
Complexity of Public Goods Games on Graphs?

Matan Gilboa and Noam Nisan

School of Computer Science and Engineering, Hebrew University of Jerusalem
matan.gilboa@mail.huji.ac.il

noam@cs.huji.ac.il

Abstract. We study the computational complexity of ”public goods
games on networks”. In this model, each vertex in a graph is an agent that
needs to take a binary decision of whether to ”produce a good” or not.
Each agent’s utility depends on the number of its neighbors in the graph
that produce the good, as well as on its own action. This dependence
can be captured by a ”pattern” T : IN→ {0, 1} that describes an agent’s
best response to every possible number of neighbors that produce the
good. Answering a question of [Papadimitriou and Peng, 2021], we prove
that for some simple pattern T the problem of determining whether a
non-trivial pure Nash equilibrium exists is NP-complete. We extend our
result to a wide class of such T , but also find a new polynomial time
algorithm for some specific simple pattern T . We leave open the goal of
characterizing the complexity for all patterns.

Keywords: Nash Equilibrium · Public Goods · Computational Com-
plexity.

1 Introduction

We study scenarios where there is a set of agents, each of which must decide
whether to make an effort to produce some “good”, where doing so benefits
not only himself but also others. This general type of phenomena is captured
by the general notion of public goods, and we focus on cases where the public
good produced by some agent does not benefit all other agents but rather there
is some neighborhood structure between agents specifying which agents benefit
from the public goods produced by others. Examples for these types of scenarios
abound: anti-pollution efforts that benefit a geographical neighborhood, research
efforts that benefit other researchers in related areas, vaccination efforts, security
efforts, and many more.

We focus on the following standard modeling of public goods games on net-
works: We are given an undirected graph, where each node models an agent, and
the neighbors of a node are the other agents that benefit from his production

? This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 Research and Innovation Programme (grant
agreement no. 740282). A shorter version of this paper was first published in 15th
Symposium on Algorithmic Game Theory (SAGT 2022) by Springer Nature.

ar
X

iv
:2

20
7.

04
23

8v
1 

 [
cs

.G
T

] 
 9

 J
ul

 2
02

2



2 M. Gilboa and N. Nisan

of the public good. We focus on the case where each agent has a single boolean
decision to make of whether to produce the good or not, and furthermore, as
in, e.g., [2,3,4,6,8], limit ourselves to cases where the effect of an agent’s neigh-
bors is completely characterized by the number of them that produce the good.
Furthermore we focus on the cleanest, so called, fully homogenous case where
all agents have the same costs and utility functions so all of the heterogeneity
between agents is captured by the graph structure.

Formally, there is a cost c that each agent pays if they produce their good,
and a utility function u(si, ki) describing each agent’s utility, where si ∈ {0, 1}
describes whether agent i produces the good and ki ∈ IN is the number of i’s
neighbors (excluding i) that produce the good1. We focus on the ’strict’ version
of the problem [3], where we do not allow knife’s-edge cases where u(1, ki) −
u(0, ki) = c. Therefore, our agent’s best response to exactly ki of its neighbors
producing the good is to produce the good (si = 1) if u(1, ki) − u(0, ki) > c
and to not produce the good (si = 0) if u(1, ki) − u(0, ki) < c. Hence, we can
summarize the Best Response Pattern as T : IN→ {0, 1}. We study the following
basic problem of finding a non-trivial pure Nash equilibrium in a network.

Equilibrium in a public goods game: For a given best response pattern
T : IN → {0, 1}, given as input an undirected graph G = (V,E), determine
whether there exists a pure non-trivial Nash equilibrium of the public goods
game on G, i.e. an assignment s : V → {0, 1} that is not all 0, such that for
every 1 ≤ i ≤ |V | we have that si = T (

∑
(i,j)∈E sj).

Several cases of this problem have been studied in the literature. In [1], the
“convex case” where the pattern is monotone (best response is 1 if at least t of
your neighbors play 1) and the ”Best Shot” case (where the best response is 1
only if none of your neighbors play 1, i.e. T (0) = 1 and for all k > 0, T (k) = 0)
were shown to have polynomial time algorithms. The general heterogeneous case
where different agents may have different patterns of best responses was shown to
be NP-complete in [8] as was, in [3,6], the fully-homogenous case, if we allow also
knife’s-edge cases, i.e. for some utility function where for some k we have u(1, k)−
u(0, k) = c (which lies outside our concise formalization of patterns, since in
these cases, both 1 and 0 are best responses).2 The parameterized complexity
for several natural parameters of the graph was studied in [3]. In [2], it is shown
that in a public goods game, computing an equilibrium where at least k agents
produce the good, or at least some specific subset of agents produce it, is NP-
Complete. In [4], a version of this problem3 on directed graphs was studied, and
a full characterization of the complexity of this problem was given for every
pattern: except for a few explicitly given best response patterns, for any other

1 In this paper, we use the notation IN to also contain 0, and use IN+ to exclude 0.
2 An early version [7] of [8] contained an erroneous proof of NP-completeness in the

fully-homogenous case for some pattern T , but a bug was found by [6] who gave an
alternative proof of the NP-completeness of the case that allows u(1, k)−u(0, k) = c.

3 A version without the non-triviality assumption on the equilibrium.



Complexity of Public Goods Games on Graphs 3

pattern the directed problem is NP-complete.4 They also suggested an open
problem of providing a similar characterization for the more standard undirected
case and specifically asked about the complexity of the pattern where the best
response is 1 iff exactly one of your neighbors plays 1. Our main result answers
this question, showing that for this specific pattern the problem is NP-complete.

Theorem: For the Best-Response Pattern where each agent prefers to produce
the good iff exactly one of its neighbors produces the good, i.e. T (1) = 1 and for
all k 6= 1 T (k) = 0, the equilibrium decision problem in a public goods game is
NP-complete.

When considering the strict version of the game, this is the first pattern for
which the equilibrium problem is shown to be NP-complete, and in fact it is even
the first proof that the general problem (where the pattern is part of the input) is
NP-complete. We then embark on the road to characterizing the complexity for
all possible patterns. We extend our proof of NP-completeness to large classes
of patterns. We also find a new polynomial time algorithm for a new interesting
case:

Theorem: For the pattern where each agent prefers to produce the good iff
at most one of its neighbors produces the good, i.e. T (0) = T (1) = 1 and
for all k > 1, T (k) = 0, the public goods game always has a pure non-trivial
equilibrium, and it can be found in polynomial time.

