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Abstract

The airport game is a classical and well-known
model of fair cost-sharing for a single facility
among multiple agents. This paper extends it to
the so-called assignment setting, that is, for multi-
ple facilities and agents, each agent chooses a facil-
ity to use and shares the cost with the other agents.
Such a situation can be often seen in sharing econ-
omy, such as sharing fees for office desks among
workers, taxis among customers of possibly differ-
ent destinations on a line, and so on. Our model
is regarded as a coalition formation game based on
the fair cost-sharing of the airport game; we call our
model a fair ride allocation on a line. As criteria
of solution concepts, we incorporate Nash stability
and envy-freeness into our setting. We show that a
Nash-stable feasible allocation that minimizes the
social cost of agents can be computed efficiently if
a feasible allocation exists. For envy-freeness, we
provide several structural properties of envy-free
allocations. Based on these, we design efficient al-
gorithms for finding an envy-free allocation when
at least one of (1) the number of facilities, (2) the
capacity of facilities, and (3) the number of agent
types, is small. Moreover, we show that a consecu-
tive envy-free allocation can be computed in poly-
nomial time. On the negative front, we show the
NP-hardness of determining the existence of an al-
location under two relaxed envy-free concepts.

1 Introduction

Imagine a group of university students, each of whom would
like to take a taxi to her/his own destination. For example,
Alice may want to directly go back home while Bob prefers
to go to the downtown to meet with friends. Each of students
may ride a taxi alone, or they may share a ride and split into
multiple groups to benefit from sharing the cost. It is then
natural to ask two problems: how to form coalitions and how
to fairly divide the fee.

Many relevant aspects of the second problem have been
studied in a classical model of the airport problem, intro-
duced by Littlechild and Owen [1973]. In the airport prob-
lem, agents are linearly ordered by their demands for a fa-

cility, and the cost of using the facility is determined by the
agent who requires the largest demand. In the context of shar-
ing a taxi, the total cost charged to a shared taxi is determined
by the last agent who drops off from the taxi. While the prob-
lem originally refers to an application of the runway cost di-
vision, it covers a variety of real-life examples, e.g., the cost-
sharing of a shared meeting room over time and an irrigation
ditch; see Thomson [2007]. In all these examples, the com-
mon property is their linear structure of the agents’ demands.

The airport problem is known to be the very first successful
application of the celebrated Shapley value, which has a sim-
ple and explicit expression despite the exponential nature of
its definition. Indeed, Littlechild and Owen [1973] showed
that the sequential equal contributions rule, which applies
equal division to each segment separately, coincides with the
Shapley value, and thus is the unique efficient solution that
satisfies the basic desideratum of ‘equal treatment of equals’
together with several other desirable properties, e.g., if two
agents in the same group have exactly the same contribution,
they will pay the same amount of money.1

The basic model of the airport problem, however, does not
take into account the first problem, that is, how agents should
form groups. In practice, facilities to be shared have capaci-
ties; so agents need to decide not only how to divide the cost,
but also how to split themselves into groups so that the re-
sulting outcome is fair across different groups. Indeed, in the
preceding example of the ride-sharing, the way agents form
groups affects the amount of money each agent has to pay.
For example, consider a simple scenario of 2 taxis with ca-
pacity 3 and 4 passengers with the same destination. One
might consider that the allocation in which both taxis have 2
passengers is the unique “fair” solution, which is indeed true
with respect to envy-freeness, though it is not with respect to
Nash stability as seen later. In a more complex scenario, how
can we allocate passengers to taxis fairly? Which criterion of
justice can we guarantee?

Envy-freeness is one of the most natural notions of fairness
[Foley, 1967]: if we select an outcome that is envy-free, no
agent can replace someone else to reduce her/his cost. The
notion of envies enables interpersonal comparison of utili-
ties when agents have different needs. Another relevant cri-

1This rule is in fact used to split the fare in a popular fair division
website of Spliddit [Goldman and Procaccia, 2015].
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terion of justice is the notion of stability (e.g., Nash stabil-
ity and swap-stability), capturing resistance to agents’ devi-
ations. No user will justifiably complain if there is no bene-
ficial way of allocating her to another facility or swapping a
pair of agents [Foley, 1967; Bogomolnaia and Jackson, 2002;
Aziz and Savani, 2016; Bouveret et al., 2016]. Social opti-
mality and Pareto optimality are also fundamental notions re-
lated to efficiency. Social optimality means that there is no
alternative allocation that decreases the total cost paid by the
agents, whereas Pareto optimaility means that there is no al-
ternative allocation that makes some agent better off without
making any agent worse off. By definition, social optimality
implies Pareto optimality.

Our contribution In this paper, we extend the classical
model of airport problems to the so-called assignment setting,
that is, for multiple taxis and agents, each agent chooses a taxi
to ride and shares the fee with the other agents riding the taxi
together. In our setting, agents would like to travel from a
common starting point to their own destinations, represented
by points on a line, by multiple taxis, and have to share the
cost of the travel. The total cost charged to passengers for
each taxi is determined by the distance between the starting
point and the furthest dropping point, and is shared by the
agents taking it based on the Shapley value. Since our model
is a natural generalization of the airport game, it has poten-
tial applications such as shared office rooms; see Thomson
[2007]. If we restrict our attention to fair ride allocation, the
setting “on a line” appears a bit restrictive, and it is desirable
to generalize it to more general metric cases. However, we
would like to mention that our setting is the most fundamen-
tal case study of fair ride allocation to be investigated, and
can be applied in various situations such as traveling to the
destinations along a highway and boat travelings on a river.

We formulate the notions of stability and fairness includ-
ing envy-freeness and Nash stability, inspired from hedonic
coalition formation games and resource allocation problems,
and study the existence and complexity of allocations satisfy-
ing such properties.

We first present basic relationships among the solution con-
cepts. Concerning stability and efficiency, we show that there
always exists a feasible allocation that simultaneously sat-
isfies Nash stability, swap-stability, and social optimality, if
a given instance contains a feasible allocation. Moreover,
such an allocation can be computed in linear time by a sim-
ple backward greedy strategy. This contrasts to the stan-
dard results of hedonic games in two respects. First, a sta-
ble outcome does not necessarily exist in the general setting
[Aziz and Savani, 2016]. Second, efficiency and stability are
in general incompatible except for some restricted classes of
games [Bogomolnaia and Jackson, 2002; Barrot and Yokoo,
2019].

For envy-freeness, there is a simple example with no envy-
free feasible allocation: when 3 agents with the same desti-
nation split into 2 taxis with capacity 1 and 2 each, the agent
who becomes alone will envy others. We provide three struc-
tural properties of envy-free allocations: monotonicity, split
property and locality. Based on these, we design efficient al-
gorithms for finding an envy-free feasible allocation when at
least one of (a) the number of taxis, (b) the capacity of each

taxi, or (c) the number of agent types, is small. More pre-
cisely, in case (a), we show that the locality provides a greedy
algorithm for finding an envy-free feasible allocation under
a certain condition, which implies that an envy-free feasible
allocation can be computed in O(n3k+2) time, where k is the
number of taxis. In case (b), we focus on the setting when
the capacity of each taxi is bounded by four, where we utilize
an enhanced version of split property. By combining it with
the locality, we construct anO(n6)-time greedy algorithm for
envy-free feasible allocations. In case (c), that is, when the
number p of types is small, by utilizing the monotonicity and
the split property, we first enumerate all possible ‘shapes’ of
envy-free allocations, and then compute an envy-free feasible
allocation in O(ppn4) time by exploring semi-lattice struc-
ture of size vectors consistent with a given shape; a similar
phenomenon has been observed in many other contexts of re-
source allocation (see, e.g. Sun and Yang [2003]). Note that
the algorithm is FPT with respect to p.

We also show that one can compute an envy-free alloca-
tion that is consecutive with respect to agents’ destinations
by only looking at the envy between consecutive agents in
O(kn3) time. As a negative side, we show that it is NP-hard
to determine the existence of an allocation under two relaxed
envy-free concepts.

1.1 Related Work

The problem of fairly dividing the cost among multiple
agents has been long studied in the context of cooperative
games with transferable utilities; we refer the reader to the
book of Chalkiadakis et al. [2011] for an overview. Fol-
lowing the seminal work of Shapley [1953], a number of
researchers have investigated the axiomatic property of the
Shapley value as well as its applications to real-life prob-
lems. Littlechild and Owen [1973] analyzed the property of
the Shapley value when the cost of each subset of agents is
given by the maximum cost associated with the agents in
that subset. The work of Chun et al. [2017] further studied
the strategic process in which agents divide the cost of the
resource, showing that the division by the Shapley value is
indeed a unique subgame perfect Nash equilibrium under a
natural three-stage protocol.

Our work is similar in spirit to the complexity study of
congestion games [Rosenthal, 1973; Monderer and Shapley,
1996]. In fact, without capacity constraints, it is not difficult
to see that the fair ride-sharing problem can be formulated
as a congestion game. The fairness notions, including envy-
freeness in particular, have been well-explored in the fair divi-
sion literature. Although much of the focus is on the resource
allocation among individuals, several recent papers study
the fair division problem among groups [Kyropoulou et al.,
2019; Segal-Halevi and Nitzan, 2019]. Our work is different
from theirs in that agents’ utilities depend not only on allo-
cated resources, but also on the group structure.

In the context of hedonic coalition formation games, e.g.,
Bogomolnaia and Jackson [2002]; Aziz and Savani [2016];
Barrot and Yokoo [2019]; Bodlaender et al. [2020], there ex-
ists a rich body of literature studying fairness and stability.
In hedonic games, agents have preferences over coalitions to
which they belong, and the goal is to find a partition of agents



into disjoint coalitions. While the standard model of hedo-
nic games is too general to accommodate positive results (see
Peters and Elkind [2015]), much of the literature considers
subclasses of hedonic games where desirable outcomes can
be achieved. For example, Barrot and Yokoo [2019] stud-
ied the compatibility between fairness and stability require-
ments, showing that top responsive games always admit an
envy-free, individually stable, and Pareto optimal partition.

Finally, our work is related to the growing literature
on ride-sharing problem [Santi et al., 2014; Ashlagi et al.,
2019; Pavone et al., 2012; Zhang and Pavone, 2016;
Banerjee et al., 2018; Alonso-Mora et al., 2017; Chun et al.,
2017; Goldman and Procaccia, 2015]. Santi et al. [2014]
empirically showed a large portion of taxi trips in New
York City can be shared while keeping passengers’ pro-
longed travel time low. Motivated by an application to the
ride-sharing platform, Ashlagi et al. [2019] considered the
problem of matching passengers for sharing rides in an
online fashion. They did not, however, study the fairness
perspective of the resulting matching.

