which segments may contain more than one type of consumer.

This setting presents new challenges, as there is now a new conflict between optimal strategies

and welfare. To see this, consider some segment S = {ω1, ω2} for which Pr[ω1] = 4 · Pr[ω2]. Then,

conditional on segment S, both players have a dominant strategy, namely, to offer g = gω1 . To see

this, observe that a player’s utility from offering gω1 is at least Pr[ω1]/2 regardless of the other’s

action, the utility from offering gω2 is at most Pr[ω2], and by assumption Pr[ω1]/2 = 2Pr[ω2] >

Pr[ω2]. This leads to total welfare Pr[ω1]. However, if players were to separate rather than pool—

one offering gω1 and the other gω2—then the total welfare would be Pr[ω1]+Pr[ω2], which is higher.

Note that this conflict between optimal strategies and welfare does not occur when players have

jointly complete information, since then the pooling action, which is dominant, is also welfare-

maximizing. Finally, although we illustrated this conflict for the setting without an Amazon, it is

of course also present with an Amazon.

This conflict between optimal strategies and welfare maximization makes the design of mediators

significantly more challenging. In principle, one could formulate the problem as a complex linear

program, whose solution could be used to find the optimal mediator. Here, however, we take a

different approach. We will show that simple mediators—in particular, variants of the ones from

Section 3 for the setting with jointly complete information—are approximately optimal. And while

this approach entails some loss in terms of optimality, we will show that these simple mediators are

not only approximately optimal relative to the optimal IR, IC mediator, but rather that they are

approximately optimal relative to a higher benchmark—namely, the welfare that can be achieved

by any mediator, even one that is not IR or IC. Then, to complement our results, we will show that

the approximation factors our mediators achieve are tight or nearly-tight, and that no other IR and

IC mediator can in general achieve a better approximation factor relative to that same benchmark.

We begin with some notation. For any given segment S(ω), denote by g1ω the good g that has the

highest probability Pr [g = gω|S(ω)] in S(ω), and by g2ω the good with the second highest probability,

under the prior π. If there are several such goods, fix two such goods arbitrarily. Next, let φ1
ω =

Pr
[

g1ω = gω|S(ω)
]

be the probability of g1ω conditional on S(ω), and φ2
ω = Pr

[

g2ω = gω|S(ω)
]

be the

respective probability of g2ω. We will also use the notation that, for a given segment S ∈ {S(ω) : ω ∈

Ω}, the goods g1S and g2S are the goods with the highest and second-highest probabilities in S, with

φ1
S and φ2

S their respective conditional probabilities. Finally, let φ1 be the total (unconditional)
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weight of goods g1S over all segments S, and φ2 be the total weight of goods g2S : Formally,

φk =
∑

S∈{S(ω):ω∈Ω}

φk
S · Pr [S] for each k ∈ {1, 2}.

Now, as our main interest lies in coopetition against an Amazon, we will focus here on the

setting with an Amazon. We note that, while we drop the assumption that players 1 and 2 have

jointly complete information, we still assume that the Amazon player 0 has complete information.

That is, even though in any given segment S players 1 and 2 do not know which type ω ∈ S is

realized, player 0 does know, and offers each such type the correct good gω.

We proceed as follows. We begin in Section 4.1 with the design of an optimal mediator for a

particular setting of parameters, namely, for the case in which φ1
S ≤

3
2 ·φ

2
S for every segment S. We

then turn to our main analysis in Section 4.2, for the case in which φ1
S > 3

2 · φ
2
S for every segment

S. There we design the approximately optimal simple mediator mentioned above, and analyze the

tightness of the approximation factor. Finally, in Section 4.3 we show how to combine the two

mediators in order to obtain an approximately optimal mediator for the general setting, without

restrictions on the segments.

4.1 Optimal Mediator for φ1
S ≤

3
2
· φ2

S

We begin with the simpler case in which φ1
S ≤

3
2 · φ

2
S for every segment S. This case is simpler

because here, conditional on any given segment, there is no conflict between optimal strategies and

welfare maximization. In particular, both involve separating, with one player offering g1S and the

other offering g2S :

Claim 1 Conditional on any segment S, if φ1
S ≤

3
2 · φ

2
S then the separating strategy profile is both

welfare maximizing and an equilibrium.

Proof: We will compare the only two reasonable player choices for welfare maximization condi-

tional on segment S: (i) pooling on g1S , or (ii) separating, with one player offering g1S and the other

g2S .

(i) Pooling: Here each of players 1 and 2 obtains utility φ1
S/3—when type ω ∈ S with gω = g1S

is realized (which happens with probability φ1
S), the players split the surplus of 1 with player

0, and so each gets 1/3. Welfare of players 1 and 2 is thus 2
3 · φ

1
S .

(ii) Separating: Here the player who offers g1S obtains utility φ1
S/2—when type ω ∈ S with

gω = g1S is realized, that player splits the surplus with player 0. Similarly, the player who

offers g2S obtains utility φ2
S/2. Welfare of players 1 and 2 is thus (φ1

S + φ2
S)/2.
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Observe that, when φ1
S ≤

3
2 ·φ

2
S , we have that (φ1

S + φ2
S)/2 > 2

3 ·φ
1
S , and so the welfare maximizing

choices are the separating ones.

In addition to being welfare-maximizing, the separating actions also form an equilibrium (con-

ditional on S). Fix a segment S, and suppose player 1 offers g1S and player 2 offers g2S . Then player

1 clearly does not wish to deviate, as she currently obtains utility φ1
S/2, a deviation to g2S will lead

to utility φ2
S/3, and a deviation to any other good will lead to utility at most φ1

S/2 (since g1S has

maximal probability in S). Player 2 also does not wish to deviate, as she currently obtains utility

φ2
S/2, a deviation to g1S will lead to utility φ1

S/3, and by assumption φ2
S/2 ≥ φ1

S/3.

Given the lack of conflict between welfare maximization and equilibrium shown in Claim 1, we

can now construct optimal mediators for this parameter setting. The mediator is straightforward:

it facilitates full data-sharing between the players, and recommends the actions that lead to a

separating equilibrium.