We were not able to complete our characterization for all patterns and leave
this as an open problem. In particular, we were not able to determine the com-
plexity for the following two cases:

Open Problem 1: Determine the computational complexity of the equilibrium
decision problem of a public goods game for the pattern where T (0) = T (1) =
T (2) = 1 and for all k > 2, T (k) = 0.

Open Problem 2: Determine the computational complexity of the equilibrium
decision problem of a public goods game for the pattern where T (0) = T (2) = 1
and for all k /∈ {0, 2}, T (k) = 0.

We suspect that at least the first problem is computationally easy, and in fact
that there exists a non-trivial pure Nash equilibrium in any graph.

The rest of this paper is organized as follows: After defining our model and
notations in section 2, we present our main theorem (hardness of the Single-
Neighbor pattern) in Section 3, and provide some intuition about the problem.
In Section 4 we construct a polynomial time algorithm for the At-Most-Single-
Neighbor pattern. In Section 5 we characterize a number of classes of patterns
for which the problem is hard, by reducing from our main theorem, where each

4 One of the few easy cases they identify can be seen to apply also to the undirected
case: where the pattern alternates between 0 and 1, i.e. T (k) only depends on the
parity of k, a case that can be solved as a solution of linear equations over GF (2).



4 M. Gilboa and N. Nisan

Category Pattern Reference

PTIME

1,0,0,0,... [1]
1,1,0,0,0,... Theorem 2

0,0,...,1,1,1,... [1]
1,0,1,0,1,0,... [4]

NPC

0,1,0,0,0,... Theorem 1
0,?,?,...,1,0,0,0,... Theorem 4

1,1,?,?,...,0,?,?,...,1,0,0,0,... Theorem 5
1,0,..,0,1,1,?,?,...,0,0,0,... Theorem 6

Adding 1,0 to non-flat hard patterns Theorem 7

Open
Problems

1,1,1,0,0,0,...
1,0,1,0,0,0,...

Table 1. A summary of our (and previous) results.

sub-section focuses on a specific class of patterns. Our results are summarized
in Table 1.

2 Model and Notation

We define a Public Goods Game (PGG) on an undirected graph G = (V,E)
with n nodes V = {1, ..., n}, each one representing an agent. The neighborhood
of agent i, denoted N(i), is defined as the set of agents adjacent to i, excluding
i, i.e: N(i) = {j|(j, i) ∈ E}. An edge between two agents’ nodes models the fact
that these agents are directly affected by each other’s decision to produce or not
produce the good. The strategy space, which is assumed to be the same for all
agents, is S = {0, 1}, where 1 represents producing the good, and 0 represents
the opposite. The strategy of agent i is denoted si ∈ S.

Definition 1. If nodes i, j are adjacent, and sj = 1 (i.e. agent j produces the
good) we say that j is a supporting neighbor of i.

For convenience, if some node v represents agent i, we sometimes write v = 1 or
v = 0 instead of si = 1 or si = 0 respectively, to mark i’s strategy. The utility
function is assumed to be the same for all agents. Furthermore, we restrict our-
selves to utility functions where an agent is never indifferent between producing
and not producing the good, and so always has a single best response according
to the strategies of the agents in their neighborhood. This characteristic of the
utility function allows us to adopt a more convenient way to inspect a PGG
model, which we call the best response pattern.

Definition 2. For any PGG, we define its Best Response Pattern (BRP), de-
noted by T , as an infinite boolean vector in which the kth entry represents the
best response for each agent i given that exactly k neighbors of i (excluding i)
produce the good:

∀k ∈ IN T [k] = best response to k productive neighbors



Complexity of Public Goods Games on Graphs 5

We henceforth identify PGGs by their Best Response Pattern, rather than their
utility function and cost. This concludes the definition of a PGG model. We now
define a pure Nash equilibrium, which is our main subject of interest.

Definition 3. A strategy profile s = (s1, ..., sn) ∈ Sn of a Public Goods Game
corresponding to a BRP T is a pure Nash equilibrium (PNE) if all agents play
the best response to the strategies of the agents in their neighborhood:

∀i ∈ [n] si = T [
∑

j∈N(i)

sj ]

In addition, if there exists i ∈ [n] s.t si = 1, then s is called a non-trivial pure
Nash equilibrium (NTPNE).

Definition 4. For a fixed BRP T , the non-trivial pure Nash equilibrium decision
problem corresponding to T , denoted by NTPNE(T ), is defined as follows: The
input is an undirected graph G. The output is ’True’ if there exists an NTPNE
in the PGG defined on G with respect to T , and ’False’ otherwise. The search
version of the problem asks for the NTPNE itself.

Let us give names to the following three simplest patterns:

Definition 5. The Best-Shot best-response pattern is defined as follows:

∀k ∈ IN T [k] =

{
1 if k = 0

0 if k ≥ 1

i.e.

T = [1, 0, 0, 0, 0, ...]

Definition 6. The Single-Neighbor best-response pattern is defined as follows:

∀k ∈ IN T [k] =

{
1 if k = 1

0 otherwise

i.e.

T = [0, 1, 0, 0, 0, ...]

Definition 7. The At-Most-Single-Neighbor best-response pattern is defined as
follows:

∀k ∈ IN T [k] =

{
1 if k ≤ 1

0 if k > 1

i.e.

T = [1, 1, 0, 0, 0, ...]



6 M. Gilboa and N. Nisan

The Best-Shot BRP was coined in [1], where they prove that a pure Nash
equilibrium exists in any graph, and show a correspondence between PNEs and
Maximal Independent Sets. We study the Single-Neighbor BRP in Section 3,
where we prove the decision problem is NP-Complete. We study the At-Most-
Single-Neighbor BRP in Section 4, where we prove that a pure Nash equilibrium
exists in any graph.

3 Hardness of the Single-Neighbor Pattern

In this section we prove NP-completeness of NTPNE(T ) defined by the Single-
Neighbor BRP, and provide basic intuition about its combinatorial structure.
This is a linchpin of our hardness results, from which we reduce to many other
patterns. We remind the reader that in the Single-Neighbor BRP, an agent
prefers to produce the good iff exactly one of their neighbors produces it.

Theorem 1. Let T be the Single-Neighbor Best Response Pattern. Then NTPNE(T )
is NP-complete.