2 Model

For a positive integer s ∈ Z>0, we write [s] = {1, 2, . . . , s}.
For a set T and an element a, we may write T + a = T ∪{a}
and T − a = T \ {a}. In our setting, there are a finite set of
agents, denoted by A = [n], and a finite set of k taxis. The
nonempty subsets of agents are referred to as coalitions. Each
agent a ∈ A is endowed with a destination xa ∈ R>0, which
is called the destination type (or shortly type) of agent a. We
assume that the agents ride a taxi at the same initial location of
the point 0 and they are sorted in nondecreasing order of their
destinations, i.e., x1 ≤ x2 ≤ · · · ≤ xn. Each taxi i ∈ [k] has
a quota qi representing its capacity, where q1 ≥ q2 ≥ · · · ≥
qk (> 0) is assumed. An allocation T = (T1, . . . , Tℓ) is an
ordered partition of A, and is called feasible if ℓ ≤ k and
|Ti| ≤ qi for all i ∈ [ℓ]. Given a monotone nondecreasing
function f : R>0 → R>0, the cost charged to agents Ti is
the value of f in the furthest destination maxa∈Ti

f(xa) if
|Ti| ≤ qi, and∞ otherwise. The cost has to be divided among
the agents in Ti. Without loss of generality, we assume that
the cost charged to Ti is simply the distance of the furthest
destination if |Ti| ≤ qi, i.e., f is the identity function. In
other words, we may regard that xa is the cost itself instead
of the distance. Among several payment rules of cooperative
games, we consider a scenario where agents divide the cost
using the well-known Shapley value [Shapley, 1953], which,
in our setting, coincides with the following specific function.

For each subset T of agents and s ∈ R>0, we denote by
nT (s) the number of agents a in T whose destinations xa is

at least s, i.e., nT (s) :=
∣

∣{a ∈ T | xa ≥ s}
∣

∣. For each
coalition T ⊆ A and positive real x ∈ R>0, we define

ϕ(T, x) =

∫ x

0

dr

nT (r)
,

where we define ϕ(T, x) = ∞ if nT (x) = 0. For an allo-
cation T and a coalition Ti ∈ T , the cost of agent a ∈ Ti is

defined as ΦT (a) := ϕi(Ti, xa) where

ϕi(Ti, x) =

{

ϕ(Ti, x) if |Ti| ≤ qi,

∞ if |Ti| > qi.

It is not difficult to verify that the sum of the payments in
Ti is equal to the cost of taxi i. Namely, if |Ti| ≤ qi, we
have

∑

b∈Ti
ϕi(Ti, xb) = maxa∈Ti

xa. On the other hand,

if |Ti| > qi, all agents in Ti pay ∞ whose sum is equal to
∞ (i.e., the cost of taxi i). The following proposition for-
mally states that the payment rule for each taxi coincides with
the Shapley value. We note that while Littlechild and Owen
[1973] presented a similar formulation of the Shapley value
for airport games, our model is slightly different from theirs
with the presence of capacity constraints.

Proposition 2.1. The payment rule ϕi is the Shapley value.

Proof. For a given positive integer q, let c : 2A → R be a cost
function defined by c(T ) = 0 if T = ∅, maxa∈T xa if 1 ≤
|T | ≤ q, and∞ if |T | > q. Here we regard c as a monotone
nondecreasing function, i.e., c(T ) ≥ c(S) for T ⊇ S. Let
T = {a1, . . . , at} such that xa1 ≤ xa2 ≤ · · · ≤ xat

, and let
a = ai. We denote by Π the set of permutations π : T → [t].
For a permutation π ∈ Π, we denote

Sπ(a) = { b ∈ T | π(b) ≤ π(a)}.

Recall the definition of the Shapley value, i.e., the amount
agent a has to pay in the game (T, c) is given by

1

t!

∑

π∈Π

(

c(Sπ(a))− c(Sπ(a)− a)
)

. (1)

If t > q, then there exists a permutation π such that |Sπ(a)| =
q + 1 and |Sπ(a) − a| = q. This implies that (1) is equal to
∞, which shows that our payment rule is the Shapley value.
On the other hand, if t ≤ q, then by introducing xa0 = 0, we
have

∑

π∈Π

(

c(Sπ(a))− c(Sπ(a)− a)
)

=
∑

π∈Π

i
∑

j=1

(xaj
− xaj−1 )1Sπ(a)∩{aj ,...,at}={a}

=
i

∑

j=1

(xaj
− xaj−1 )

∑

π∈Π

1Sπ(a)∩{aj ,...,at}={a}

=

i
∑

j=1

(xaj
− xaj−1 )

t!

t− j + 1
,

Here 1Sπ(a)∩{aj ,...,at}={a} denotes the 0-1 function that
takes one if and only if agent a appears first at π among agents
in {aj , . . . , at}. Thus, we have

1

t!

∑

π∈Π

(

c(Sπ(a))− c(Sπ(a)− a)
)

=

i
∑

j=1

xaj
− xaj−1

t− j + 1

=

∫ xa

0

dr

nT (r)
= ϕ(T, a).



T
a

12

b

24

c

36

d

40

Figure 1: The allocation in Example 2.2

Example 2.2. Consider a taxi that forms a coalition T in
Fig. 1, i.e., agents a, b, c, and d take one taxi together from
a starting point to the points of 12, 24, 36, and 40 on a line,
respectively. The total cost is 40, which corresponds to the
drop-off point of d. According to the payment rule, agents a,
b, c, and d pay 3, 7, 13, and 17, respectively. In fact, from the
starting point to the drop-off point of a, all the agents are in
the taxi, so they equally divide the cost of 12, which means
that a should pay 3. Then, between the dropping points of a
and b, three agents are in the taxi, so they equally divide the
cost of 24−12 = 12, which results in the cost of 4 for each of
the three agents. Thus agent b pays 3 + 4 = 7. By repeating
similar arguments, c pays 7 + (36− 24)/2 = 13, and d pays
13 + (40− 36) = 17.

3 Solution concepts

Agents split into coalitions and use the Shapley value
to divide the cost of each coalition. Our goal is to
find a partition of agents that satisfies natural desider-
ata. We introduce several desirable criteria that are in-
spired from coalition formation games and resource alloca-
tion problems [Foley, 1967; Bogomolnaia and Jackson, 2002;
Aziz and Savani, 2016; Bouveret et al., 2016].

Fairness: Envy-freeness requires that no agent prefers an-
other agent. Formally, for an allocation T , agent a ∈ Ti
envies b ∈ Tj if a can be made better off by replacing herself
by b, i.e., i 6= j and ϕj(Tj − b+ a, xa) < ϕi(Ti, xa). An al-
location T is envy-free (EF) if no agent envies another agent.
Without capacity constraints, e.g., q1 ≥ n, envy-freeness can
be trivially achieved by allocating all agents to a single coali-
tion T1. Also, when the number of taxis is at least the number
of agents, i.e., k ≥ n, an allocation that partitions the agents
into the singletons is envy-free.

Stability: We adapt the following three definitions of sta-
bility concepts of hedonic games [Bogomolnaia and Jackson,
2002; Aziz and Savani, 2016; Bodlaender et al., 2020] to our
setting. The first stability concepts we introduce are those
that are immune to individual deviations. For an allocation
T and two distinct taxis i, j ∈ [k], agent a ∈ Ti has a Nash-
deviation to Tj if ϕj(Tj+a, xa) < ϕi(Ti, xa). By the defini-
tion of function ϕj , no agent a has a Nash-deviation to Tj if
adding a to Tj violates the capacity constraint, i.e., |Tj| ≥ qj .
An allocation T is called Nash stable (NS) if no agent has a
Nash deviation.

We also consider stability notions that capture resistance
to swap deviations. For an allocation T , agent a ∈ Ti can
replace b ∈ Tj if i = j or ϕj(Tj − b + a, xa) ≤ ϕi(Ti, xa)
[Barrot and Yokoo, 2019; Nguyen and Rothe, 2016]. An al-
location T is

• weakly swap-stable (WSS) if there is no pair of agents a
and b such that a and b envy each other;

• strongly swap-stable (SSS) if there is no pair of agents a
and b such that a envies b and b can replace a.

Efficiency: Besides fairness and stability, another impor-
tant property of allocation is efficiency. The total cost of
an allocation T is defined as

∑

T∈T

∑

a∈T ϕ(T, xa). Note
that the total cost of a feasible allocation T is equal to
∑

T∈T : T 6=∅ maxa∈T xa. A feasible allocation T is social

optimal (SO) if it minimizes the total cost over all feasible
allocations.

In our game, we have the following containment relations
among these classes of outcomes:

EF ( SSS ( WSS. (2)

Here, EF is defined to be the set of envy-free feasible allo-
cations, and the other symbols are defined analogously. It is
not difficult to see that the relationships with equality hold by
the definitions of the concepts. To show proper inclusion, we
give some examples. Moreover, we show below that any two
concepts with no containment relationships in (2) are incom-
parable. Namely, there are instances with feasible allocations
that are (i) SO and NS, but not WSS, (ii) NS and EF but not
SO, and (iii) SO and EF but not NS, where they are respec-
tively given in Examples 3.1, 3.2, and 3.3. In addition, we
show that all the inclusions in (2) are proper by providing the
examples with feasible allocations that are (a) SSS but not EF
and (b) WSS but not SSS, where they are respectively given
in Examples 3.4 and 3.5.

Example 3.1. Consider an instance where n = 9, k = 2,
q1 = 5, q2 = 4, x1 = 1, x2 = x3 = 2, and x4 = · · · = x9 =
4. A feasible allocation T = ({2, 3, 7, 8, 9}, {1, 4, 5, 6}) in
Fig. 2 is socially optimal and Nash stable. However, agents 1
and 9 envy each other, which implies that T is not WSS.

Example 3.2. Consider an instance where n = 4, k = 3,
q1 = q2 = 2, q3 = 4, and x1 = x2 = x3 = x4 = 1. Then a
feasible allocation T = ({1, 2}, {3, 4}, ∅) is Nash stable and
envy-free. However, it is not socially optimal, since its total
cost is larger than that of another feasible allocation T ′ =
(∅, ∅, {1, 2, 3, 4}).

Example 3.3. Consider a feasible instance where n = 5,
k = 2, q1 = q2 = 3, x1 = 1, x2 = x3 = 2, and x4 = x5 = 4.
Then a feasible allocation T = ({1, 2, 3}, {4, 5}) in Fig. 3
is socially optimal. However, agents 2 and 3 have a Nash
deviation to T2, and thus T is not Nash stable.

Example 3.4. Consider an instance where n = 3, k = 2,
q1 = 2, q2 = 1, x1 = 1, and x2 = x3 = 2. Then a feasible
allocation T = ({1, 2}, {3}) in Fig. 4 is strongly swap-stable
but not envy-free, since agent 3 envies 1.