Mediator 3 Mediator for P = {0, 1, 2} without jointly complete information

1: procedureMv
1(S) ⊲ S = P1(ω) ∩ P2(ω) for realized ω ∈ Ω

2: if φ1 = φ2 then return (g1S , g
2
S)

3: else

4: i← argmaxk∈{1,2} vk

5: j ← 3− i

6: Choose γ ∈ [0, 1] uniformly at random.

7: if γ < 2vi−φ2

φ1−φ2 then

8: if i = 1 then return (g1S , g
2
S)

9: else return (g2S , g
1
S)

10: else if i = 1 then return (g2S , g
1
S)

11: else return (g1S , g
2
S)

Theorem 6 Suppose v1+v2 ≤ (φ1+φ2)/2 and max{v1, v2} ≤ φ1/2. Then the mediatorMv
1 above

is IR, IC, and optimal.

Observe that the conditions on v in Theorem 6 are also necessary for the existence of any IR

mediator, since the maximal welfare attainable by any mediator in this setting is (φ1 + φ2)/2, and

the maximal utility any single player can attain is φ1/2.

Proof: Suppose first that φ1 = φ2, and so the conditional in line 2 of Mediator 3 is true. In this

case, each player obtains utility φ1/2 under Mv
1, and the mediator is thus IR. In addition, since

by Claim 1 separation is an equilibrium on every segment S, the mediator is also IC. Finally, the

total welfare to the players is (φ1 + φ2)/2, which is maximal.
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Next, suppose φ1 > φ2. Observe that, in this case, the mediator mixes between utility φ1/2 to

player i and φ2/2 to player j, and utility φ2/2 to player i and φ1/2 to player j, depending on the

value of γ. Regardless of the realizations of γ, the total welfare to the players is always (φ1+φ2)/2.

This is the optimal welfare attainable.

Next, the expected utility of player i inMv
1 is

2vi − φ2

φ1 − φ2
·
φ1

2
+

(

1−
2vi − φ2

φ1 − φ2

)

φ2

2
= vi.

Furthermore, since v1 + v2 ≤ (φ1 + φ2)/2 and total welfare is (φ1 + φ2)/2, the utility to player j is

at least vj. Thus, the mediator is IR.

Finally, since by Claim 1 separation is an equilibrium on every segment S, the mediator is

IC.

4.2 Approximately Optimal Mediator for φ1
S > 3

2
· φ2

S

Suppose now that φ1
S > 3

2 ·φ
2
S for every segment S. This case is more complicated since, conditional

on any segment, there may be a conflict between optimal strategies and welfare maximization:

Claim 2 Conditional on any segment S, if φ1
S > 3

2 ·φ
2
S then pooling on g1S is the dominant strategy.

If φ1
S ≤ 3 · φ2

S then separating is welfare-maximizing, whereas if φ1
S > 3 · φ2

S then pooling is welfare-

maximizing.

Proof: Again, we will compare the only two reasonable player choices conditional on segment S:

(i) pooling on g1S , or (ii) separating, with one player offering g1S and the other g2S . As in the proof

of Claim 1, pooling leads to individual utilities φ1
S/3 and so welfare 2

3 ·φ
1
S , whereas separating leads

to individual utilities φ1
S/2 and φ2

S/2 and so welfare (φ1
S +φ2

S)/2. Then
2
3 ·φ

1
S > (φ1

S +φ2
S)/2 if and

only if φ1
S > 3 · φ2

S , as claimed.

In terms of optimality, however, observe that choosing g1S leads to utility at least φ1
S/3, whereas

choosing any other good leads to utility at most φ2
S/2. The former is greater than the latter

whenever φ1
S > 3

2 · φ
2
S , and so constitutes a dominant action (conditional on S).

Our goal is to design a mediator that is approximately optimal relative to a particular bench-

mark. We denote the benchmark OPT, which is the maximal welfare attainable by any mediator,

even disregarding the IR and IC constraints. We will show that the mediator below, which is a

variant of the mediator Mv
A for the case of jointly complete information, is IR, IC, and obtains

welfare at least 3
4 · OPT. We will then show that this approximation factor is tight.

Before describing the mediator, recall the strategy s′j from Section 3 that, for every Pj(ω),

chooses one of the goods that is most likely to be correct. Here we will use a different formulation

of s′j. In particular, let s′j(ω) ∈ argmaxg∈G E
[

uj(g, g
1
ω)|Pj(ω)

]

. That is, s′j is an optimal action
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for player j conditional on knowing only Pj(ω), in the hypothetical situation where i always plays

the most-likely correct good g1ω in every segment. Also, let αj and αi be the expected utilities of

players j and i in this hypothetical situation: αj = E
[

uj(s
′
j(ω), g

1
ω)
]

and αi = E
[

ui(g
1
ω, s

′
j(ω))

]

.

Note that, under jointly complete information, the formulation of s′j is identical to the one given

in Section 3. Without jointly complete information, however, they may differ.

Mediator 4 Mediator for P = {0, 1, 2} without jointly complete information

1: procedureMv
2(V,W ) ⊲ V = P1(ω) and W = P2(ω) for realized ω ∈ Ω

2: S ← V ∩W

3: i← argmaxk∈{1,2} vk

4: j ← 3− i

5: if vi ≤ φ1/3 then return
(

g1S , g
1
S

)

⊲ Full data-sharing

6: else

7: gj ← s′j(ω)

8: Choose γ ∈ [0, 1] uniformly at random.

9: if γ < 3αi−3vi
3αi−φ1 then

10: return (g1S , g
1
S)

11: else if i = 1 then return (g1S , gj)

12: else return (gj , g
1
S)

Theorem 7 Let vi ≥ vj , and suppose vi ≤ E
[

ui(g
1
ω , s

′
j(ω))

]

and vj ≤ φ1/2−vi. Then the mediator

Mv
2 above is IR, IC, and has welfare W (Mv

2) ≥
3
4 · OPT.

We note that, unlike the conditions on v in Theorems 2, 4, and 6, the conditions here are not

necessary but only sufficient.

Proof: Consider first the case in which vi ≤ φ1/3. Here, the utility to each player is φ1/3 ≥ vi ≥

vj , and so the mediator is IR. Furthermore, players always pool on g1ω which is an equilibrium by

Claim 2. Thus, in this case the mediator is also IC. Finally, total welfare here is 2
3 · φ

1. Below we

will show that this is within a 3/4 factor of OPT.