Before the proof, we provide intuition about the Single-Neighbor problem,
by examining a few simple graphs. First, we note that since T [0] = 0, a trivial
all-zeros PNE exists in any graph. This observation is true for any such pat-
tern5, which is the reason we choose to focus on non-trivial PNEs. Now, take
for example a simple path with two nodes. The assignment where both nodes
are set to 1 is an NTPNE, since neither of them benefit from changing their
strategy. But looking at a simple path with 3 nodes, it is easy to verify that
there is no NTPNE. Specifically, the all-ones assignment in such a path is not a
PNE since the middle node would rather play 0, as it already has two supporting
neighbors. Generalizing this NTPNE analysis to paths of any size, we see that
in order for a simple path with n nodes x1, ..., xn to have an NTPNE, it must be
that n ≡ 2 (mod 3). To see why, let us examine x1. If x1 is assigned 0 then so is
x2, as otherwise x1 wishes to change strategy; and since x2 is assigned 0 then so
is x3, and so forth. Therefore, in order to get a non-trivial assignment x1 must
be assigned 1, and it must have a supporting neighbor, which must be x2. This
leads to only one possibility for an NTPNE, as shown in Figure 1. A similar
analysis shows that a cycle with n nodes has an NTPNE iff n ≡ 0 (mod 3) (see
Figure 2).

Fig. 1. NTPNE: paths with n ≡ 2 (mod 3)

Another simple example is the Complete Graph, or Clique. In any Clique of
size at least 2, we can construct an NTPNE by choosing any two nodes to be

5 These patterns are denoted flat patterns, and are formally defined in Definition 10.



Complexity of Public Goods Games on Graphs 7

assigned 1, and assigning 0 to all other nodes (see Figure 3). So we see there are

Fig. 2. NTPNE: cycles with
n ≡ 0 (mod 3)

Fig. 3. NTPNE: Clique

cases where there exists an NTPNE, and others where there doesn’t, and so the
problem is not trivial (and in fact is NP-Hard).

We now begin the proof of Theorem 1, first showing that the problem is NP-
Hard. To do so, we construct a reduction from ONE-IN-THREE 3SAT, which is
a well known NP-complete problem [5]. The input of the ONE-IN-THREE 3SAT
problem is a CNF formula where each clause has exactly 3 literals, and the goal
is to determine whether there exists a boolean assignment to the variables such
that in each clause exactly one literal is assigned with True.

For the reduction, we introduce our Clause Gadget. For each clause (l1, l2, l3)
in the ONE-IN-THREE 3SAT instance, we construct a 9-nodes Clause Gadget as
demonstrated in Figure 4. The nodes l1, l2, l3 represent the literals of the clause,
respectively, and are denoted the Literal Nodes. Nodes a, b, c are denoted the
Inner Nodes, and nodes x, y, z are denoted the Peripheral Nodes. Each Literal
Node is adjacent to all other Literal Nodes, and to all Peripheral Nodes. In
addition, the Literal Nodes l1, l2, l3 are paired with the Peripheral Nodes x, y, z
respectively, in the sense that they share the same Inner Node as a neighbor,
and only that Inner Node (for example, l1 and x are paired since they are both
adjacent to a, and not to b, c). Notice that the Peripheral Nodes are not adjacent
to each other. Additionally, note that in the final graph, only the Literal Nodes
will be connected to nodes outside the Clause Gadget. The proof is constructed
by a number of Lemmas.

Lemma 1. In any PNE in a graph which includes the Clause Gadget, if one of
the nodes of the Clause Gadget is assigned 1, then one of the Literal Nodes must
be assigned 1.

Proof. Assume by way of contradiction that all Literal Nodes are assigned 0.
Since at least one node in the gadget is assigned 1, it must either be an Inner Node



8 M. Gilboa and N. Nisan

Fig. 4. Clause Gadget, with the
NTPNE assignment of Lemma 4

Fig. 5. Transfer Node (blue edges not shown).

or a Peripheral Node. Notice that if an Inner Node is assigned 1, w.l.o.g a = 1,
then its neighboring Peripheral Node x has exactly one supporting neighbor and
according to the BRP must also be assigned 1, seeing that x is connected only
to a and to the Literal Nodes (which are assigned 0). Similarly, if a Peripheral
Node is assigned 1, w.l.o.g x = 1, then its neighboring Inner Node a must also be
assigned 1, as otherwise x would prefer changing strategy. Therefore, there must
be a pair of adjacent Inner Node and Peripheral Node that are both assigned 1.
w.l.o.g a = x = 1. Since a is assigned 1, and already has a supporting neighbor,
then all other neighbors of a (i.e. b and c) must be set to 0. This leaves us only
with z, y; since neither of them have any supporting neighbors, they must be
set to 0. The contradiction comes from nodes b, c, both of which prefer changing
their strategy to 1, having exactly one supporting neighbor. ut

Lemma 2. In any PNE in a graph which includes the Clause Gadget, if one of
the Literal Nodes of the Clause Gadget is assigned 1, then the other two Literal
Nodes must be assigned 0.

Proof. Assume by way of contradiction that two different Literal Nodes are
assigned 1 (w.l.o.g l1 = l2 = 1). Since l1 and l2 are adjacent, they both already
have a supporting neighbor, and so all their other neighbors must be set to 0.
Therefore l3 = x = y = z = a = b = 0. This leaves us only with node c, which
must be set to 0 since all its neighbors are set to 0. The contradiction comes
from nodes a, b, both of which prefer changing their strategy to 1, having exactly
one supporting neighbor. ut

Lemma 3. In any PNE in a graph which includes the Clause Gadget, if one
of the Literal Nodes of the Clause Gadget is assigned 1, then so is its paired
Peripheral Node.

Proof. Assume by way of contradiction that a Literal Node is set to 1 while
its paired Peripheral Node is set to 0. w.l.o.g l1 = 1, x = 0. From Lemma 2,
we have that l2 = l3 = 0. Therefore, since x cannot have only one supporting



Complexity of Public Goods Games on Graphs 9

neighbor and still prefer playing 0, we must set its remaining neighbor, a, to 1.
Since l1, a both have a supporting neighbor, all their other neighbors must be
set to 0. Therefore b = c = y = z = 0. The contradiction comes from nodes b, c,
both of which prefer changing their strategy to 1, having exactly one supporting
neighbor. ut

Lemma 4. In any PNE in a graph which includes a Clause Gadget, if one of
the nodes of the Clause Gadget is assigned 1, then there is only one possible
assignment to the nodes in the gadget. Specifically, one Literal Node and its
paired Peripheral Node must be set to 1, and so do the two Inner Nodes that
aren’t connected to them, whereas all other nodes in the gadget must be set to 0.