Example 3.5. Consider an instance where n = 4, k = 2,
q1 = q2 = 2, x1 = x2 = 1, and x3 = x4 = 2. Then a
feasible allocation T = ({1, 3}, {2, 4}) in Fig. 5 is weakly
swap-stable but not strongly swap-stable.

4 Envy-free allocations

In this section, we consider envy-free feasible allocations for
our model. Note that no envy-free feasible allocation exists
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Figure 2: A feasible allocation that is SO and NS but not WSS
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Figure 3: A feasible allocation that is SO and EF but not NS
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Figure 4: A feasible allocation that is SSS but not EF
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Figure 5: A feasible allocation that is WSS but not SSS

even when a feasible allocation exists as we mentioned in
Section 1. We thus study the problem of deciding the exis-
tence of an envy-free feasible allocation and finding one if
it exists. We identify several scenarios where an envy-free
feasible allocation can be computed in polynomial time. We
show that the problem is FPT with respect to the number of
destinations, and is XP with respect to the number of taxis
and the maximum capacity of a taxi.2 These restrictions are
relevant in many real-life scenarios. For example, a taxi com-
pany may have a limited resource, in terms of both quantity
and capacity. It is also relevant to consider a setting where the
number of destinations is small; for instance, a workshop or-
ganizer may offer a few excursion opportunities to the partici-
pants of the workshop. Furthermore, we consider consecutive
envy-free feasible allocations, and show that it can be found
in polynomial time. Such restrictions are intuitive to the users
and hence important in practical implementation. As a neg-
ative remark, we show that two decision problems related to
envy-free allocations are intractable.

We start with three basic properties on envy-free alloca-
tions that will play key roles in designing efficient algorithms
for the scenarios discussed in this paper. The first one is
monotonicity of the size of coalitions in terms of the first

2A problem is said to be fixed parameter tractable (FPT) with
respect to a parameter p if each instance I of this problem can be
solved in time f(p)·poly(|I |), and to be slice-wise polynomial (XP)
with respect to p if each instance I of this problem can be solved in

time f(p) · |I |g(p).

T1

T2

1

2

2

4

3,4

4

Figure 6: An instance with no envy-free feasible allocation

drop-off point, which is formalized as follows.

Example 4.1. Consider an instance where n = 4, k = 2,
q1 = q2 = 2, x1 = 2, and x2 = x3 = x4 = 4. We show
that no feasible allocation is envy-free. To see this, let T =
(T1, T2) be a feasible allocation. By feasibility, the capacity
of each taxi must be full, i.e., |T1| = |T2| = 2. Suppose
without loss of generality that T1 = {1, 2} and T2 = {3, 4}
in Fig. 6. Then agent 2 envies the agents of the same type.
Indeed, she needs to pay the cost of 3 at the current coalition
while she would only pay 2 if she were replaced by 3 (or 4).
Hence this instance has no envy-free feasible allocation.

Lemma 4.2 (Monotonicity lemma). For an envy-free feasible
allocation T and non-empty coalitions T, T ′ ∈ T , we have
the following implications:

min
a∈T

xa < min
a′∈T ′

xa′ implies |T | ≥ |T ′|, (3)

min
a∈T

xa = min
a′∈T ′

xa′ implies |T | = |T ′|. (4)

Proof. Let b ∈ argmina∈T xa and b′ ∈ argmina′∈T ′ xa′ .
Suppose that b ≤ b′ and |T | < |T ′|. Then b envies b′, because

ϕ(T, xb) =
xb
|T |

>
xb
|T ′|

= ϕ(T ′ − b′ + b, xb).

Thus b ≤ b′ implies |T | ≥ |T ′|, which proves (3) and (4).

We next show the split property of envy-free feasible allo-
cations. For a coalition T and a real s, we use notations T<s,
T=s, and T>s to denote the set of agents with type smaller
than s, equal to s, and larger than s, respectively. We say that
agents of type x are split in an allocation T if T contains two
distinct T and T ′ with T=x, T

′
=x 6= ∅. The next lemma states

that, the agents of type x can be split in an envy-free feasible
allocation only if they are the first passengers to drop off in
their coalitions, and such coalitions are of the same size; fur-
ther, if two taxis have an equal number of agents of split type,
then no other agent rides these taxis.

An implication of the lemma is critical: we do not have
to consider how to split agents of non-first drop-off points in
order to see envy-free feasible allocations.

Lemma 4.3 (Split lemma). If agents of type x are split in
an envy-free feasible allocation T , i.e., T=x, T

′
=x 6= ∅ for

some distinct T, T ′ ∈ T , then we have the following three
statements:

(i) The agents of type x are the first passengers to drop off
in both T and T ′, i.e., T<x = T ′

<x = ∅,

(ii) Both T and T ′ are of the same size, i.e., |T | = |T ′|, and

(iii) If |T=x| = |T ′
=x|, then T = T=x and T ′ = T ′

=x.



Proof. Let a ∈ T=x and b ∈ T ′
=x. As a and b do not envy

each other, we have

ϕ(T, x) = ϕ(T, xa) ≤ ϕ(T
′ − b+ a, xa) = ϕ(T ′, x),

ϕ(T ′, x) = ϕ(T ′, xb) ≤ ϕ(T − a+ b, xb) = ϕ(T, x).

Hence, ϕ(T, x) = ϕ(T ′, x).
To show (i), suppose to the contrary that T<x is non-empty

and let â be its element. Then, b envies â because

ϕ(T ′, xb) = ϕ(T, x) > ϕ(T − â+ b, x).

Hence, T<x = ∅. By symmetry, we also have T ′
<x = ∅, prov-

ing (i). This implies that ϕ(T, x) = x/|T | and ϕ(T ′, x) =
x/|T ′|. Since ϕ(T, x) = ϕ(T ′, x) by envy-freeness, we have
|T | = |T ′|, which proves (ii).

To see (iii), suppose towards a contradiction that |T=x| =
|T ′

=x| but there is an agent in T or T ′ whose destination ap-
pears strictly after x, i.e., (T ∪ T ′) \ A=x 6= ∅. Let a∗ be
the agent with closest destination among such agents, i.e.,
a∗ ∈ argmina′∈(T∪T ′)\A=x

xa′ . Assume without loss of

generality a∗ ∈ T . Then, a∗ envies b because

ϕ(T ′ − b+ a∗, xa∗) =
x

|T ′|
+

(xa∗ − x)

|T ′| − |T ′
=x|+ 1

<
x

|T |
+

(xa∗ − x)

|T | − |T=x|
= ϕ(T, xa∗),

yielding a contradiction. Hence, |T=x| = |T ′
=x| implies T =

T=x and T ′ = T ′
=x.

The last property on envy-free allocations is locality, i.e.,
every agent a is allocated to a taxi T with minimum cost
ϕ(T, xa).

Lemma 4.4 (Locality lemma). For any envy-free allocation
T , coalition T ∈ T , and agent a ∈ T , we have

ϕ(T, xa) ≤ ϕ(T
′, xa)

for all T ′ ∈ T . Furthermore, the strict inequality holds if
xa is larger than the first drop off point of T ′, i.e., xa >
mina′∈T ′ xa′ .

Proof. To show the first statement, suppose towards a con-
tradiction that there exists T ′ ∈ T such that ϕ(T ′, xa) <
ϕ(T, xa). Then T ′ contains an agent a′ with xa′ ≥ xa, since

otherwise ϕ(T ′, xa) =
∫ xa

0
dr

nT ′(r)
= ∞. Thus we have

ϕ(T, xa) > ϕ(T ′, xa) = ϕ(T ′ − a′ + a, xa), which con-
tradicts envy-freeness of T .

To show the second statement, assume towards a contradic-
tion that T contains a coalition T ′ such that mina′∈T ′ xa′ <
xa and ϕ(T ′, xa) = ϕ(T, xa). Let a′ be an agent in T ′ such
that xa′ < xa. Then we have ϕ(T, xa) = ϕ(T ′, xa) >
ϕ(T ′ − a′ + a, xa), which again contradicts envy-freeness
of T .

4.1 Constant number of taxis

We start by showing that Locality lemma provides a greedy
algorithm for finding an envy-free feasible allocation if
argmina∈T xa is known in advance for each taxi T . Es-
pecially, it implies that all envy-free feasible allocations can

be computed efficiently when we have a constant number of
taxis.

We first note that the cost of an agent a in a coalition T
is determined by the agents of type smaller than xa and the
number of agents in T . Formally, for a coalition S ⊆ A and
two positive reals x and µ, we define ψ(S, x, µ) by

ψ(S, x, µ) :=

∫ x

0

dr

nS(r) + µ− |S|
,

where µ ≥ |S| is assumed. Then we have

ϕ(T, x) = ψ(T<x, x, |T |)

for any coalition T and any positive real x. Locality lemma
can be restated as follows.

Lemma 4.5. For any envy-free allocation T , coalition T ∈
T , and agent a ∈ T , we have

ψ(T<xa
, xa, |T |) ≤ ψ(T

′
<xa

, xa, |T
′|)

for all T ′ ∈ T . Furthermore, the strict inequality holds if
xa > mina′∈T ′ xa′ .

By Lemma 4.5, the coalition of each agent can be deter-
mined in a greedy manner from an agent with the nearest des-
tination, if we fix the following three parameters for each taxi
i ∈ [k]:

(I) the number µi of agents who take taxi i,

(II) the first drop-off point si,

(III) the number ri of agents who drop off at the first point.

Here we define si = ∞ if ri = µi = 0. A vector
(µi, si, ri)i∈[k] in (Z≥0 × (R>0 ∪ {∞})× Z≥0)

[k] is called
a configuration if the following four conditions hold:

1. either (µi, si, ri) = (0,∞, 0) or
(

si ∈ {xa | a ∈ A}

and 1 ≤ ri ≤ µi ≤ qi
)

for each i ∈ [k],

2.
∑

i∈[k] µi = n,

3.
∑

j∈[k]:sj=si
ri ≤ |A=si | for each i ∈ [k], and

4. a ≤
∑

i∈[k]:si<xa
µi +

∑

i∈[k]:si=xa
ri for each a ∈ A.

Here for Condition 4, we recall that for any two agents a and
b, a < b implies xa ≤ xb. Note that (II) and (III) implies
Condition 3. It is not difficult to see that (µi, si, ri)i∈[k] is a
configuration if and only if there exists a feasible allocation T
that satisfies (I), (II), and (III), where such a T is called con-
sistent with (µi, si, ri)i∈[k]. By definition, there exist O(n3k)
many configurations, which is polynomial when k is a con-
stant.