Before turning to the approximation factor, consider the case in which vi > φ1/3. Observe that

the total welfare in this case is at least φ1/2. If on a given segment S(ω) the players pool on g1ω,

then welfare here is 2
3 · φ

1
ω > 1

2 · φ
1
ω. If the players separate, then the welfare here is at least φ1

ω/2,

since player i always chooses g1ω. Thus, total welfare is at least φ1/2.

Next, the expected utility of player i in this case is

3αi − 3vi
3αi − φ1

·
φ1

3
+

(

1−
3αi − 3vi
3αi − φ1

)

αi = vi.

Furthermore, since the total welfare is at least φ1/2, player j obtains welfare at least φ1/2−vi ≥ vj ,

and so the mediator is IR here as well. In addition, since by Claim 2 the action g1ω is dominant in
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every segment S(ω), and in the mediator player i always chooses g1ω and player j either pools or

best responds given her information, the mediator is IC.

Finally, we turn to the approximation factor. By Claim 2, the maximal welfare possible on a

segment S in which φ1
S ≤ 3 · φ2

S is (φ1
S + φ2

S)/2, and our mediator guarantees welfare at least
φ1

S

2 .

Hence, here we have approximation ratio at least

φ1
S/2

(φ1
S + φ2

S)/2
≥

φ1
S/2

(φ1
S + φ1

S/3)/2
=

3

4
.

In addition, by Claim 2, the maximal welfare possible on a segment S in which φ1
S > 3 ·φ2

S is 2φ1
S/3,

and our mediator guarantees welfare at least
φ1

S

2 . Hence, here we have approximation ratio at least

φ1
S/2

2φ1
S/3

=
3

4
.

Since a ratio of 3/4 is achieved for each segment, it is also achieved overall, and W (Mv
2) ≥

3
4 · OPT.

We now show that the approximation factor of 3/4 is tight, by giving an example wherein there

does not exist an IR mediator, not even one that is not IC, that achieves a factor higher than 3/4.

Example 1 Fix some ε > 0, and suppose there are ⌈1/ε⌉ + 1 segments. Within each segment S

there are two correct goods, g1S and g2S , that satisfy φ1
S = φ2

S/ε. Furthermore, all the g1S goods are

distinct, whereas for every S the good g2S = g2 is the same. Player 1 has all the information, and

so P1(ω) = S(ω) for every ω, whereas player 2 has none, and so P2(ω) = Ω for every ω. Finally,

v1 = φ1/2 and v2 = 0.

In this example, maximal welfare is achieved when all players pool on g1S for every S, and so

OPT = 2
3 · φ

1. However, any IR mediator must give player 1 utility φ1/2, and the only way to

achieve this is to give player 2 no additional information, so that player 1 always chooses g1S and

player 2 always chooses g2 (this is, in fact, what the mediatorMv
2 does). Total welfare here is then

(φ1 + φ2)/2 = (1 + ε)φ1/2, and so the approximation ratio is

(1 + ε)φ1/2

2φ1/3
= (1 + ε) ·

3

4
−−−→
ε→0

3

4
.

In the previous example, the main bottleneck to achieving an approximation factor higher than

3/4 was the IR constraint. In this next example we show that even without the IR constraints,

there does not exist an IC mediator that achieves an approximation factor higher than 4/5.

Example 2 Fix some ε > 0, and suppose that in every segment S there are two correct goods, g1S

and g2S, that satisfy φ1
S =

(

3
2 + ε

)

φ2
S. Furthermore, the goods in every segment are distinct from

goods in other segments. By Claim 2, maximal welfare here is achieved when players separate on

each segment, and so OPT = (φ1 + φ2)/2.
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However, again by Claim 2, the dominant action for players is to pool on g1S. Note that in any

IC mediator, no player will ever choose a good g = g2S, regardless of her information, since she can

always improve her payoff by deviating to the strictly better g1S (here we use the fact that all goods

are distinct). Thus, the most any IC mediator can attain is when all players pool on the top good,

leading to welfare 2
3 · φ

1 and so approximation factor

2
3 · φ

1

φ1+φ2

2

=
2
3 · φ

1

φ1 + φ1/(3/2+ε)
2

=
2 + 4ε

3
5
2 + ε

−−−→
ε→0

4

5
.

4.3 Approximately Optimal Mediator for General Setting

Each of the mediators in the previous two sections is IR, IC, and approximately-optimal under a

particular setting of parameters, but not in the other. MediatorMv
1 of Mediator 3 is not IC when

φ1
S > 3

2 · φ
2
S for some segment S, since players wish to pool but the mediator facilitates separating.

Mv
2 of Mediator 4 is not IC when φ1

S < 3
2 ·φ

2
S for some segment S, since players wish to separate but

the mediator facilitates pooling. In this section we show that the two mediators can be combined

in order to yield an IR, IC, and approximately optimal mediator for any parameter setting. The

main idea is straightforward: to runMv
1 of Mediator 3 on segments S for which φ1

S ≤
3
2 · φ

2
S, and

to runMv
2 of Mediator 4 on segments S for which φ1

S > 3
2 · φ

2
S .

Before formalizing this mediator, we need some notation. Let S1 = {S : φ1
S ≤

3
2 · φ

2
S} and

S2 = {S : φ1
S > 3

2 · φ
2
S}. Also, for each ℓ ∈ {1, 2} let φ1

ℓ be the total weight of the most-likely

correct goods conditional on Sℓ, and φ2
ℓ be the total weight of the second most-likely correct goods

conditional Sℓ. Formally, for each k ∈ {1, 2},

φk
ℓ =

∑

S∈Sℓ

φk
S · Pr [S|Sℓ] .

Finally, modify the definitions of s′j , αj , and αi from Section 4.2 as follows. First, for any ω with

S(ω) ∈ S2 let s′j(ω) ∈ argmaxg∈GE
[

uj(g, g
1
ω)|Pj(ω), S2

]

, so it is an optimal action for player j

conditional on the information that ω ∈ Pj(ω) and S(ω) ∈ S2, in the hypothetical situation where

i always plays the most-likely correct good g1ω in every segment S(ω). Also, let αj and αi be the

expected utilities of players j and i in this hypothetical situation: αj = E
[

uj(s
′
j(ω), g

1
ω)|S2

]

and

αi = E
[

ui(g
1
ω, s

′
j(ω))|S2

]

.