Proof. Since there exists a node that is set to 1 inside the gadget, From Lemma
1 one of the Literal Nodes must be set to 1, w.l.o.g l1 = 1. From Lemma 2
l2 = l3 = 0, and from Lemma 3 x = 1. Since l1, x are supporting neighbors to
each other, they cannot have any other neighbor set to 1, therefore a = y = z = 0.
Since y is set to 0 and has only one supporting neighbor (l1), we must set its
remaining neighbor b to 1 as well. Symmetrically, we must set c to 1 in order to
support z’s assignment. It is easy to verify that indeed each node of the Clause
Gadget is playing its best response given this assignment. ut

So far we have seen that the Clause Gadget indeed permits an NTPNE, and
enforces the fact that each clause of the CNF formula must have exactly one
literal set to 1. We now wish to enforce the fact that all clauses must have a
literal assigned with True. We first construct a connection between the Clause
Gadgets such that if some Clause Gadget has a node set to 1, then all gadgets
must have one. The connection is defined as follows. Each pair6 of Clause Gadgets
is connected by one Transfer Node, denoted by t. The Transfer Node is adjacent
to all Literal Nodes of both of the gadget to which it is connected, and only
to those nodes. The connection between the Clause Gadgets is demonstrated in
Figure 5.

Lemma 5. In any PNE in a graph which includes 2 Clause Gadgets which are
connected by a Transfer Node t, t must be set to 0.

Proof. Assume by way of contradiction that t = 1. Then it must have a sup-
porting neighbor. Since t is only connected to Literal Nodes, one of those Literal
Nodes must be set to 1 (w.l.o.g l1 = 1). From Lemma 3, x must also be assigned
with 1, which leads to a contradiction since l1 has 2 supporting neighbors and
yet plays 1. ut

Lemma 6. In any PNE in a graph which includes at least two Clause Gadgets,
which are all connected to each other by Transfer Nodes, if one of the Clause
Gadgets has a node set to 1, then all of the Clause Gadgets have a node set to
1.
6 It is enough to connect all Clause Gadgets as a chain to one another (by Transfer

Nodes), but for ease of proof we connect every pair of gadgets.



10 M. Gilboa and N. Nisan

Proof. Denote the gadget that has a node set to 1 by g1, and let g2 be some
other Clause Gadget. Then g2 is connected to g1 via a Transfer Node t. Denote
the Literal Nodes in g1 by l1, l2, l3, and the Literal Nodes in g2 by l′1, l

′
2, l

′
3. From

Lemma 1 and Lemma 2 we have that one of l1, l2, l3 is set to 1, while the other
two are set to 0. w.l.o.g assume l1 = 1, l2 = l3 = 0. From Lemma 5, t = 0, and
therefore, t must have another supporting neighbor other than l1. Since t’s only
neighbors are l1, l2, l3, l

′
1, l

′
2, l

′
3, and l2 = l3 = 0, it follows that one of l′1, l

′
2, l

′
3

must be set to one, while the other two must be set to 0. From Lemma 4 we
know the assignments in each Clause Gadget necessary for an NTPNE, and it
is easy to verify that this assignment is still a Nash Equilibrium after adding
Transfer Nodes between the gadgets. ut

Now that we have ensured all Clause Gadgets have a node set to 1 (assuming
one of them does), we wish to enforce that any two identical literals in the
CNF formula are assigned with the same value. To do so, we introduce another
connecting node, which we call the Copy Node. Any two7 Literal Nodes l1, l

′
1

(from different Clause Gadgets, or possibly from the same one) which represent
the same variable in the original CNF formula, will be connected via a Copy
Node denoted by k, as shown in Figure 6. Each Copy Node has exactly two
neighbors, which are l1, l

′
1.

Fig. 6. Copy Node (blue edges not shown).

Lemma 7. In any PNE in a graph which includes two Literal Nodes l1, l
′
1 in

two Clause Gadgets g1, g2 respectively, where l1, l
′
1 are connected by a Copy Node

k, k must be set to 0.

Proof. Since k is connected only to Literal Nodes, the proof of Lemma 5 applies
to this claim as well. ut

Lemma 8. In any PNE in a graph which includes two Literal Nodes l1, l
′
1 in

two Clause Gadgets g1, g2 respectively, where l1, l
′
1 are connected by a Copy Node

k, l1 and l′1 must have the same assignment.

7 It is enough to connect all literals representing the same variable as a chain to one
another (by Copy Nodes), but for ease of proof we connect every pair of them.



Complexity of Public Goods Games on Graphs 11

Proof. Assume by way of contradiction that (w.l.o.g) l1 = 1, l′1 = 0. From Lemma
7, k must be set to 0. But since l1, l

′
1 are the only neighbors of k, k has only one

supporting neighbor, and therefore k must be set to 1, in contradiction. ut

The next property of a ONE-IN-THREE 3SAT assignment we need to en-
force, is that a variable x and its negation x must be set to different values.
Since the Copy Nodes already ensure that a variable appearing several times
will always get the same value, it is enough to make sure for each variable that
one instance of it is indeed different from one instance of its negation. To do so,
we introduce another connecting node, called the Negation Node. For each vari-
able x, where both x and x appear in the CNF formula, we choose one instance
of x and one instance of x from different clauses.8 Denote the Literal Nodes
representing x, x by l1, l

′
1 respectively, and denote the other two Literal Nodes

residing with l′1 in the same Clause Gadget by l′2, l
′
3. We connect a Negation

Node n to l1 as well as to l′2, l
′
3, as demonstrated in Figure 7. For convenience,

we say that l1, l
′
1 are connected by n even though n is only adjacent to one of

them.

Fig. 7. Negation Node (blue edges not shown).

Lemma 9. In any PNE in a graph which includes two Literal Nodes l1, l
′
1 in

two different Clause Gadgets g1, g2 respectively, where l1, l
′
1 are connected by a

Negation Node n, then n must be set to 0.

Proof. Since n is connected only to Literal Nodes, the proof of Lemma 5 applies
to this claim as well. ut

Lemma 10. In any PNE in a graph which includes two Literal Nodes l1, l
′
1 in

two different Clause Gadgets g1, g2 respectively, where l1, l
′
1 are connected by a

Negation Node n, and each of g1, g2 has at least one node set to 1, then l1, l
′
1

must be assigned with different values.

8 We assume a variable and its negation never appear together in the same clause, as
the problem without this assumption is easily reducible to the problem with it.