Theorem 4.6. When the number k of taxis is a constant, an
envy-free feasible allocation can be found in polynomial time,
if it exists.

Since all configurations can be enumerated in polynomial
time if the number k of taxis is a constant, it is sufficient to
prove the following lemma.

Lemma 4.7. Given a configuration (µi, si, ri)i∈[k], Algo-
rithm 1 computes in polynomial time an envy-free feasible
allocation consistent with (µi, si, ri)i∈[k] if it exists.



Algorithm 1:

1 Initialize Si ← ∅ for each i ∈ [k];
2 for a← 1, 2, . . . , n do
3 if xa = si and |Si| < ri for some i then Take such

an i arbitrarily ;
4 else Pick i from argmin

j∈[k]: sj<xa∧|Sj|<µj

ψ(Sj , xa, µj) ;

5 Set Si ← Si + a;

6 if (S1, . . . , Sk) is envy-free then return (S1, . . . , Sk);
7 else return “No envy-free feasible allocation

consistent with (µi, si, ri)i∈[k]”;

Proof. We prove that Algorithm 1 computes in polyno-
mial time an envy-free feasible allocation consistent with
(µi, si, ri)i∈[k] if it exists.

Let us first show that line 5 is executed for each agent a,
i.e, it is allocated to some taxi i. If xa = si holds for some
taxi i, then by Condition 3, the if-statement in line 3 must
hold, implying that i is chosen in the line. Otherwise, by
Conditions 2 and 4, at least one taxi j satisfies sj < xa and
|Sj | < µj , which implies that i is chosen in line 4. Thus the
algorithm allocates all the agents.

Let S denote (S1, . . . , Sk) checked in line 6. It is not dif-
ficult to see that Conditions 1 and 2 imply that S is a feasible
allocation satisfying (I). Moreover, Conditions 3 and 4, to-
gether with the discussion above, imply that S satisfies (II),
(III) and Lemma 4.3 (i). Therefore S is a feasible allocation
that satisfies (I), (II), (III) and Lemma 4.3 (i).

We finally show that each agent a is properly allocated.
Since any agent a who drops off at the first drop-off point
(i.e., xa = si holds for some taxi i) is properly allocated, we
only consider agents a of the other kind. If there is an envy-
free feasible allocation consistent with a given configuration
(µi, si, ri)i∈[k], by Lemma 4.5, there exists a unique taxi i
that minimizes ψ(Si, xa, µi) among agents i with si < xa
and |Si| < µi. This implies that i is properly chosen in line 4.

Therefore, it is enough to check if S is envy-free, since (I),
(II), (III) and Lemma 4.3 (i) are all necessary conditions of
envy-free feasible allocations. This completes the proof.

4.2 Constant capacity

We now move on to the case when the capacity of each taxi
is at most four. We design a greedy algorithm based on local-
ity property in Lemma 4.5. Recall that the greedy algorithm
works, once we fix (I), (II), and (III) in Section 4.1. If the
capacity of each taxi is bounded by a constant, (I) the num-
ber µi of agents in taxi i can be easily treated, since we have
polynomially many candidates µ = (µ1, . . . , µk). However,
it is not immediate to handle (II) and (III), i.e., how to split the
agents with the first drop-off points in taxis, even if the capac-
ity of each taxi is bounded by four. In this section, we have
a more detailed analysis of split property. More precisely, we
provide all possible split patterns of agents with same des-
tination which are uniquely determined in the way given in
Fig. 1.Based on this, we design a polynomial time algorithm
for computing an envy-free feasible allocation in the case.

Theorem 4.8. If qi ≤ 4 for all i ∈ [k], then an envy-free
feasible allocation can be computed in polynomial time if it
exists.

We first review a few properties of envy-free feasible
allocations T = (T1, . . . , Tk). By the monotonicity in
Lemma 4.2 and the assumption of capacity q1 ≥ · · · ≥ qk,
we can assume without loss of generality that

min
a∈T1

xa ≤ · · · ≤ min
a∈Tk

xa (5)

|T1| ≥ · · · ≥ |Tk|. (6)

For a destination x, let Tx denote the family of taxis with an
agent of type x, i.e., Tx = {i ∈ [k] | (Ti)=x 6= ∅}. By (5)
together with Split property, we can see that Tx consists of
consecutive taxis with the same number of agents. Namely,
Tx can be represented by

Tx = {Ts, . . . , Tt} for some s and t in [k],

and |T | = |T ′| holds for any T, T ∈ Tx. Thus we further
assume that for any type x, taxis are arranged in the nonde-
creasing order in terms of the number of agents of type x,
i.e.,

|(Ts)=x| ≥ · · · ≥ |(Tt)=x|. (7)

For a type x, the sequence (|(Ts)=x|, . . . , |(Tt)=x|) is called
a split pattern of x.

Let us start by proving the following auxiliary lemma to
derive properties of split patterns.

Lemma 4.9. For an envy-free feasible allocation T , let T be
a coalition in T such that |T | − 1 agents in T drop off at the
first destination, i.e., |T=x| = |T | − 1 for x = mina∈T xa.
Then for any T ′ ∈ T with T ′ 6= T and |T ′| = |T |, either the
first destinationx′ of T ′ is smaller than x (i.e., x′ < x), or all
agents in T ′ drop off at x (i.e., T ′ ⊆ A=x).

Proof. Let T be a coalition in T such that |T=x| = |T | − 1
for x = mina∈T xa, and let a∗ be the unique agent in T>x.
Take any T ′ ∈ T \ {T } with |T ′| = |T | and let x′ =
mina∈T ′ xa. Assume towards a contradiction that x′ ≥ x
and maxa∈T ′ xa > x. Define x′′ = min{xa∗ ,maxa∈T ′ xa}.
By definition, we have x < x′′ ≤ xa∗ . We can see that a∗

envies every agent a in T ′
=x′ , because

ϕ(T, xa∗) =
x

|T |
+ (xa∗ − x)

>
x

|T ′|
+
x′′ − x

2
+ (xa∗ − x′′)

≥ ϕ(T ′ − a+ a∗, xa∗),

a contradiction.

The next lemma states that Table 1 represents possible split
patterns of type x, where the first column represents the size
of Ts for the first taxi s with an agent of type x, the second
column represents the size of A=x, and the last column rep-
resents possible split patterns of the corresponding cases. For
example, the first row in the table says that |Ts| = 4 and
|A=x| = 0 mod 4 imply that (4, 4, . . . , 4) is the unique split
pattern of x. Thus Lemma 4.10 implies that possible split
patterns of x are uniquely determined by |Ts|, |A=x|, and
|Ts+⌈|A=x|/4⌉|.



Table 1: Split patterns of type x, where s denotes the first taxi with
an agent of type x

|Ts| |A=x| split patterns

4

0 mod 4 (4, 4, . . . , 4)
1 mod 4 (4, 4, . . . , 4, 1)
2 mod 4 (4, 4, . . . , 4, 2)

3 mod 4
(4, 4, . . . , 4, 2, 1) if |Ts+⌈|A=x|/4⌉| = 4

(4, 4, . . . , 4, 3) otherwise

3
0 mod 3 (3, 3, . . . , 3)
1 mod 3 (3, 3, . . . , 3, 1)
2 mod 3 (3, 3, . . . , 3, 2)

2
0 mod 2 (2, 2, . . . , 2)
1 mod 2 (2, 2, . . . , 2, 1)

1 (1, 1, . . . , 1)

Lemma 4.10. Suppose that qi ≤ 4 for i ∈ [k]. Let T be an
envy-free feasible allocation satisfying (5), (6), and (7). Then
for any type x, split patterns of type x have the form shown in
Table 1.

Proof. Recall that by Lemma 4.3 (ii) all the taxis with an
agent of type x contain the same number of agents, i.e.,

|T | = |Ts| for all T ∈ Tx. (8)

Moreover, by Lemma 4.3 (iii), for any two taxis T, T ′ ∈ Tx,
|T=x|, |T=x| < |Ts| implies |T=x| 6= |T ′

=x|, and by Lemma
4.9, if a taxi T ∈ Tx has |T=x| = |Ts| − 1, then we have
|T ′

=x| = |Ts| for any T ′ ∈ Tx other than T . These prove
that all the rows in Table 1 are correct, except for the fourth
row, i.e., the case in which |Ts| = 4 and |A=x| = 3 mod 4.
For example, patterns (4, 4, . . . , 4, 2, 2) and (4, 4, . . . , 4, 3, 1)
are not allowed in the first row, since the first one contains
2 twice by Lemma 4.3 (iii), while the second one contains
3 and 1 by Lemma 4.9. We thus remain to show the case in
which |Ts| = 4 and |A=x| = 3 mod 4.

In this case, by Lemmas 4.3 (iii) and 4.9, we have two
possible patterns

(4, . . . , 4, 2, 1) and (4, . . . , 4, 3).

Let |A=x| = 4d + 3 for some nonnegative integer d, and
assume towards a contradiction that |Ts+d+1| = 4 and
(4, . . . , 4, 3) is a split pattern. In this case s+d is the last taxi
with an agent of type x, and we have |Ts+d| = |Ts+d+1| = 4,
|(Ts+d)=x| = 3, and (|Ts+d+1)=x| = 0. This contradicts
Lemma 4.9, since all the agents in taxi s+ d + 1 have types
larger than x. Thus (4, . . . , 4, 2, 1) is a possible split pat-
tern if |Ts+d+1| = 4. On the other hand, if |Ts+d+1| < 4,
(4, . . . , 4, 3) is a possible split pattern, since otherwise, taxi
s + d + 1 contains an agent of type x, which contradicts
(8).

In outline, our algorithm guesses the size of each coali-
tion Ti (i ∈ [k]) and greedily allocates each agent from the
smallest type x to the largest one. The formal description of
the algorithm is given by Algorithm 2. More precisely, let
M be the set of k-tuples of integers (µ1, . . . , µk) such that
µ1 ≥ · · · ≥ µk ≥ 0,

∑

i∈[k] µi = n, and µi ≤ qi for all

i ∈ [k]. If k ≥ n, it always has an envy-free feasible alloca-
tion, by allocating each agent to each taxi. Thus we assume
that k < n. If qi ≤ 4 for all i ∈ [k], we have |M| = O(n4),
since each of the first k4 taxis contains four agents, each of
the next k3 taxis contains three agents, and so on. Our algo-
rithm enumerates all the k-tuples in M in polynomial time,
and for each (µ1, . . . , µk) ∈ M, applies a greedy method
based on Locality property. Namely, we greedily add agents
with the smallest available type x to taxis i with minimum
cost ψ(Ti, x, µi). Recall the discussion in Section 4.1: the
greedy method does not provide an envy-free feasible alloca-
tion if multiple taxis i attain the minimum cost ψ(Ti, x, µi).
However, by making use of Lemma 4.10, we can show that it
works if we apply the simple rule that chooses the smallest i
with minimum ψ(Ti, x, µi), except for the case correspond-
ing to the fourth row in Table 1.