Mediator 5 Mediator for P = {0, 1, 2} without jointly complete information

1: procedureMv
3(V,W ) ⊲ V = P1(ω) and W = P2(ω) for realized ω ∈ Ω

2: S ← V ∩W

3: if φ1
S ≤

3
2 · φ

2
S then runMv

1(S) with (φ1
1, φ

2
1) replacing (φ1, φ2)

4: else runMv
2(V,W ) with (φ1

2, φ
2
2) replacing (φ1, φ2)

29



Theorem 8 Let vi ≥ vj, and suppose that v1+v2 ≤ (φ1
1+φ2

1)/2, that vi ≤ max
{

E
[

ui(g
1
ω, s

′
j(ω))|S2

]

,
φ1

1

2

}

,

and that vj ≤ φ1
2/2−vi. Then the mediatorMv

3 above is IR, IC, and has welfare W (Mv
3) ≥

3
4 ·OPT.

Proof: Conditional on S1, the conditions on v of Theorem 6 are satisfied, and soMv
1 is IR and

IC. Conditional on S2, the conditions on v of Theorem 7 are satisfied, and so Mv
2 is IR and IC.

That is, conditional on either S1 or S2, the expected utilities of either player k is at least vk. Thus,

k’s expected utility in Mv
3, which is a mixture of her utilities conditional on S1 and on S2, must

also be greater than vk. This implies thatMv
3 is IR.

Furthermore, sinceMv
1 andMv

2 are IC, for either player k the strategy sk is a best-response to

s3−k conditional on either S1 or S2. Thus,M
v
3 is also IC.

Finally, we consider the welfare guaranteed byMv
2. Conditional on S1, the welfare attained is

(φ1
1 + φ2

1)/2, by Theorem 6. This is the optimal attainable by any mediator when φ1
S ≤

3
2 · φ

2
S for

every segment S, by Claim 1. Hence, conditional on S1, the welfare achieved by Mv
3 is equal to

OPT (conditional on S1).

Conditional on S2, the welfare attained on any segment S is at least 3
4 times the welfare

attainable on this segment by any mediator (by the proof of Theorem 7). Hence, the welfare

achieved byMv
3 is at least 3

4 · OPT (conditional on S2).

Since conditional on either S1 or S2 yields welfare at least
3
4 times the optimal, the total welfare

ofMv
3 is W (Mv

3) ≥
3
4 · OPT.

5 Do Players Share More Data With or Without an Amazon?

In this section we consider the intriguing question of whether players optimally share more data

in the presence of an Amazon or in its absence. While it seems intuitive that players would share

more data when facing stronger outside competition, we show here that this is not necessarily the

case. We also show that the reason the intuition fails is related to the possible conflict between

equilibrium and welfare maximization identified in Claim 2.

Because we are interested in comparing data sharing across two different environments—without

and with an Amazon—we focus on our main interpretation of the base values v, namely, that they

correspond to the equilibrium expected utilities absent a mediator. Of course, because the two

environments differ, so will these equilibrium expected utilities. We will thus be interested in

comparing the benefit of data sharing relative to firms’ no-sharing equilibrium utilities vnoA absent

an Amazon with the benefit of data sharing relative to firms’ no-sharing equilibrium utilities vA in

the presence of an Amazon.

We begin our analysis in Section 5.1, where we show that, when there is jointly complete infor-

mation, the intuition that firms share more data in the presence of an Amazon than in its absence

does hold. In particular, we show that if, when there is no Amazon, data sharing strictly increases
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welfare relative to the welfare-maximizing equilibrium sans data sharing, then optimal data sharing

strictly increases welfare in the environment with an Amazon relative to any equilibrium sans data

sharing.

In Section 5.2 we then drop the assumption of jointly complete information, and show that this

result no longer holds. In particular, we describe two settings:

1. A setting where full data-sharing is optimal in the presence of an Amazon, but no data-sharing

is optimal in the absence of an Amazon.

2. A setting where full data-sharing is optimal in the absence of an Amazon, but no data-sharing

is optimal in the presence of an Amazon. In this setting, data sharing is strictly beneficial to

firms in the absence of an Amazon but not in its presence.

In Section 5.2 we also identify and discuss the driving force behind this difference, namely, the

possible conflict between equilibrium and welfare maximization.

5.1 Conditions for Sharing with Jointly Complete Information

In this section we show that, under jointly complete information, when players can strictly benefit

from data sharing in the absence of an Amazon, they can also strictly benefit from data sharing in

the presence of an Amazon.

Theorem 9 Fix an unmediated game Γ =
(

Ω,P, G2, (Pi(·))i∈P , (ui)i∈P , π
)

in which there is jointly

complete information and no Amazon, and let (v1, v2) be the expected utilities in a BNE of Γ for

which v1 + v2 is maximal. Also, let Γ′ =
(

Ω,P, G3, (Pi(·))i∈P , (ui)i∈P , π
)

be the same unmediated

game, except with an Amazon, and let (v′1, v
′
2) be the expected utilities in some BNE of Γ′. Then

if there exists an IR, IC mediator M in the game without an Amazon such that W (M) > v1 + v2,

there also exists an IR, IC mediatorM′ in the game with an Amazon such that W (M′) > v′1 + v′2.

The converse of Theorem 9 is not true—there are examples where players strictly benefit from

data sharing in the presence of an Amazon but not in its absence. A simple example is the game

described in Figure 1 in the Introduction, with parameters α > β = γ > δ = 0. In the absence of

an Amazon, the unique equilibrium there yields maximal welfare of 1, since at least one consumer

always offers the correct good. Thus, data sharing cannot strictly improve welfare. In the presence

of an Amazon, however, data sharing can be strictly beneficial, as described in the Introduction.

Proof: Suppose towards a contradiction that there exists an IR, IC mediator M in the game

without an Amazon such that W (M) > v1+v2, but that for some (v′1, v
′
2) there does not exist an IR,

IC mediatorM′ in the game with an Amazon such that W (M′) > v′1+v′2. Let E be the equilibrium

in the game with an Amazon that yields payoffs (v′1, v
′
2), and let M0 be the mediator that does
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nothing other than recommend players their actions from the equilibrium E. This mediator is

IR, IC, and yields welfare W (M0) = v′1 + v′2. Since, by assumption, no IR, IC mediator yields

higher welfare, M0 is optimal relative to the feasible pair (v′1, v
′
2). Thus, by Theorem 5, M0 is

fully revealing to at least one of the two players. In particular, this implies that the BNE E in the

game with an Amazon is one in which at least one of the players always offers the correct good gω

to every consumer ω.