12 M. Gilboa and N. Nisan

Proof. Denote by l′2, l
′
3 the other two Literal Nodes residing with l′1 in the same

Clause Gadget. Divide into cases. Case 1: If l1 = 1, then n must have another
supporting neighbor (since n itself is set to 0, from Lemma 9). Thus, either l′2
or l′3 must be set to 1, and from Lemma 2 we have that l′1 = 0, as needed. Case
2: If l1 = 0, assume by way of contradiction l′1 = 0. Since g2 has some node set
to 1, then from Lemmas 1 and 2 we have that either l′2 or l′3 are set to 1, and
only one of them. Thus, n has exactly one supporting neighbor, and therefore n
must be set to 1, in contradiction to Lemma 9. ut

We have shown that our construction enforces all properties of a valid ONE-
IN-THREE 3SAT solution. But notice that most of the proofs rely on the as-
sumption that every Clause Gadget has at least one node set to 1. It is left to
prove that there cannot be any NTPNE where all of the Clause Gadgets are
all-zero.

Lemma 11. In any NTPNE in the graph constructed throughout the proof of
Theorem 1, all Clause Gadgets have at least one node set to 1.

Proof. Since we have an NTPNE, there must be some non-zero node, denoted
by v. From Lemmas 5, 7, and 9 we have that all Transfer Nodes, Copy Nodes
and Negation Nodes must be set to 0, and therefore v must be a part of a Clause
Gadget. 9 From Lemma 6 we conclude that all Clause Gadgets must have a node
set to 1. ut

These Lemmas lead us to the conclusion that indeed any satisfying assign-
ment to the ONE-IN-THREE 3SAT problem matches an NTPNE in the con-
structed graph, and vice versa, which directly implies that the NTPNE problem
is NP-Hard. This result is formulated by the claim in Theorem 1, which we can
now prove.

Proof. (Theorem 1) Clearly the problem is in NP, as given any graph and a
binary assignment to the nodes, we can verify that the assignment is an NTPNE
in polynomial time. It is left to prove the problem is NP-Hard. Given a ONE-IN-
THREE 3SAT instance, we construct a graph as described previously. If there
exists a satisfying assignment to the variables of the ONE-IN-THREE 3SAT
instance, then we can assign 1 to all Literal Nodes which represent variables that
are assigned ’True’, and to the necessary nodes within each gadget according
to Lemma 4, and set all other nodes to 0. Since we saw that the assignment
described in Lemma 4 forms an NTPNE, and that all connecting nodes (i.e.
Transfer, Copy and Negation Nodes) do not affect this NTPNE given that they
are all set to 0, we will get an NTPNE. In the other direction, if there exists an
NTPNE in the constructed graph, From Lemmas 1, 2, 6, 8, 10, 11 we have that
this NTPNE corresponds to a satisfying assignment to the ONE-IN-THREE
3SAT instance, where every Literal Node set to 1 will translate to assigning
’True’ to its matching variable, and every Literal Node set to 0 will translate to
assigning ’False’ to its matching variable. ut
9 Lemmas 5, 7, and 9 do not assume that the Clause Gadgets have a node set to 1,

and therefore are valid to use here.



Complexity of Public Goods Games on Graphs 13

The proof itself gives a slightly more general result: The degree of the constructed
graph is bounded10 by 13. Therefore, our proof does not require any information
about the 15th entry of the BRP onward, and thus extends to any NTPNE(T )
where T agrees with the first 14 entries of the SN-BRP.

Corollary 1. Let T be a BRP such that:

1. T[1]=1
2. ∀k ∈ {0, 2, 3, ..., 13} T [k] = 0

Then NTPNE(T ) is NP-complete.

4 Algorithm for the At-Most-Single-Neighbor Pattern

In this section, we focus on one of the most basic cases of a monotone best
response pattern, which is the At-Most-Single-Neighbor BRP. We remind the
reader that in the At-Most-Single-Neighbor BRP, an agent prefers to produce
the good iff at most one of their neighbors produces it. In addition, we formally
define a monotone best response pattern as follows:

Definition 8. A BRP T is called monotonically increasing (resp. decreasing) if
for all k ∈ IN, T [k] ≤ T [k + 1] (resp. T [k] ≥ T [k + 1]).

The most basic (and well studied) case of a monotonically-decreasing BRP is the
Best-Shot BRP. In [1], it is shown that in any PGG corresponding to the Best-
Shot BRP, an NTPNE always exists. Thus, the decision problem in this case is
trivially solvable in polynomial time. In this section, we show a similar result for
the At-Most-Single-Neighbor BRP: we prove that an NTPNE exists in any PGG
corresponding to this BRP, and present a polynomial time algorithm to find one.
An important notion in Graph Theory, which will be of use during our proof,
is the Maximum Independent Set. Given a Graph G = (V,E), an Independent
Set (Henceforth IS) is a subset of nodes S ⊆ V such that no two nodes in S
are adjacent. A Maximal Independent Set is an IS S such that for any node v
outside S it holds that S ∪{v} is not an IS. A Maximum Independent Set S is a
Maximal IS, such that for any Maximal IS S′ it holds that |S| ≥ |S′|. Using this
notion, we constructively prove that an NTPNE of the At-Most-Single-Neighbor
BRP exists in any graph, by providing a non-polynomial time algorithm to find
one. We later alter the algorithm to work in polynomial time.

Theorem 2. Let T be the At-Most-Single-Neighbor BRP. Given any graph G as
an input, Algorithm 1 outputs an NTPNE of the PGG defined on G correspond-
ing to T , and thus an NTPNE always exists. Therefore, the decision problem
NTPNE(T ) is trivially solvable in polynomial time.

10 The reader who has read the details of the proof may verify that, in the version
where the gadgets are chained as mentioned in footnotes 6 and 7, a Literal Node
is attached to 6 nodes within its Clause Gadget, and at most 2 Transfer Nodes, 2
Copy Nodes and 3 Negation Nodes.



14 M. Gilboa and N. Nisan

Algorithm 1 At-Most-Single-Neighbor: Non-Polynomial Time Algorithm

Input graph G = (V,E)
Output NTPNE for the At-Most-Single-Neighbor PGG on G

1: find a maximum IS S ⊆ V , and assign all its nodes with 1.
2: for each v ∈ V \ S, if v has exactly one supporting neighbor at the moment of its

assignment, then v = 1. Otherwise v = 0.

Proof. A Maximum IS always exists in any graph, and therefore stage 1 of the
algorithm, though not efficient, is well defined. Assume by way of contradiction
that the assignment given by the algorithm is not a PNE. Then there must be
some node u that is not playing the best response to its neighbors assignments.
Divide into two cases:

Case 1: If u is playing 0, then at the time of its assignment u must have had
at least two supporting neighbors, otherwise the algorithm would have assigned
it with 1. Since the algorithm never changes a node’s assignment from 1 to 0,
we have that also at the end of the run u has at least two supporting neighbors,
and therefore u is playing its best response, in contradiction.