Algorithm 2: Polynomial-time algorithm for taxis
with capacity at most 4

1 foreach (µ1, . . . , µk) ∈M do
2 Let Ti ← ∅ for each i ∈ [k];
3 for a← 1, 2, . . . , n do // from nearest to farthest

4 Let i∗ be the smallest index i that minimizes
ψ(Ti, xa, µi) among taxis i with |Ti| < µi;

5 if µi∗ = µi∗+1 = 4, Ti∗ = {b, c}, and
xa = xb = xc < xa+1 then

6 Set Ti∗+1 ← Ti∗+1 + a ;

7 else Set Ti∗ ← Ti∗ + a;

8 if (T1, . . . , Tk) is envy-free then return
(T1, . . . , Tk);

9 return “No envy-free feasible allocation”;

We formally show that Algorithm 2 computes an envy-free
feasible allocation in polynomial time if a given instance con-
tains such an allocation.

Proof of Theorem 4.8. It is not difficult see that Algorithm 2
returns an envy-free feasible allocation if it returns an alloca-
tion. Suppose that there exists an envy-free feasible allocation
T ∗ with µ∗

i = |T ∗
i | for all i ∈ [k]. Without loss of generality,

we assume that T ∗ satisfies (5), (6), and (7). We show that
the algorithm computes an envy-free allocation isomorphic
to T ∗ if the for-loop of (µ∗

1, . . . , µ
∗
k) is applied, which proves

the correctness of the algorithm. We thus restrict our atten-
tion to the for-loop of (µ∗

1, . . . , µ
∗
k), and inductively prove

that the partial allocation T (j) after the j-th iteration of a is
extendable to an envy-free feasible (complete) allocation iso-
morphic to T ∗. Before the induction, we note that allocation

T (n) is feasible and satisfies (6) by the assumption on T ∗.
Moreover, at any iteration of a, agent a is allocated to the taxi
which already has an agent or the first taxi with no agent, i.e.,
for any j ∈ [n] and for any i, ℓ ∈ [k] with i ≤ ℓ, we have

T
(j)
i = ∅ =⇒ T

(j)
ℓ = ∅ , (9)

which implies

min
a∈T

(j)
1

xa ≤ · · · ≤ min
a∈T

(j)
k

xa for any j ∈ [n]. (10)



By substituting j by n, we have (5), and (7) is satisfied by
(10), together with the choice of i∗ in line 4 of the algorithm.
Let us now apply the induction. By Lemma 4.5, it is clear

that T (1) is extendable to a desired allocation. Assuming that

T (j) is extendable to a desired allocation, we consider the
(j + 1)-th iteration of a. Let

Q = argmin{ψ(T
(j)
i , xj+1, µi) | |T

(j)
i | < µi}.

If Q contains a taxi i such that T
(j)
i has an agent of type

smaller than xj+1, no other taxi in Q has such a property,
since otherwise Lemma 4.5 provides a contradiction. More-
over, j+1 must be contained in such a taxi i again by Lemma

4.5. Since the algorithm chooses such a taxi i by (10), T (j+1)

is extendable to a desired allocation. On the other hand, If Q

contains no such taxi, i.e., a taxi i in Q satisfies either (i) T
(j)
i

is empty or (2) it consists of agents of type xj+1, then the al-
gorithm again chooses a correct i∗, since it fits with possible

split patterns in Lemma 4.10. Thus T (j+1) is extendable to a
desired allocation. This completes the induction.

It remains to show the time complexity of the algorithm.
Note that |M| = O(n4) and M is constructed in the same
amount of time. For each (µ1, . . . , µk) ∈ M, the for-loop
is executed in O(n2) time. Therefore, in total, the algorithm
requires O(n4 × n2) = O(n6) time.

By the proof above, if there exist an envy-free feasible al-
location consistent with (µ1, . . . , µk) ∈ M, then it is unique
up to isomorphism. We also remark that the greedy algorithm
above cannot be directly extended to the case of constant ca-
pacity, since split patterns are not uniquely determined, even
when the maximum capacity is at most 5.

4.3 Small number of types

In this section, we focus on Split lemma of envy-free alloca-
tions. We represent envy-free allocations by directed graphs
G together with size vectors λ. We provide several structural
properties of G and λ. Especially, we show that G and λ de-
fine a unique envy-free allocation (up to isomorphism), G is
a star-forest, and λ forms semi-lattice. Based on their prop-
erties, we show that an envy-free feasible allocation can be
computed in FPT time with respect to the number of destina-
tion types.

Let V = {xa | a ∈ A} be the set of destination types, and
let p = |V |. For an allocation T = (T1, . . . , Tk), we define
its allocation (di)graphGT = (V,E) by

E =
⋃

T∈T

{

(y, z) ∈ V 2

∣

∣

∣

∣

y, z ∈ {xa | a ∈ T}, y < z,
6 ∃a ∈ T : y < xa < z

}

.

Namely, the allocation graph GT contains an directed edge
(y, z) if and only if an agent of type y drops off just after an
agent of type z in some coalition T ∈ T . By definition, GT

is acyclic because every edge is oriented from a smaller type
to a larger type, i.e., (y, z) ∈ E implies y < z. We assume
that all graphs discussed in this section satisfy the condition.

A graph is called a star-tree if it is a rooted (out-)tree such
that all vertices except the root have out-degree at most 1, and
a star-forest if each connected component is a star-tree. Then

(i) in Split lemma implies that GT is a star-forest. See the al-
location graph for an envy-free feasible allocation is depicted
in Fig. 7.

Now, we will explore the relationship between T and GT ,
implied by Split lemma. Formally, let C = {C1, . . . , Ct}
be the family of the vertex sets of connected components in
GT . Let rj be the root of Cj , i.e., rj = minx∈Cj

x, and
let dj be out-degree of rj . We assume that the components
are arranged in ascending order of the root, i.e., r1 < · · · <
rt. Let Tj be the family of coalitions T ∈ T in which all
members have types in Cj . To see this, we write T∈C to
denote T∈C = {a ∈ T | xa ∈ C} for a coalition T and
a set of types C; then Tj = {T ∈ T | T = T∈Cj

}. By

definition of GT , {T1, . . . , Tt} is a partition of T .

By star-tree property of Cj , vertices Cj \ {rj} forms dj
paths in GT . Let Cℓ

j (ℓ = 1, . . . , dj) be the vertex sets of
such paths. Then by Split lemma, we have the following three
conditions:

each T ∈ Tj satisfies either ∅ 6= T ⊆ A=rj

or A∈Cℓ
j
( T ⊆ A∈Cℓ

j
∪ A=rj for some ℓ. (11)

|T | = |T ′| holds for any T, T ′ ∈ Tj , and (12)

|A∈Cℓ
j
| 6= |A∈Ch

j
| for any distinct ℓ, h ∈ [dj ]. (13)

By (11), some agents of type rj form a coalition T or some

agents of type rj together with the agents of types in Cℓ
j form

a coalition. It follows from (12) that each coalition in Tj has

the same size λj . Let us call λT = (λT1 , . . . , λ
T
t ) the size

vector of T . In summary, we have the following result as
stated in Lemma 4.11, where isomorphism ≃ of two alloca-
tions T = (T1, . . . , Tα) and T ′ = (T ′

1, . . . , T
′
β) is defined

as follows: for two coalitions T and T ′, we write T ≃ T ′ to
mean that T and T ′ contains the same number of agents for
each type, i.e., |T=y| = |T

′
=y| for all y ∈ V ; for two alloca-

tions T and T ′, we write T ≃ T ′ if |T | = |T ′| and there
exists a permutation σ : [α]→ [α] such that Ti ≃ T ′

σ(i) for all

i ∈ [α].

Lemma 4.11. Suppose that an allocation T satisfies the con-
ditions in Lemma 4.3. Then G = GT and λ = λT satisfy the
following conditions:

G is a star-forest with (13) for any j in [t], and (14)

for any j in [t], λj is a divisor of |A∈Cj
|

such that max
ℓ∈[dj]

|A∈Cℓ
j
| ≤ λj ≤ |A∈Cj

|/dj . (15)

Conversely, ifG and λ satisfy the conditions above, then there
exists a unique allocation T (up to isomorphism) satisfying
GT = G, λT = λ, and the conditions in Lemma 4.3.

Proof. Suppose that an allocation T satisfies the conditions
in Lemma 4.3. It is not difficult to see that (14) follows from
the discussion above and (13), and (15) follows from (11) and
(12). Conversely, if G and λ satisfy (14) and (15), then we
can construct a unique allocation T up to isomorphism that
satisfies (11), (12), and (13). Thus T satisfies the conditions
in Lemma 4.3.
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We note that a unique allocation T in the converse state-
ment can be computed in polynomial time if G and λ are
given. Thus, a naive approach to find an envy-free feasible al-
location is to enumerate all possible G and λ, and then check
if they provide a envy-free feasible allocation. Note that the
number of star-forests is at most pp, because the in-degree of

every node is at most one. However, we may havenΩ(p) many
candidates of λ, even if a star-forestG is fixed in advance. To
overcome this difficulty, we show that for a given star-forest
G, the size vectors λ such that G and λ provide envy-free
feasible allocations form a semi-lattice. More precisely, for
a star-forest G, let ΛG denote the set of size vectors λ such
that G and λ provide envy-free feasible allocations. Then we
have the following structural property of ΛG

Lemma 4.12. For any star-forest G, ΛG is an upper semilat-
tice with respect to the componentwise max operation ∨, i.e.,
λ, λ′ ∈ ΛG implies λ ∨ λ′ ∈ ΛG

In this section, we show the following lemma, which is
stronger than both Lemmas 4.12 and 4.15.

Lemma 4.13. Let G be a star-forest, and let Λ =
∏

j∈[t] Λj

be a non-empty set in Zt
>0. If the maximum vector λ =

(maxΛj)j∈[t] does not belong to ΛG, then there exists an

index ℓ ∈ [t] such that
(

(Λℓ −maxΛℓ)×
∏

j∈[t]−ℓ

Λj

)

∩ ΛG = Λ ∩ ΛG. (16)

In addition, such an index ℓ can be computed in polynomial
time.