We now argue that this implies that the same E is an equilibrium also in the game without an

Amazon. The player i that always offers the correct good is clearly playing a dominant strategy,

both in the game with an Amazon and in the game without, as any deviation can only lower her

utility. The other player j is playing a best response in the game with an Amazon. Because both

player i and the Amazon always offer the correct good, j’s strategy must maximize the probability

of offering the correct good conditional on knowing (only) Pj(ω). However, this strategy is also an

equilibrium in the game without an Amazon, since i always offers the correct good.

The equilibrium E is such that at least one of the players always offers the correct good, and

so in the game without an Amazon it yields a total welfare of 1. However, this contradicts the

assumption that there exists a mediator M that strictly improves welfare, since no mediator can

yield welfare W (M) > 1.

5.2 Data-Sharing with No Jointly Complete Information

The analysis of Section 5.1 shows that when players strictly benefit from data sharing in the absence

of an Amazon, they necessarily also benefit from data sharing in the presence of an Amazon. This

is consistent with the intuition that players can gain more by sharing data when they also face

outside competition. However, this result relies on the assumption of jointly complete information.

In this section we drop the assumption, and show that in that case this intuition is not complete. In

particular, while there are settings in which players benefit more from sharing data in the presence

of an Amazon, there are also settings in which players benefit from data sharing in the absence of

an Amazon but not in the presence of an Amazon.

More specifically, in Section 5.2.1 below we describe a setting where:

• In the absence of an Amazon, the optimal welfare is achieved when players share no data and

not when they fully share data;

• In the presence of an Amazon, the optimal welfare is achieved when players fully share data

and not when they share no data.

In contrast, in Section 5.2.1 we describe a setting where:

• In the absence of an Amazon, the optimal welfare is achieved when players fully share data

and not when they share no data;
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• In the presence of an Amazon, the optimal welfare is achieved when players share no data

and not when they fully share data.

The main driving force behind the distinction between the two settings is whether or not there

is a conflict between equilibrium and welfare maximization, as formalized in Claim 2. The situation

described in Section 5.2.1 is one where φ1
S ≥ 3 ·φ2

S for every segment S. In this case, under full data

sharing, it is a dominant strategy for players to pool on g1S (both with and without an Amazon).

In the presence of an Amazon, such pooling is also welfare maximizing, by Claim 2. In the absence

of an Amazon, however, separating is always welfare maximizing. Thus, full data sharing leads to

the optimal welfare in the former case, but not in the latter.

In contrast, the situation described in Section 5.2.2 is one where φ1
S ∈ (32φ

2
S , 2φ

2
S). In this case,

under full data sharing, in the absence of an Amazon it is an equilibrium for players to separate,

whereas in the presence of an Amazon it is dominant for players to pool (again, by Claim 2).

Furthermore, in both settings, separating is the welfare maximizing outcome. Thus, full data

sharing leads to the optimal welfare in the absence of an Amazon, but not in its presence.

5.2.1 More Sharing With an Amazon

When there is an Amazon, if for each segment S it holds that φ1
S ≥ 3 · φ2

S , then maximal welfare

is achieved when players pool on φ1
S (by Claim 2). This maximal welfare is can be achieved

by full data-sharing (assuming the IR constraint is satisfied): On each segment S, the mediator

recommends g1S to both players, and this is optimal for them (again by Claim 2). In contrast, when

there is no Amazon, full data-sharing may not be optimal (regardless of the IR constraint), as here

maximal welfare is attained by separation.

In this section we construct an example in which full data-sharing is strictly suboptimal when

there is no Amazon. While the example from the introduction illustrated this, it is not quite what

we desire, since in that example the mediator with an Amazon is also an optimal mediator without.

What we would like is an example where full data-sharing is optimal only with an Amazon. In the

analysis that follows, we first ignore the IR constraint. At the end of the section we then show that,

with the proper modification, the argument holds also when taking the IR constraint into account.

In the following construction, for simplicity we refer to different types of consumers ω by the

good gω they desire. There are two segments, S1 = {g1} and S2 = {g1, g2}, and players’ partitions

are Π1 = {S
1, S2} and Π2 = Ω. That is, player 1 learns whether the realized ω lies in the segment

S1 (and so the correct good is g1) or S2 (and so the correct good is g1 or g2), whereas player

2 does not learn anything. The prior is such that both segments are equally likely, and that

Pr
[

g2|S
2
]

> 3Pr
[

g1|S
2
]

> 0. That is, in segment S2, the good g2 is more than three times more

likely to be correct than good g1.

In the presence of an Amazon, the welfare maximizing choices lead to pooling on g1 in segment
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S1 and pooling on g2 in segment S2, by Claim 2. This can be achieved by full data-sharing, leading

to an equilibrium in which players take these pooling actions (again, by Claim 2). In contrast, with

no data sharing, player 2 chooses the action g1 (in both segments), leading to lower welfare due to

separation on S2.

Now suppose there is no Amazon. Here the welfare maximizing choices have players separating

on segment S2. Without any additional information, player 2 chooses action g1, leading to such

optimal separation. With data sharing, however, player 2 takes action g2 on S2, pooling with player

1, leading to lower welfare. Thus, in this example, full data-sharing is optimal in the presence of

an Amazon but not in its absence. Furthermore, without an Amazon, it is optimal to not share

any data.

Finally, recall that we thus far neglected the IR constraint. We now modify the example so

that the conclusion holds when also taking the IR constraints into account. In particular, duplicate

the construction with a different set of segments and consumers, but where players 1 and 2 have

the opposite information. Formally, in addition to the two segments, S1 = {g1} and S2 = {g1, g2},

suppose there are also segments S
1
= {g1} and S

2
= {g1, g2}, where the goods g1 and g2 are

distinct from the goods g1 and g2. Furthermore, the partitions are Π1 = {S1, S2, S
1
∨ S

2
} and

Π2 = {S
1 ∨ S2, S

1
, S

2
}. That is, if the realized segment is S1 or S2, then again player 1 learns the

segment and player 2 learns only that the realized segment is either S1 or S2. Symmetrically, if

the realized segment is S
1
or S

2
, then player 2 learns the segment and player 1 learns only that

the realized segment is either S
1
or S

2
. Finally, suppose that the realized segment is S1 or S2 with

probability 1/2, and S
1
or S

2
with probability 1/2.