Case 2: If u is playing 1, then it must be that u has at least two supporting
neighbors, otherwise u is playing its best response. Let x, y be two supporting
neighbors of u. Divide into two sub-cases:

Sub-Case 2.1: If u ∈ S, then x, y ∈ V \S (otherwise we have a contradiction
to S being an IS), and therefore u had received its assignment before x, y did.
Any node not in S is only assigned with 1 by the algorithm if it has exactly one
supporting neighbor at the time of the assignment, and therefore x, y only had u
as a supporting neighbor at the time of the assignment. Specifically, x, y are not
adjacent to any other node in S, because all nodes in S were already assigned 1
by the time x, y were assigned. Therefore, we have that S′ := (S \ {u}) ∪ {x, y}
is also an IS. Since |S′| > |S|, we have a contradiction to the fact that S is a
Maximum IS.

Sub-Case 2.2: If u /∈ S, then at least one of x, y must have gotten its
assignment after u, otherwise the algorithm would have assigned u with 0. w.l.o.g
assume x got its assignment after u, and in particular x ∈ V \ S. Since x was
assigned 1, it had exactly one supporting neighbor at the time of the assignment,
hence u was its only supporting neighbor at the time of the assignment. Since
u /∈ S, we have that x is not adjacent to any node in S, which means that S∪{x}
is an IS, in contradiction to S being a maximal IS.

Therefore, all nodes play their best response, and so the assignment is an
NTPNE.11 ut

Theorem 2 shows that the decision problem is easy in this case, using the fact
that a Maximum IS always exists in any graph. However, finding a Maximum IS
is an NP-Hard problem, and so Algorithm 1 does not run in polynomial time.

11 Since T [0] = 1, any PNE must be an NTPNE.



Complexity of Public Goods Games on Graphs 15

Nevertheless, it does provide a base for our following refined algorithm, which
runs in polynomial time and finds an NTPNE in any given graph.

Algorithm 2 At-Most-Single-Neighbor: Polynomial Time Algorithm

Input graph G = (V,E)
Output NTPNE for the At-Most-Single-Neighbor PGG on G

1: find a Maximal IS S ⊆ V .
2: perform stage 2 of Algorithm 1 using S
3: if the assignment is a PNE then
4: return
5: else
6: let u be a node which isn’t playing its best response
7: S ← S \ {u}
8: for x s.t (x, u) ∈ E do
9: if x is not adjacent to any node in S then

10: S ← S ∪ {x}
11: go back to stage 2

Theorem 3. Let T be the At-Most-Single-Neighbor BRP. Given any graph G
as an input, Algorithm 2 runs in polynomial time and outputs an NTPNE of the
PGG defined on G corresponding to T .

Proof. Correctness: We show that if at the beginning of iteration S is a Maximal
IS, then at the end of it S increases by at least 1, and remains a Maximal IS.
Therefore, after at most |V | iterations, either the algorithm finds an NTPNE
and stops, or S increases enough to become a Maximum IS, and therefore by
Theorem 2 the algorithm outputs an NTPNE.

S increases by at least 1 after each iteration: At the beginning of the
iteration S is a Maximal IS, but not necessarily a Maximum IS. Inspect the
different cases of the proof of Theorem 2, when assuming that the assignment is
not a PNE. Notice that all the cases from the proof of Theorem 2 were contra-
dicted by the fact that S is a Maximal IS (which is true for the current theorem
as well), except for Sub-Case 2.1, which was contradicted by the fact that S is
a Maximum IS. Therefore, if the assignment given by stage 2 of Algorithm 1
is not a PNE, the conditions of case 2.1 of the proof of Theorem 2 must hold.
Thus, we are guaranteed that any node not playing its best response must be in
S, and must have at least two neighbors which satisfy the condition of stage 9
in Algorithm 2. Therefore, in each iteration of the Algorithm 2 S gains at least
2 new nodes in the loop of stage 8, and loses exactly one node (which is u), and
therefore the size of S overall increases by at least 1.

S remains a Maximal IS after each iteration: Since S is a maximal IS
at the beginning of the iteration, any node not in S is adjacent to at least one
node in S. In each iteration we only remove a single node u from S, hence only u
and nodes that were adjacent to u might (possibly) not be adjacent to any node



16 M. Gilboa and N. Nisan

in S. After iterating over all of u’s neighbors and adding whichever possible to
S, we have that all of u’s neighbors are either in S or adjacent to some node
in S. Regarding u itself, we have already shown that at least 2 of its neighbors
must be added to S. Thus we have that S remains a Maximal IS at the end of
the iteration. This concludes the correctness of the algorithm.

Run-Time: Stage 1 can be achieved in O(|V |), greedily. Stages 2,3 and 8-10
all require iterating over all nodes, and for each node iterating over all its neigh-
bors, i.e. O(|V |2). Therefore, each iteration of the algorithm runs in O(|V |2).
As explained in the Correctness part of the proof, the number of iterations of
the algorithm is bounded by |V |. Hence the overall run time of the algorithm is
polynomial w.r.t the input. ut

5 More Hard Patterns

Theorem 1 provides a base to discover more classes of BRPs for which the
decision problem is hard, which we present in this section. We focus specifically
on non-monotone patterns, with a finite number of 1’s, except for in Section 5.4
where we do not assume this. All proofs of this section are postponed to the
appendix.

Definition 9. A BRP T is called finite if it has a finite number of 1’s, i.e.

∃N ∈ IN s.t ∀n > N T [n] = 0

5.1 Flat Patterns

In this section we generalize the result of the Single-Neighbor BRP to any t-
Neighbors BRP (where an agent’s best response is 1 iff exactly t of their neighbors
play 1), and in fact to an even more general case: we show that any BRP that
is flat (i.e. starting with 0), non-monotone and finite, models an NP-complete
decision problem.

Definition 10. A BRP T is called flat12 if T [0] = 0.

Theorem 4. Let T be a BRP which satisfies the following conditions:

1. T is flat

2. T is non-monotone

3. T is finite

Then NTPNE(T ) is NP-complete.

The proof can be found in Appendix A.1.

12 Coined by Papadimitriou and Peng in [4].



Complexity of Public Goods Games on Graphs 17

5.2 Sloped Patterns

In this section, we show that the decision problem remains hard when the as-
sumption of flatness is replaced with the assumption that the BRP begins with
a finite number of 1’s, and at least two. That is, we prove hardness of any non-
monotone, finite, sloped BRP.