We note that Lemma 4.13 implies semilattice property of
ΛG. To see this, suppose that ΛG is not a semilattice, i.e.,
there exists two size vectors λ, λ′ ∈ ΛG such that λ ∨ λ′ 6∈
ΛG. Then we define Λ by Λi = [(λ ∨ λ′)i] for i ∈ [t]. By
definition, λ, λ′ ∈ Λ and λ ∨ λ′ is the maximum vector in Λ
such that λ ∨ λ′ 6∈ ΛG. However, no index ℓ satisfies (16),
since the right-hand side of (16) contains both λ, λ′, while the
left-hand side of (16) contains at most one of them. Further-
more, if a set Λ in Lemma 4.13 is chosen in such a way that
Λ ⊇ ΛG, we obtain Lemma 4.15.

In order to show Lemma 4.13, let us consider feasibility
and monotonicity of allocations in addition to split property.

Lemma 4.14. An allocation T is feasible and satisfies the
conditions in Lemmas 4.2 and 4.3. Then λ = λT satisfy the

following conditions.

λ1 ≥ λ2 ≥ · · · ≥ λt (17)
∑

j∈[t] |A∈Cj
|/λj ≤ k, and (18)

λj ≤ qη(j) for all j ∈ [t]. (19)

where η(j) =
∑

r≤j |A∈Cr
|/λr. Conversely, if G and λ

satisfy (14), (15), (17), (18), and (19), then there exists a
unique feasible allocation T (up to isomorphism) satisfying
GT = G, λT = λ, and the conditions in Lemmas 4.2 and
4.3.

Proof. Suppose that T is a feasible allocation satisfying the
conditions in Lemmas 4.2 and 4.3. By our assumption r1 <
. . . rt, (3) implies (17). Note that the feasibility of T is equiv-
alent to two conditions (i) |T | ≤ k and (ii) capacity condition
(i.e., |Ti| ≤ qi). Since Tj uses |A∈Cj

|/λj many taxis, (i) is
equivalent to (18). By (17) and the assumption q1 ≥ . . . qk, in
order to check capacity condition, it is enough to consider an
allocation T = (T1, . . . , Tα) in such a way that T1 is assigned
to the first η(1) taxis, T2 is assigned to next η(2)−η(1) taxis,
and so on. More precisely, we have

Tj = {Tη(j−1)+1, . . . , Tη(j)} for all j ∈ [t],

where η(0) is defined by 0. Thus the capacity condition im-
plies (19). Conversely, if G and λ satisfy (14) and (15), then
then by Lemma 4.2, there exists a unique allocation T (up
to isomorphism) satisfying GT = G, λT = λ, and the con-
ditions in Lemma 4.3. Moreover, since (17), (18), and (19)
hold for λ, T is feasible and the conditions in Lemma 4.2 are
satisfied.

We are now ready to prove Lemma 4.13.

Proof of Lemma 4.13. Let us separately consider the cases in
whichG and λ = (maxΛj)j∈[t] violate (14), (15), (17), (18),
(19), and envy-freeness of the allocation provided by them.

• If (14) or (18) is violated, then by Lemmas 4.11 and
4.14, we have ΛG = ∅. This implies that any index ℓ
satisfies (16). Thus it is polynomially computable.

• If (15) is violated for an index j, then ℓ = j satisfies
(16). Thus it is polynomially computable.

• If (17) is violated for an index j, i.e., λj−1 < λj , then
ℓ = j satisfies (16). Thus it is polynomially computable.



• If (19) is violated for an index j, i.e., λj > qη(j), then
we claim that ℓ = j satisfies (16), which completes the
proof of this case, since such an ℓ can be computed in
polynomial time. Let λ′ be a size vector in Λ such that
λ′ℓ = λℓ, and let η′(h) =

∑

r≤h |A∈Cr
|/λ′r for h ∈ [t].

Since λ′ ≤ λ and λ′ℓ = λℓ, we have λ′ℓ = λℓ > η(ℓ) ≥
η′(ℓ), which implies the claim.

• Suppose thatG and λ fulfill all the conditions above, i.e.,
G and λ provide a feasible allocation T that satisfies the
conditions in Lemmas 4.2 and 4.3. Let further assume
that a ∈ T (∈ Th) envies a′ ∈ T ′ (∈ Tj) for some j, h ∈
[t]. If j = h, then it is clear that ℓ = j (= h) satisfies
(16). On the other hand, if j 6= h, Let λ′ be a size vector
in Λ such that λ′ℓ = λℓ and satisfies (15), (17), (18), and
(19). Then a still envies a′ in the allocation provided
by G and λ′. Thus ℓ = j again satisfies (16). Since
envy-freeness can be checked in polynomial time, this
completes the proof.

We here remark that ΛG may be empty. Based on this semi-
lattice structure, we construct a polynomial time algorithm
to compute an envy-free feasible allocation consistent with a
given star-forest G. Since there exists at most pp many star-
forests, this implies an FPT algorithm (with respect to p) for
computing an envy-free feasible allocation.

For a given star-forestG, our algorithm computes the max-
imum vector in ΛG or conclude that ΛG = ∅, where the max-
imum vector exists due to semi-lattice property of ΛG. The
lemma below ensures that it is possible in polynomial time.

Lemma 4.15. For a star-forest G, let Λ =
∏

j∈[t] Λj be a

non-empty set such that Λ ⊇ ΛG. If the maximum vector
λ = (maxΛj)j∈[t] does not belong to ΛG, then an index

ℓ ∈ [t] with (Λℓ − maxΛℓ) ×
∏

j∈[t]−ℓ Λj ⊇ ΛG can be

computed in polynomial time.

Let us note that an index ℓ in the lemma must exist again
by the semi-lattice property of ΛG. Let Λ =

∏

j∈[t] Λj de-

note a set of candidate size vectors. By Lemma 4.11, we
have ΛG ⊆

∏

j∈[t]

[

|A∈Cj
|
]

. Our algorithm initializes Λ by

Λ =
∏

j∈[t]

[

|A∈Cj
|
]

, and iteratively check if Λ = ∅ or the

maximum vector in Λ provides an envy-free allocation; If not,
it updatesΛ by making use of indices ℓ in Lemma 4.15, where
the formal description of the algorithm can be found in Algo-
rithm 3.

Theorem 4.16. We can check the existence of an envy-free
feasible allocation, and find one if it exists in FPT with re-
spect to the number of types of agents.

Proof. We show that Algorithm 3 can check the existence
of an envy-free feasible allocation and find one if it exists
in FPT time. The correctness follows from Lemmas 4.11,
4.14, and 4.15. To analyze the running time, observe that the
number of iterations of the while loop is at most n because
∑

j∈[t] |Λj | = n at the beginning of the loop and it is decre-

mented by at least one in each iteration. The running time
of each iteration of the while loop is O(n3) because we can
check the existence of envy in O(n3) time. Thus, the total
running time of the algorithm isO(pp ·n4), which is FPT.

Algorithm 3: FPT w.r.t. the number of types

1 foreach star-forest G do

2 Let Λ =
∏

j∈[t]

[

|A∈Cj
|
]

;

3 while Λ 6= ∅ do
4 Let λ = (maxΛj)j∈[t];

5 if (14) or (18) is violated then
6 Set Λ← ∅;

7 else if (15), (17), or (19) is violated for an index
j then

8 Set Λj ← Λj −maxΛj ;

9 else if an allocation T provided by G and λ is not
envy-free, i.e., an agent in some coalition in Tj is
envied then

10 Set Λj ← Λj −maxΛj ;

11 else
12 return an allocation T provided by G and λ;

13 return “No envy-free feasible allocation”;

T1

T2

1,2,3,4

1

5,6,7,8

10

9,10

20

Figure 8: An allocation that is envy-free but not consecutive

4.4 Consecutive envy-free allocations

One desirable property of an allocation is consecutiveness,
i.e., coalitions are formed by consecutive agents according to
their destinations. The property is intuitive to the users and
hence important in practical implementation. Formally, an
allocation T is consecutive if maxa∈T xa ≤ mina∈T ′ xa or
mina∈T xa ≥ maxa∈T ′ xa holds for all distinct T, T ′ ∈ T .
However, there exists an instance with no consecutive envy-
free feasible allocation as illulstrated in Example 4.17.

Example 4.17. Consider an instance where n = 10, k = 2,
q1 = 6, q2 = 4, x1 = · · · = x4 = 1, x5 = · · · = x8 = 10,
and x9 = x10 = 20. Then, it can be easily checked that
allocation T ∗ = ({1, 2, 3, 4, 9, 10}, {5, 6, 7, 8}) in Fig. 8 is
envy-free and feasible but not consecutive. Moreover, this
is a unique allocation that is envy-free and feasible. To see
this, let T = (T1, T2) be an envy-free feasible allocation.
By feasibility, we have |T1| = 6 and |T2| = 4. We also
have {1, 2, 3, 4} ⊆ T1, i.e., all agents of type x = 1 must be
allocated to T1 since the cost they have to pay at T1 and T2
are respectively 1

6 and 1
4 . Finally, all agents of type x = 10

must be allocated to T2, which completes the uniqueness of
T ∗. Note that feasibility implies at least two agents of type
x = 10 allocated to T2. If an agent of type x = 10 is allocated
to T1, then she would envy an agent of the same type allocated
to T2 since the cost she has to pay at T1 is 1

6 + 9
2 , which is

greater than the cost of 10
4 at T2.

Nevertheless, we show next that a consecutive envy-free



feasible allocation can be found in polynomial time if it ex-
ists. The key observation here is that envy-freeness (between
all agents) is equivalent to envy-freeness between two con-
secutive agents, which enables us to design a dynamic pro-
gramming approach for finding a desired allocation.

Theorem 4.18. A consecutive envy-free feasible allocation
can be computed in polynomial time if it exists.

By the feasibility of allocations, monotonicity property
of envy-freeness, and the assumption that q1 ≥ · · · ≥
qk, it is sufficient to consider consecutive allocations T =
(T1, . . . , Th) with h ≤ k such that

Ti = {si, si + 1, . . . , ti} for all i ∈ [h], (20)

where si and ti are positive integers with

s1 = 1 < s2 = t1 + 1 < · · · < sh = th−1 + 1 ≤ th = n,

ti − si + 1 ≤ qi for all i ∈ [h], and

t1 − s1 ≥ t2 − s2 ≥ · · · ≥ th − sh ≥ 0,

where the second and third conditions follow from capacity
condition and monotonicity property, respectively. We re-
gard a partition with (20) as a partition {T1, . . . , Tk} satis-
fying (20) and the condition that Ti = ∅ for all taxis i with
h < i ≤ k

We first show a simple criterion on envy-freeness for con-
secutive allocations.

Lemma 4.19. A consecutive allocation T of (20) is envy-free
if and only if for every i ∈ [h − 1], ti and si+1 do not envy
each other.

Proof. Since the “only if” part is clear, we prove the “if” part.
Suppose that ai ∈ Ti is the minimum agent that envies an
agent aj ∈ Tj . Since i 6= j, we separately consider two cases
i < j and i > j.