Because the example is symmetric, the utilities of the two players, absent data sharing, are

equal. Similarly, the utilities of the two players, under full data-sharing, are also equal. Thus,

whenever full data-sharing leads to strictly higher welfare than no data-sharing (as in the presence

of an Amazon above), then it also satisfies the IR constraint. And if no data-sharing is optimal in

the original example (as in the absence of an Amazon above), then it is also optimal in the modified

setting. Thus, the conclusion that full data-sharing may be optimal in the presence of an Amazon

but not in its absence holds also when we take the IR constraint into account.

5.2.2 More Sharing Without an Amazon

When there is no Amazon, the optimal welfare is achieved when, for each segment S, players

separate—one choosing g1S and the other g2S—as this leads to maximal utility g1S + g2S in each

segment. Furthermore, if φ1
S < 2φ2

S for every segment S, then this maximal welfare can be achieved

by full data-sharing: On each segment S, the mediator recommends g1S to one of the players, and

g2S to the other. In contrast, in the presence of an Amazon, if φ1
S < 2φ2

S for every segment S

then full data-sharing may not be optimal. In this section we construct an example in which full
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data-sharing is strictly suboptimal with an Amazon. As in Section 5.2.1 above, in the following

construction, for simplicity we refer to different types of consumers ω by the good gω they desire.

We also ignore the IR constraint. However, again as in Section 5.2.1 above, the conclusion holds

also when we take the IR constraint into account if we consider a modified, symmetric example in

which the segments and partitions are duplicated.

Suppose there are three segments, S1 = {g1}, S
2 = {g3}, and S3 = {g1, g2, g3}, and players’

partitions are Π1 = {S1, S2 ∨ S3} and Π2 = {S2, S1 ∨ S3}. That is, player 1 learns whether the

realized ω lies in the segment S1, and so gω = g1, or whether ω lies in one of S2 or S3, and so the

correct good for the realized type is one of g1, g2, or g3 (with relative probabilities to be specified

shortly). Player 2 is similar, but learns whether the realized segment is S2 or one of S1 or S3.

The prior is such that the segments are equally likely. Denote by φk
3 = Pr [gk|S3] the probability

that good gk is correct, conditional on segment S3, and suppose that φ1
3 ∈

(

3·φ2

3

2 , 2 · φ2
3

)

and that

φ2
3 > φ3

3 > φ1
3/3.

Suppose there is no Amazon. The optimal welfare here, (2 + φ1
3 + φ2

3)/3, is attained when at

least one player chooses g1 conditional on S1, at least one player chooses g3 conditional on S2,

and when one player chooses g1 and another chooses g2 conditional on S3. Full data-sharing leads

players to learn the correct segment, and so to maximal welfare: on segments S1 and S2 players

pool on the correct good, and on segment S3 it is an equilibrium for players to separate.

In contrast, without data sharing, while player 2 will end up choosing g1 on S3, player 1 will

end up choosing g3 on S3. This is because player 1 cannot differentiate between S2 and S3, and

conditional on S2 ∨ S3 the strategy of choosing good g3 is dominant. This, however, leads to total

welfare (2 + φ1
3 + φ3

3)/3 < (2 + φ1
3 + φ2

3)/3, and so full data-sharing is better than no sharing.

Now suppose there is an Amazon. When there is no data-sharing, then conditional on segments

S1 or S2, welfare will be 2/3, since for both players it is a dominant strategy to offer the correct

good. On segment S3 the strategies g3 and g1 of players 1 and 2, respectively, will again be dominant

(as in the case of no Amazon), leading to conditional welfare (φ1
3 + φ3

3)/2 here.

What happens will full data-sharing? Here, on segment S3, players will pool on action g1, by

Claim 2 and the assumption that φ1
3 >

3
2φ

2
3. Thus, welfare conditional on S3 will be

2

3
· φ1

3 <
φ1
3 + φ3

3

2
,

where the inequality follows from the assumption that φ3
3 > φ1

3/3. Since, conditional on S1 or S2,

welfare is the same with full sharing and with no sharing, total (unconditional) welfare is higher

with no sharing than with full sharing.

Furthermore, observe that under no data-sharing, welfare is maximal conditional on S1 or S2.

Under S3, higher welfare could (only) be attained if players were to separate on g1 and g2. However,

such separation can never occur in equilibrium: Any player that is supposed to offer g2 can strictly

benefit by deviating to offering g1, regardless of the other player’s action (by Claim 2 and since
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φ1
3 > 3

2φ
2
3). Therefore, under no data-sharing players obtain maximal welfare subject to the IC

constraint being satisfied.

Thus, in this example, full data-sharing is optimal in the absence of an Amazon, but not in

its presence. In contrast, no data-sharing is optimal in the presence of an Amazon, but not in

its absence. In particular, this implies that data sharing is strictly beneficial in the absence of an

Amazon, but not in its presence.

6 Conclusion

In this paper we proposed a simple model to study coopetitive data sharing between firms. We

designed several data-sharing schemes, in the form of mediators, that are optimal in their respective

domains, with and without an Amazon.

In our model, we assumed that the mediator only facilitates data sharing between firms. One

natural extension is to allow the mediator to also use monetary transfers between them. In Ap-

pendix 7.1 we analyze this extension. We show that transfers can loosen the IR constraint, implying

that, under jointly complete information, full data-sharing is often optimal. However, when there

is no jointly complete information, full data-sharing may violate the IC constraint, and in this case

our mediators (even without transfers) are close to optimal.

One limitation of our model is that it considers data sharing between only two firms. What

happens when there are n > 2 small firms, and a mediator that can facilitate sharing between all of

them? We leave a thorough analysis of optimal mediators in this setting for future work, but provide

some preliminary results in Appendix 7.2. In particular, we analyze the case of jointly complete

information. We show that, in coopetition without an Amazon, a generalization of the mediator

from the introductory example to n players is optimal. In coopetition against an Amazon, however,

the situation is more complicated. Nonetheless, we provide necessary and sufficient conditions for

full data-sharing to be optimal in this case.