Definition 11. A BRP T is called sloped if T [0] = T [1] = 1.

Theorem 5. Let T ′ be a BRP which satisfies the following conditions:

1. T ′ is sloped
2. T ′ is non-monotone
3. T ′ is finite

Then NTPNE(T ′) is NP-complete under Turing reduction.

The proof can be found in Appendix A.2.

5.3 Sharp Patterns Followed by Two 1’s

Among all non-monotone, finite BRPs, we have shown hardness of those which
are flat, and those which are sloped. It is left to address the decision problem
for non-monotone, finite BRPs which start with 1, 0.

Definition 12. A BRP T is called sharp if T [0] = 1 and T [1] = 0.

In this section, we focus on patterns which start with 1, followed by any positive,
finite number of 0’s, and then 1, 1. We prove that such BRPs present hard
decision problems.

Theorem 6. Let T ′ be a BRP which satisfies the following conditions:

1. T ′ is finite
2. T ′ is sharp
3. ∃m ≥ 2 s.t:

(a) ∀1 ≤ k < m T ′[k] = 0
(b) T ′[m] = T ′[m + 1] = 1

Then NTPNE(T ′) is NP-complete under Turing reduction.

The proof can be found in Appendix A.3.

5.4 Adding 1, 0 to Non-Flat Patterns

In this section, we show that any non-flat pattern for which the decision problem
is hard remains hard when 1, 0 is added to the beginning of it. Notice that adding
1, 0 at the beginning of a non-flat pattern yields another non-flat pattern, and
so, by using this result recursively we can add any finite number of 1, 0 to a
non-flat hard pattern, and it will remain hard. So far, the only non-flat patterns



18 M. Gilboa and N. Nisan

we have shown to be hard are the ones from Theorems 5 and 6. Notice that
adding 1, 0 to a pattern of the form of 5 simply gives a pattern of the form of
6, which we have already proved is hard. Thus, until other non-flat patterns are
proved hard, the new class of patterns that are shown to be hard in this section
is summarized by the form:

T = [ 1, 0, 1, 0, 1, 0, ....︸ ︷︷ ︸
finite number of ′1,0′

, 1, 0, 0, 0, ..., 1, 1, ?, ?, ..., 0, 0, 0, ...︸ ︷︷ ︸
pattern from Theorem 6

]

If other non-flat patterns are proved hard, this result could be applied to them
as well. We begin with a new definition:

Definition 13. Let T, T ′ be two BRPs. We say that T ′ is shifted by m from T
if:

∀k ∈ IN T ′[k + m] = T [k]

We say that T ′ is positively-shifted by m from T if in addition:

∀k < m T ′[k] = 1

Theorem 7. Let T be a non-flat BRP s.t NTPNE(T ) is NP-complete. Let T ′

be a BRP satisfying the following conditions:

1. T ′ is shifted by 2 from T .
2. T ′ is sharp

Then NTPNE(T ′) is NP-complete.

The proof can be found in Appendix A.4.

Appendix A Proofs of Section 5

A.1 Proof of Theorem 4

Proof. Let T be a BRP satisfying the conditions of Theorem 4. Since T is flat,
T [0] = 0, and since it is non-monotone, some entry of T must be 1. Since T is
finite, let N be the largest entry of T s.t T [N ] = 1, i.e. ∀n > N T [n] = 0. If
N = 1, then T is the Single-Neighbor-BRP, which we have already proved to be
NP-Hard in Theorem 1. Otherwise, we reduce from NTPNE(SN − BRP ). Let
P be a PGG on a graph G = (V,E) corresponding to the SN-BRP. Denote V =
{v1, ..., vn}. We construct the PGG P ′ on the graph G′ = (V ′, E′), corresponding
to the BRP T . G′ is built from N replicas of G, s.t each node in each replica is
connected to all N replicas of the neighbors it was originally connected to:

V ′ =
⋃

k∈[N ]

{vk1 , ..., vkn}



Complexity of Public Goods Games on Graphs 19

E′ = {(vki , vlj)|(vi, vj) ∈ E}

We show that there exists an NTPNE in P iff there exists an NTPNE in P ′. Let
s = {s1, ..., sn} be an NTPNE in P . We construct the strategy profile s′ of P ′

such that:

∀i ∈ [n] ∀k ∈ [N ] s′ki = si

i.e. all replicas of each node get the assignment their original node had in s. Let
vki ∈ V ′ be some node corresponding to a node vi ∈ V of the original graph G. If
s′ki = 1, then si = 1, and since s is a PNE vi must have exactly one supporting
neighbor in G. By the construction of G′, vKi must have exactly N supporting
neighbors, since all replicas of each neighbor share the same assignment. Since
T [N ] = 1, we have that vki is playing its best response. If s′ki = 0, then si = 0,
and since s is a PNE vi must have either 0 or at least two supporting neighbor in
G. By the construction of G′, vKi must have either 0 or at least 2N supporting
neighbors, since all replicas of each neighbor share the same assignment. Since
T is flat, and ∀k > NT [k] = 0 v, we have that vki is playing its best response.
Therefore s′ is a PNE in P ′. Furthermore, s′ is non-trivial because s is non-
trivial, thus s′ is an NTPNE.

In the other direction, let s′ be an NTPNE in P ′. We arbitrarily choose
replica number 1 of the original graph, and construct a strategy profile s of P
as follows:

∀i ∈ [n] si = s′1i

Notice that, in G′, all replicas of the same node share exactly the same neighbors.
Therefore, their best response must be the same, and so they all must play the
same strategy in any equilibrium, and so:

∀i ∈ [n] ∀k, l ∈ [N ] s′ki = s′li

Specifically, there must be some non-zero assignment in {s′1i }i∈[n] (otherwise the
entire strategy profile must be all-zeros, in contradiction), and therefore also in
{si}i∈[n], so if s is a PNE it is also an NTPNE. In addition, by the construction
of G′, any node u′ connected to some node v′ is connected to all N replicas
of v′, which all share the same assignment. Thus, by the construction of s, if
a node vi ∈ V has a supporting neighbors according to s, then v1i ∈ V ′ must
have N · a supporting neighbors according to s′. Specifically, the number of
supporting neighbors each node in G′ has must be a multiple of N . Let vi ∈ V
be some node in G. If si = 1, then s′1i = 1, and since s′ is a PNE v′1i must
have exactly N supporting neighbors according to s′ (since the best response
to any other multiple of N is 0 according to T ). Therefore, vi has exactly 1
supporting neighbor according to s, which means it is playing the best response
according to the SN-BRP. If si = 0, then s′1i = 0, and since s′ is a PNE v′1i
must have either 0 or at least 2N supporting neighbors according to s′ (since
the only other multiple of N is N , which yields 1 as the best response according
to T ). Therefore, vi has either 0 or at least 2 supporting neighbors according to
s, which means it is playing the best response according to the SN-BRP. ut



20 M. Gilboa and N. Nisan

A.2 Proof of Theorem 5

Proof. For convenience, we demonstrate the general form of T ′, where the marked
indices will be defined shortly:

T ′ = [1, 1, ..., 0︸︷︷︸
m

, 0, ..., 1︸︷︷︸
m′

, ?, ?, ..., 0, 0, ...]