Case of i < j. As ai envies aj , we have

ϕ(Ti, xai
) =

∫ xai

0

dr

nTi
(r)

> ϕ(Tj − aj + ai, xai
) =

xai

|Tj|
≥

xai

|Ti+1|
,

where the last inequality follows from the monotonicity.
Note that 1

x

∫ x

0
dr

nTi
(r) is monotone nondecreasing in x, since

nTi
(r) is monotone nonincreasing in r. Hence, we have

1

xti

∫ xti

0

dr

nTi
(r)
≥

1

xai

∫ xai

0

dr

nTi
(r)

>
1

|Ti+1|
.

Thus, we obtain

ϕ(Ti, xti) =

∫ xti

0

dr

nTi
(r)

>
xti
|Ti+1|

= ϕ(Ti+1 − si+1 + ti, xti),

meaning that ti envies si+1.

Case of i > j. As ai envies aj , we have

ϕ(Ti, xai
) > ϕ(Tj − aj + ai, xai

)

= ϕ(Tj − aj + ti−1, xti−1) + (xai
− xti−1)

≥ ϕ(Ti−1, xti−1) + (xai
− xti−1)

= ϕ(Ti−1 − ti−1 + ai, xti−1) + (xai
− xti−1)

= ϕ(Ti−1 − ti−1 + ai, xai
),

where the second inequality holds since ti−1 never envies aj
by the minimality of ai. Hence, we have

ϕ(Ti, xsi) = ϕ(Ti, xai
)−

∫ xai

xsi

dr

nTi
(r)

> ϕ(Ti−1 − ti−1 + ai, xai
)−

∫ xai

xsi

dr

nTi
(r)

≥ ϕ(Ti−1 − ti−1 + ai, xai
)− (ai − xsi)

= ϕ(Ti−1 − ti−1 + si, xsi),

meaning that si envies ti−1.

Proof of Theorem 4.18. For positive integer µ and κ with
µ ≤ n and κ ≤ k, let us consider the subproblem in which [µ]
is the set of agents and [κ] is the set of taxis. For a nonnega-
tive integer ℓ, let z(µ, κ, ℓ) be a mapping to {0, 1} such that
z(µ, κ, ℓ) = 1 if and only if the subproblem has a consecutive
envy-free feasible allocation T with |Tκ| = ℓ. When there is
only one taxi (i.e., κ = 1), it is not difficult to see that

z(µ, 1, ℓ) =

{

1 if µ = ℓ and µ ≤ q1,

0 otherwise.
(21)

Moreover, by Lemmas 4.2 and 4.19, for an integer κ with
1 < κ ≤ k, we have z(µ, κ, ℓ) = 1 if and only if there exists
ℓ′ ∈ [n] such that

ℓ ≤ ℓ′ ≤ qκ−1,

z(µ− ℓ, κ− 1, ℓ′) = 1,

ϕ(T ′, xµ−ℓ) ≤ ϕ(T \ {µ− ℓ+ 1} ∪ {µ− ℓ}, xµ−ℓ), and

ϕ(T, xµ−ℓ+1) ≤ ϕ(T
′ \ {µ− ℓ} ∪ {µ− ℓ+ 1}, xµ−ℓ+1),

where T ′ = {µ − ℓ − ℓ′ + 1, . . . , µ − ℓ} and T =
{µ − ℓ + 1, . . . , µ}. Therefore, the original instance con-
tains a consecutive envy-free feasible allocation if and only
if maxℓ∈[n] z(n, k, ℓ) = 1. If this is the case, such an allo-
cation can be found using a standard dynamic programming
approach, which requires O(kn3) time.

4.5 Hardness results

Having established polynomial-time algorithms for several
cases, we turn our attention to the general problem of com-
puting an envy-free feasible allocation. Unfortunately, it re-
mains an open question whether the problem of deciding the
existence of an envy-free feasible allocation is NP-hard or
polynomial-time solvable. We instead consider two natural
relaxations of envy-freeness and prove the NP-hardness of
deciding the existence of such allocations.

The first one relaxes the envy-free requirement, by impos-
ing the necessary conditions in Split Lemma. More precisely,
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Figure 9: A feasible allocation that satisfies the split conditions

we consider the conditions (i)–(iii) in Lemma 4.3. We say
that a feasible allocation T satisfies the split conditions if the
conditions (i)–(iii) in Lemma 4.3 are satisfied for any x and
distinct T, T ′ ∈ T such that T=x and T ′

=x are non-empty.
Computing such an allocation turns out to be NP-hard.

Theorem 4.20. It is NP-complete to decide whether there
exists a feasible allocation that satisfies the split conditions.

Proof. We provide a reduction from the 3-partition
problem, which is a strongly NP-complete prob-
lem [Garey and Johnson, 1979]. In the problem, we are
given 3m + 1 positive integers a1, a2, . . . , a3m, S satisfying
S/4 < ai < S/2 (∀i ∈ [3m]) and

∑

i∈[3m] ai = mS. Our

task is to decide whether there exists a partition (I1, . . . , Im)
of the index set [3m] such that

∑

i∈Ij
ai = S for any j ∈ [m].

Note that, by the condition S/4 < ai < S/2 (∀i ∈ [3m]),
every such Ij must contain exactly three elements from [3m].

Let a1, a2, . . . , a3m, S be an instance of the 3-partition
problem. We construct a ride allocation instance
(A, [k], (xa)a∈A, (qi)i∈[k]) which has a feasible allocation
that satisfies the split conditions if and only if the given 3-
partition instance is a Yes-instance. Let β = m(m + 1). We
set the number of taxis k to be m and the capacity of each
taxi to be q = (2S + 1)β. The agents A are partitioned into
4m + 1 groups by the destination types {1, 2, . . . , 4m + 1}.
We set the number of agents of type 1 to be m(m+ 1)/2 (=
1 + 2 + · · · + m). We will see that the agents of type 1
must be the first passengers to drop off in every taxi. The
following 3m types P := {1 + i | i ∈ [3m]} are associ-
ated with the index set [3m]. For each i ∈ [3m], we set the
number of agents of type i + 1 to be β · ai. The remaining
types D := {3m + 1 + i | i ∈ [m]} are dummy to ensure
that the agents of type 1 are split into all the taxis. For each
i ∈ [m], we set the number of agents of type 3m+1+ i to be
(S + 1)β − i. Note that the total capacity of the taxis and the
number of agents are both (2S + 1)mβ, and hence we must
allocate q agents for each taxi.

Suppose that the given 3-partition instance is a Yes-
instance, i.e., there exists a partition (I1, . . . , Im) of the in-
dex set [3m] such that

∑

i∈Ij
ai = S for any j ∈ [m]. Let

Ij = {ij1, i
j
2, i

j
3} and let (H1, . . . , Hm) be a partition of A=1

such that |Hj | = j for each j ∈ [m]. Let T be an alloca-
tion with Tj = Hj ∪

⋃

i∈Ij
A=1+i ∪ A=3m+1+j . Then, it

is not difficult to see that T is feasible and satisfies the split
conditions (see Fig. 9).

Conversely, suppose that there exists a feasible allocation
T that satisfies the split conditions. We first show that there
is at least one agent of type 1 in every taxi, i.e., Ti∩A=1 6= ∅.
Let J be the set of taxis which contains some agent of type 1,
i.e., J = {i ∈ [k] | Ti ∩ A=1 6= ∅}. Then, by the condition
(i), A=x ⊆ Ti or A=x ∩ Ti = ∅ for any x > 1 and i ∈ J . Let
Q be the set of types of which the agents ride a taxi in J , i.e.,
Q = {x > 1 | A=x ⊆ Ti (∃i ∈ J)}. Since q is a multiple of
β, the number of agents who ride a taxi in J is also a multiple
of β. By counting the number of agents modulo β, we obtain

0 ≡ |A=1|+
∑

x∈Q

|A=x| (mod β)

≡
m(m+ 1)

2
+

∑

i∈[m]: 3m+1+i∈Q

|A=x| (mod β)

≡
m(m+ 1)

2
−

∑

i∈[m]: 3m+1+i∈Q

i (mod β)

Thus, Q must contain all the types in the dummy types D

(recall that β > m(m+1)
2 ). Here, each taxi in J cannot carry

two type in D because the number of agents of each type in
D is larger than the half of the capacity of each taxi q. Hence,
we conclude that there is at least one agent of type 1 in every
taxi, i.e., J = [k].

Now, we prove that there exists a desired partition of [3m].
Without loss of generality, we may assume that Ti contains
the agents of type 3m + 1 + i for each i ∈ [m]. Since q is
a multiple of β and the number of agents of type x ∈ P is a
multiple of β, the number of agents of type 1 in the ith taxi
must be i, i.e., |Ti ∩ A=1| = i. Let Qi be the set of types of
which the agents ride ith taxi, i.e., Qi = {x ∈ P | A=x ⊆
Ti}. Then, we have

∑

x∈Qi
|A=x| = q − ((S + 1)β − i) −

i = S · β, and hence the partition (I1, . . . , Ik) of [3m] with
Ij = {i ∈ [3m] | i+ 1 ∈ Qj} satisfies

∑

i∈Ij
ai = S for any

j ∈ [m].

The second relaxation generalizes the notion of envy-
freeness, by only looking into envies within particular groups.
For multiple sets of agents S = {S1, S2, . . . , Sq}, we say that
an allocation is envy-free in S if for each S ∈ S, the agents
in S do not envy each other. The notion of envy-freeness in
S is a generalized envy-freeness in the sense that S = {A}
coincides with the normal envy-freeness. Such a generalized
envy-freeness is useful to control the rank-wise service qual-
ity. For example, in a frequent flyer program of a airline com-
pany, agents in an identical status are supposed to receive a
similar quality of services. In the context of our problem, it
is desirable that agents in S, a set of frequent flyers in a sta-
tus, never envies another agent in S. Unfortunately, it is also
NP-hard to find an allocation that is envy-free in a given S.

Theorem 4.21. Given a partition S ofA, it is NP-complete to
decide whether there exists a feasible allocation that is envy-
free in S.