Coopetitive data-sharing is crucial for firms’ survival in current online markets, and the model

and results of this paper have only scratched the surface of what can and should be done. In

particular, the paper leaves numerous directions open for future research. In addition to a thorough

analysis of optimal data-sharing with more than 2 players, a particularly important direction is to

analyze data sharing in a variety of markets different from the one studied here.
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Appendix

7 Extensions

7.1 Transfers

In this section we consider an extension to the model: the possibility of monetary transfers between

players. With transfers, the mediator may require one player to pay an amount c, and another to

receive that amount c, when opting in. Assume total utilities are quasi-linear in these transfers—

that is, a player’s total utility is her utility from the game plus the change in her monetary position.

How does the possibility of such transfers affect the design of mediators?

A first observation is that the optimality of mediatorMv
noA, under jointly complete information

and without an Amazon, is not affected, since that mediator leads to a globally optimal sum of

player’s utilities. Any transfers will only change the distribution of utilities (and hence whether or

not the mediator is IR), not their sum.

When players have jointly complete information and they compete against an Amazon, however,

the optimal mediator can be different. In particular, when there are transfers, then a mediator that

is fully revealing to both players is optimal whenever v1+ v2 ≤ 2/3. If both vi ≤ 1/3 and vj ≤ 1/3,

then the mediator that is fully revealing to both is optimal even without a transfer (this is what

Mv
A does). If vi ≥ 1/3 ≥ vj, let the mediator set a transfer c = (vi − 1/3), have player j transfer c

to player i, and then always recommend gω to both players. After the transfer this leads to utility

1/3 + c to player i and 1/3 − c to player j. Observe that 1/3 + c = 1/3 + (vi − 1/3) = vi and

1/3 − c = 1/3 − (vi − 1/3) = 2/3 − vi ≥ vj, and so the mediator is IR. The mediator is IC since

each player plays the dominant action gω for every ω. And, finally, the mediator is optimal, since

the sum of utilities is 2/3, which is globally maximal.

When there is no jointly complete information the situation is slightly more complicated, and

here we consider three settings of parameters. First, if φ1
S ≤

3
2 · φ

2
S , then the mediator Mv

1

of Mediator 3 is IR, IC, and optimal, even without transfers. Second, if φ1
S > 3 · φ2

S , then by

Claim 2 the pooling strategy is both dominant and welfare maximizing. In this case, a mediator

like the mediator with jointly complete information and transfers above will be optimal whenever

v1 + v2 ≤
2
3 · φ

1. If both vi ≤ φ1/3 and vj ≤ φ1/3, then the mediator that is fully revealing to both

is optimal even without a transfer (as in Mv
2). If vi ≥ φ1/3 ≥ vj , let the mediator set a transfer

c = (vi−φ1/3), have player j transfer c to player i, and then always recommend gω to both players.

This mediator is IR, IC, and optimal, by the same reasoning as above.

Third, if φ1
S ∈ (32 · φ

2
S , 3 · φ

2
S), then full data-sharing does not always satisfy the IC constraint.

This is demonstrated by the example in Section 5.2.1, in which the optimal IC mediator is one

in which there is no data sharing (and it is strictly better than full data-sharing). Since the
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example is symmetric, players’ payoffs are identical, and so transfers do not alleviate the situation.

Nonetheless, recall that mediator Mv
3 (analyzed in Theorem 8) yields welfare at least 3

4 · OPT,

where OPT is the maximal welfare achieved by any mediator, including one that is not IR or

IC. Furthermore, Example 2 shows that no mediator (not even one that does no satisfy IR) can

in general achieve more than 4
5 · OPT. This implies that even the best mediator with transfers

can yield at most 4
5 · OPT. Our mediator Mv

3 achieves close to this—namely, 3
4 · OPT—without

transfers.

7.2 Many Players

Throughout this paper we analyzed the case of 2 players and possibly an Amazon. In this section

we discuss an extension of the model and results to n > 2 players. We leave a thorough anal-

ysis of optimal mediators in this setting for future work, but here we provide some preliminary

results. In particular, we consider the case in which players have jointly complete information:
⋂

i∈{1,...,n} Pi(ω) = {ω} for every ω ∈ Ω, where Pi(ω) is the partition element of player i when

consumer type ω is realized.

The main take-away from this section is that in coopetition without an Amazon, a generalization

of the mediator from the introductory example to n players is optimal. In coopetition against an

Amazon, however, the situation is more complicated. We provide necessary and sufficient conditions

for full data-sharing to be optimal in this case.

7.2.1 Many Players Without Amazon

Let E = (s1, . . . , sn) be a BNE of the unmediated game, where si(ω) is the equilibrium strategy of

player i when she obtains information Pi(ω). We will design an optimal mediator for the setting in

which, for every i, the base value vi is at most the utility of player i in E. Consider the following

mediator, and observe that it uses the equilibrium E in its construction (in contrast with Mv
noA,

which only uses the base values v).

Mediator 6 Mediator for P = {1, . . . , n} given equilibrium E = (s1, . . . , sn)

1: procedureME
noA(V1, . . . , Vn) ⊲ Vi = Pi(ω) for realized ω ∈ Ω and every i

2: ω ←
⋂

i∈{1,...,n} Vi

3: gi ← a draw from distribution si(ω) for every i

4: if (gi 6= gω ∀i ∈ P) then return (gω, . . . , gω)

5: else return (g1, . . . , gn)

Theorem 10 Fix a BNE E = (s1, . . . , sn) of the unmediated game with no Amazon, and for every

i let vi be at most the expected utility of player i in E. Then ME
noA is IR, IC, and optimal.
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In mediator ME
noA, every player obtains the same utility as under E, plus additional utility

whenever no player correctly chooses gω. Thus, the mediator is IR. Furthermore, since under

this mediator, for every ω at least one player chooses gω, and so the total welfare is 1, which is

maximal. The main challenge in the proof is to show that the mediator is IC: in the mediator each

player either plays her equilibrium strategy si(ω) or the dominant action gω, and the proof involves

showing that, conditional on not obtaining recommendation gω, the strategy si(ω) is still optimal.

Proof: Recall that s is the strategy profile in which players always followME
noA’s recommendation.

We first show that all players receive (weakly) higher expected utilities under s than under E.

Consider some ω ∈ Ω, and some realizations (g1, . . . , gn) of (s1(ω), . . . , sn(ω)). Consider two events:

If gi 6= gω for all i then without the mediator, all players obtain utility zero. The mediator here

recommends gω to all, leading to positive utility to all players. Conditional on this event, then, the

mediator is beneficial to all players. The other event is the complement of this first event, in which

case the mediator recommends players’ BNE actions. Since the mediator’s recommendation does

not change players’ actions relative to E, it also does not affect their utilities. Overall, then, all

players prefer s inME
noA to E, and so the mediator is IR.

Next, we show that s is a BNE of ΓME
noA . Fix ω and a player i, and suppose all other players

j play sj. Denote this profile of other players as s−i(ω) To simplify notation, denote by M =

ME
noA and byM(ω)i the distribution over recommendations to player i in state ω. Also fix some

g ∈ supp(si(ω)), and let α = Pr [(si(ω) 6= g)|Pi(ω) ∩ (M(ω)i = g)]. Then when the mediator

recommends action g, player i’s expected utility from following that recommendation is

E [ui(g, s−i(ω))|Pi(ω) ∩ (M(ω)i = g)]

= αE [ui(g, s−i(ω))|Pi(ω) ∩ (M(ω)i = g) ∩ (si(ω) 6= g)]

+ (1− α)E [ui(g, s−i(ω))|Pi(ω) ∩ (M(ω)i = g) ∩ (si(ω) = g)] (1)

= α/n + (1− α)E [ui(g, s−i(ω))|Pi(ω) ∩ (M(ω)i = g) ∩ (si(ω) = g)] (2)

= α/n + (1− α)E [ui(g, s−i(ω))|Pi(ω) ∩ (M(ω)i = g) ∩ (si(ω) = g)] (3)

= α/n +
1− α

Pr [M(ω)i = g|Pi(ω) ∩ (si(ω) = g)]
·

(

E [ui(g, s−i(ω))|Pi(ω) ∩ (si(ω) = g)]

− E [ui(g, s−i(ω))|Pi(ω) ∩ (M(ω)i 6= g) ∩ (si(ω) = g)] · Pr [M(ω)i 6= g|Pi(ω) ∩ (si(ω) = g)]

)

(4)

= α/n +
(1− α) · (E [ui(g, s−i(ω))|Pi(ω) ∩ (si(ω) = g)]

Pr [M(ω)i = g|Pi(ω) ∩ (si(ω) = g)]
, (5)

where (1) follows from the law of total expectation, (2) follows since si(ω) 6=M(ω)i implies that

the mediator recommended gω to all players, (3) follows since si(ω) = M(ω)i implies that the

mediator recommended the equilibrium action to all players, (4) follows from another application

of the law of total expectation, and (5) follows sinceM(ω)i 6= g = si(ω) implies that g 6= gω.
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Similarly, i’s expected utility from not following the mediator’s recommendation g and playing

g′ 6= g instead is

E
[

ui(g
′, s−i(ω))|Pi(ω) ∩ (M(ω)i = g)

]

= αE
[

ui(g
′, s−i(ω))|Pi(ω) ∩ (M(ω)i = g) ∩ (si(ω) 6= g)

]

+ (1− α)E
[

ui(g
′, s−i(ω))|Pi(ω) ∩ (M(ω)i = g) ∩ (si(ω) = g)

]

= (1− α)E
[

ui(g
′, s−i(ω))|Pi(ω) ∩ (M(ω)i = g) ∩ (si(ω) = g)

]

= (1− α)E
[

ui(g
′, s−i(ω))|Pi(ω) ∩ (M(ω)i = g) ∩ (si(ω) = g)

]

=
1− α

Pr [M(ω)i = g|Pi(ω) ∩ (si(ω) = g)]
·

(

E
[

ui(g
′, s−i(ω))|Pi(ω) ∩ (si(ω) = g)

]

− E
[

ui(g
′, s−i(ω))|Pi(ω) ∩ (M(ω)i 6= g) ∩ (si(ω) = g)

]

· Pr [M(ω)i 6= g|Pi(ω) ∩ (si(ω) = g)]

)

≤
(1− α) · (E [ui(g

′, s−i(ω))|Pi(ω) ∩ (si(ω) = g)]

Pr [M(ω)i = g|Pi(ω) ∩ (si(ω) = g)]
.

Since E is an equilibrium, it holds that

E [ui(g, s−i(ω))|Pi(ω) ∩ si(ω) = g)] ≥ E
[

ui(g
′, s−i(ω))|Pi(ω) ∩ si(ω) = g)

]

,

and so

E [ui(g, s−i(ω))|Pi(ω) ∩ (M(ω)i = g)] ≥ E
[

ui(g
′, s−i(ω))|Pi(ω) ∩ (M(ω)i = g)

]

.

Additionally, note that if M(ω)i = g for some g 6∈ supp(si(ω)) then player i is certain that

g = gω, and so following the mediator’s recommendation is optimal. Thus, in both cases, following

the mediator’s recommendation is optimal, and so s is a BNE.

Finally, we show thatME
noA is optimal with respect to E. In any state ω, the sum of players’

utilities conditional on that state is at most 1. This maximal utility is achieved whenever at least

one player plays gω. Under ME
noA, at least one player plays gω in every ω. Hence, the sum of

players’ (unconditional) expected utilities is W (ME
noA) = 1, the maximum possible in the game.

7.2.2 Many Players Against Amazon

Suppose now that there are n players and an Amazon, that there is jointly complete information,

and that v is an arbitrary profile of base values.

Claim 3 The mediator M that is fully revealing to all players i ∈ {1, . . . , n} and always recom-

mends gω is IR, IC, and optimal if and only if vi ≤ 1/(n + 1) for all i.
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Proof: The strategy s in a fully revealing M is a BNE, since each player plays gω, which is

dominant. It is IR, since each player i’s expected utility in M is 1/(n + 1) ≥ vi. Finally, it is

optimal: Whenever k players correctly choose gω, the sum of players’ utilities is k/(k + 1). Under

M, the sum of players’ utilities is n/(n+ 1), which is the most they can jointly obtain.

The reverse direction holds by the observation that if a player has base value vi > 1/(n + 1)

then her IR constraint is violated under a fully revealing mediator.
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