Proof. We provide a reduction from the Numerical 4-
dimensional matching (N4DM) problem, which is a vari-



ant of 4-partition. In an N4DM instance, we are given
a positive integer p and four sets of k positive integers
Sa = {a1, a2, . . . , ak}, Sb = {b1, b2, . . . , bk}, Sc =
{c1, c2 . . . , ck} and Sd = {d1, d2 . . . , dk}. Here, we can im-
pose another condition that all the numbers in Sa∪Sb∪Sc∪Sd

are distinct. Our task is to decide whether there exists a sub-
set M of Sa × Sb × Sc × Sd such that every integer in Sa,
Sb, Sc and Sd occurs exactly once and that for every quadru-
ple (a, b, c, d) ∈ M a + b + c + d = p holds. The hardness
of 4-partition is shown in Garey and Johnson [1979, Theorem
4.3]. It actually proves N4DM with the distinct condition. We
can further assume without loss of generality that 3maxSa <
minSb, 2maxSb < minSc and 2maxSc < minSd, be-
cause otherwise we can use S′

b = {b + nα | b ∈ Sb}
with a large constant α instead of Sb, for example. Thus,
minSa < maxSa ≪ minSb < maxSb ≪ minSc <
maxSc ≪ minSd < maxSd holds roughly. Furthermore,
we assume that k ≡120 1, that is, k = 120k′ + 1 for some
positive integer k′.

The reduction is as follows: We prepare 4k agents for Sa∪
Sb ∪ Sc ∪ Sd together with extra k agents, called Se. Thus
we have 5k agents in total. For a ∈ Sa, b ∈ Sb, c ∈ Sc and
d ∈ Sd, the destinations of the corresponding agents a, b, c
and d are respectively xa = 20a, xb = 12b, xc = 6c and
xd = 2d. The destination of every extra agents ei ∈ Se is all
xei = 60p. The capacities of the k taxis are also same 5, and
thus all the taxis should be full in a feasible allocation. The
partition is defined by the types, that is, S = {Sx | x ∈ R>0},
where S(x) = {a ∈ A | xa = x}.

We claim that the instance has an envy-free allocation in
S if and only if the distinct N4DM instance is a yes-instance.
We first show the if direction. We assumeM is a yes-solution,
that is, any triple (a, b, c, d) ∈ M , a + b + c + d = p holds.
For a triple (a, b, c, d) ∈ E, we let a, b, c, d and an e ∈ Se

take a taxi. Note that xa < xb < xc < xd < xe. Then their
payments are as follows: xa/5 = 4a for agent a, xa/5+(xb−
xa)4 = 3b−a for agent b, xa/5+(xb−xa)/4+(xc−Xb)/3 =
2c− b− a for agent c, xa/5+ (xb − xa)/4+ (xc − xb)/3+
(xd − xc)/2 = 60p − c − b − a = 99p for agent d ∈ Sd.
Since every agent in Sd(= S(60p)) pays exactly 99p, agents
in S(60p) never envy each other. We then check the envy-
freeness of the agents in S(xc). As seen above, the payment
of an agent in S(xc) is c− (a+ b) = 2c− p, which does not
depend on which taxi c takes.

We next consider only-if direction. Assume that there
exists a feasible allocation in which any di ∈ S does not
envy another dj ∈ S. In a feasible allocation, each taxi
has exactly one agent in S; otherwise, there are two taxis
with capacity 4 that deliver different numbers of agents in S
due to k ≡24=≡2·3·4 1, which makes an envy. For exam-
ple, suppose that a taxi has 3 agents in S and a taxi has 4
agents in S. Then, an agent in the former taxi envies one
in the latter taxi, because an agent in the former taxi pays
60p/3−maxS3/4 > 30p and an agent in the latter taxi pays
60p/4 = 15p.

Thus, each taxi has exactly one agent in S, whose payment
is determined by the other members in the taxi. If some taxi
has two or more agents from S2 and another taxi has at most
one S1, the former taxi is cheaper for the agent in S. This

and similar arguments imply that every taxi has one agent
from each of S1, S2, S3, S4 and S5 in an envy-free feasible
allocation. By the argument of if-direction, if a taxi has agent
a from S1, agent b from S2, agent c from S3, and agent d from
S4, the payment of the remaining e is 60p− (a+ b+ c+ d).
This implies that such an allocation of agents corresponds to
an N4DM solution.

We note that, the above proof implies the NP-hardness for
another relaxed variant: that is, given a subset S of A, it is
NP-complete to decide whether there is a feasible allocation
that is envy-free in S.

5 Stable and socially optimal allocations

We have seen that the set of envy-free allocations may be
empty even when a feasible outcome exists. In contrast, we
will show in this section that, stability as well as social opti-
mality are possible to achieve simultaneously: a feasible allo-
cation that greedily groups agents from the furthest destina-
tions together satisfies Nash stability, strong swap-stability,
and social optimality. Specifically, we design the following
backward greedy algorithm which constructs coalitions Ti in
the increasing order of i by greedily adding agents j in the de-
creasing order until Ti exceeds the capacity, where the formal
description can be found in Algorithm 4.

Algorithm 4: Backward greedy

1 Initialize Ti ← ∅ for each i ∈ [k] and let κ← 1;
2 for a← n to 1 do
3 if |Tκ| = qκ then
4 κ← κ+ 1;
5 if κ > k then return “No feasible allocation”;

6 Set Tκ ← Tκ + a;

7 return (T1, T2, . . . , Tk);

The following theorem states that Algorithm 4 computes a
desired outcome in polynomial time.

Theorem 5.1. If a given instance has a feasible allocation,
the backward greedy computes in polynomial time a feasible
allocation that is socially optimal, Nash stable, and strongly
swap stable.

Proof. It is not difficult to see that the backward greedy
given in Algorithm 4 requires O(n + k) time, and computes
a feasible allocation if there exists such an allocation. Let
T = (T1, . . . , Tk) be a feasible allocation constructed by
the algorithm, and let Th be the last nonempty coalition in
T , i.e., Tκ = ∅ for κ > h. We first that allocation T is
Nash stable. Note that coalitions T1, . . . , Th−1 have no seat
available, and empty taxis κ (> h) are not profitable to de-
viate. Thus it is enough to consider deviations to the last
coalition Th. Moreover, if agent a ∈ Ti wants to deviate
to Th, then she would become the last passenger to drop off
but |Th| + 1 ≤ qh ≤ qi = |Ti| holds. Thus, by letting



xb = maxt∈Th
xt, we have

ϕ(Th + a, xa)− ϕ(Ti, xa)

≥ (ϕ(Th + a, xb) + (xa − xb))− (ϕ(Ti, xb) + (xa − xb)),

= ϕ(Th + a, xb)− ϕ(Ti, xb)

≥
xb

|Th|+ 1
−

xb
|Ti|
≥ 0,

which yields a contradiction. Thus T is Nash stable.
We next show that T is strongly swap-stable. Since swap-

ping a pair of agents in the same taxi has no effect on the cost,
it suffices to show that there is no beneficial swap of agents in
different taxis. More precisely, let a ∈ Ti and b ∈ Tj be two
agents with i < j. We show that if agent a can replace b, i.e.,

ϕ(Tj − b+ a, xa) ≤ ϕ(Ti, xa), (22)

then swapping a and b have no effect on their costs, i.e.,

ϕ(Tj − b+ a, xa) = ϕ(Ti, xa), and

ϕ(Ti − a+ b, xb) = ϕ(Tj , xb).

To see this, we first observe that by construction of T ,
|Ti| ≥ |Tj | and xa ≥ xt for all t ∈ Tj . Thus, we have

nTj−b+a(x) ≤ nTi
(x) for all x ∈ R≥0, (23)

meaning that at any x > 0, the number of agents in taxi i is at
least the number of agents in taxi j with a and b swapped. On
the other hand, by the definition of ϕ, (22) is equivalent to

∫ xa

0

dr

nTj−b+a(r)
≤

∫ xa

0

dr

nTi
(r)

,

which together with (23) implies that nTj−b+a(x) = nTi
(x)

for all x ∈ R≥0 with x ≤ xa. Hence we have |Ti| = |Tj |
and xt = xa for all t ∈ Tj . This implies that xa = xb,
nTi

= nTi−a+b, nTj
= nTj−b+a, and nTi

(x) = nTj
(x) for

all x ∈ R≥0 with x ≤ xa, which proves the claim.
It remains to show that T = (T1, . . . , Tk) is socially op-

timal i.e., T is a feasible allocation that minimizes the to-
tal cost among feasible allocations. For i ∈ [k], let yi de-
note the furthest destination of Ti, i.e., yi = maxa∈Ti

xa if
Ti 6= ∅, and 0 otherwise. Then the total cost of T is given by
∑k

i=1 yi. Since the capacities satisfy q1 ≥ · · · ≥ qk, we have
y1 ≥ · · · ≥ yk. We claim that the nonincreasing sequence
of the last drop-off points in socially optimal allocations is
unique and identical to that of the allocation obtained by the
backward greedy algorithm. This implies that T is socially
optimal.

Let T ′ = (T ′
1, . . . , T

′
k) be a socially optimal feasible allo-

cation, and for i ∈ [k], let y′i denote the furthest destination of
T ′
i . Let z1, . . . , zk be a sequence obtained from y′i (i ∈ [k])

by sorting them in the nonincreasing order. Then our claim
is equivalent to the condition that zi = yi for all i ∈ [k]. For
an index i, let Ui be the coalition in T ′ corresponding to zi.
Then we note that zi is the maximum xa among agents a in
A \ (

⋃

ℓ∈[i−1] Uℓ). Since
∑

ℓ∈[i−1] |Uℓ| ≤
∑

ℓ∈[i−1] qℓ, the

backward greedy construction implies zi ≥ yi. Since T ′ is
socially optimal, i.e.,

∑

i∈[k] zi =
∑

i∈[k] yi, we have zi = yi
for all i ∈ [k], which completes the proof.

As a corollary of the above theorem, we can see that there
exists a feasible allocation that satisfies all the notions de-
fined in Section 3, except for envy-freeness, whenever a fea-
sible allocation exists. We remark that the backward greedy
algorithm fails to find an envy-free feasible allocation even
when it exists, since there is an instance that has an envy-free
feasible allocation but no consecutive envy-free feasible allo-
cation, which can be found in Example 4.17.

6 Conclusion

In this paper, we introduced a new model of the fair ride allo-
cation problem on a line with an initial point. We proved that
the backward greedy allocation satisfies Nash stability, strong
swap-stability, and social optimality. We designed several ef-
ficient algorithms to compute an envy-free feasible allocation
when some parameter of our input is small. The obvious open
problem is the complexity of finding an envy-free allocation
for the general case. We expect that the problem becomes
NP-hard even when the maximum capacity is a constant.

There are several possible extensions of our model. First,
while we have assumed that agents ride at the same starting
point, it would be very natural to consider a setting where the
riding locations may be different. Indeed, passengers ride at
different points in most of private carpooling services. Ex-
tending our results to this setting would be a promising re-
search direction. Further, besides the class of path graphs,
there are other underlying structures of destinations, such as
grids and planar graphs. Although we expect that the Shapley
value of a cost allocation problem on a more general graph
structure may become necessarily complex, it would be inter-
esting to analyze the properties of fair and stable outcomes in
such scenarios.
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