Let m be the smallest index s.t T ′[m] = 0 (there exists one from condition 3).
We define the BRP T by:

∀k ∈ IN T [k] = T ′[k + m]

i.e. T ′ is positively-shifted by m from T (see Definition 13). Notice that T satisfies
the conditions of Theorem 4 (otherwise T ′ must either be monotone or infinite,
in contradiction). Hence, NTPNE(T ) is NP-Complete, and we can construct a
Turing-reduction from it. Let m′ ≥ 1 be the smallest index satisfying T ′[m′] = 1
after the first 0 in T ′ (m′ must exist, since T ′ is non-monotone). We have that
T ′[m′ − 1] = 0. Let P be a PGG on a graph G = (V,E), where the BRP is T .
Denote V = {v1, ..., vn}. We construct n PGGs P ′

1, ..., P
′
n corresponding to T ′,

on the graphs G′
1 = (V ′

1 , E
′
1), ..., G′

n = (V ′
n, E

′
n) respectively. For each i ∈ [n], G′

i

contains the graph G, but in addition, each node except vi is connected to m new
’Antenna’ nodes that are only adjacent to that specific node. vi is connected only
to m− 1 such Antennas, and additionally to a Force-1-Gadget (FG). Intuitively,
in each graph G′

i we add m supporting neighbors (compared to G) to each node,
and specifically force node vi to be assigned 1 in any PNE.

Fig. 8. Force-1-Gadget with m′ = 4

Force-1-Gadget (shown in Figure 8). The Force-1-Gadget of vi consists of 3
layers. The first layer consists of only a single ’bridge’ node, denoted b, which is
also the only node in the gadget connected to vi. The second layer consists of
m′−1 nodes, all of which are connected to b. The third layer consists of (m′−1)2

nodes, such that each node of the previous layer is connected to m′ − 1 unique
ones of them (i.e. layer 2 nodes don’t share any layer 3 nodes).



Complexity of Public Goods Games on Graphs 21

Lemma 12. For any i ∈ [n], in any PNE of P ′
i , vi must be set to 1. In addition,

all nodes of the Force-1-Gadget must be set to 1.

Proof. We begin by showing the FG nodes must all play 1. All nodes in layer
3 of the FG must be set to 1, since they have only one neighbor each, and
T ′[0] = T ′[1] = 1. Assume by way of contradiction that b = 0. Then each node
in layer 2 must play 0, having exactly m′ − 1 supporting neighbors (the ones
from layer 3). This leads to a contradiction in node b, which plays 0 and yet has
at most one supporting neighbor. Therefore, b = 1. Now, each node in layer 2
must also play 1, having exactly m′ supporting neighbors (the ones from layer
3, and b). So indeed al nodes of the FG must play 1.

Now, assume by way of contradiction that vi = 0. Then node b plays 1 and
yet has exactly m′ − 1 supporting neighbors, which is a contradiction. If vi = 1
on the other hand, there is no contradiction. So indeed vi must be set to 1, and
so do all nodes of the FG. ut

Lemma 13. For any i ∈ [n], there exists an NTPNE in P s.t vi = 1 iff there
exists an NTPNE in P ′

i .

Proof. Fix i ∈ [n], and let s be an NTPNE in P s.t vi = 1. We construct the
strategy profile s′ of P ′

i such that

∀vk ∈ V v′k = vk

∀v′ ∈ V ′ \ V v′ = 1

We now show that s′ is an NTPNE in P ′
i . Clearly, all Antenna nodes play their

best response, having exactly one neighbor (since T ′[0] = T ′[1] = 1). All FG
nodes also play their best response, according to Lemma 12.

We now show the original nodes also play their best response. Let vk ∈ V
be some node in G′

i. By definition s′k = sk. vk is adjacent in G′
i to all nodes

it was adjacent to in G, and by definition all its (original) neighbors receive
the same assignment in s′ as they did in s. In addition, recall that vk has m
new neighbors, all of which receive an assignment of 1 (specifically, for vi one of
those m neighbors is the bridge node b of the FG). Therefore, vk has m more
supporting neighbors in G′

i according to s′ than it did in G according to s. Since
T ′ is shifted by m from T , and since s is an NTPNE, we have that vk must be
playing its best response in s′, and thus s′ is an NTPNE13.

In the other direction, Let s′ be an NTPNE in P ′
i . We construct the strategy

profile s of P where
∀vk ∈ V sk = s′k

Let vk ∈ V be some node in G. In G′
i, the equivalent node had m additional

neighbors, all of which must be set to 1 in s′. Therefore, by definition of s, vk
has m less supporting neighbors in Gi according to s than it did in G′

i according
to s′. Since T ′ is shifted by m from T , and since s′ is an NTPNE, we have that

13 Clearly s′ is non-trivial, for example the Antenna nodes are all assigned 1.



22 M. Gilboa and N. Nisan

vk must be playing its best response in s, and thus s is a PNE. In addition, from
Lemma 12 we have that vi must play 1 in s′, and therefore also in s, hence s is
non-trivial, i.e. s is an NTPNE. ut

We now continue with the proof of the theorem. According to Lemma 13, if
there doesn’t exist an NTPNE in P , then for all i ∈ [n] there doesn’t exist an
NTPNE in P ′

i . On the other hand, if there does exist an NTPNE s in P , then
there must be some node vi ∈ V s.t vi = 1 according to s. Therefore, from
Lemma 13, we have that P ′

i has an NTPNE. Therefore, given an oracle A which
solves NTPNE(T ′), we run A on each of the games P ′

1, ..., P
′
n. If there exists an

NTPNE in one of them, there must exist one in P , and otherwise there must
not exist one in P . ut

A.3 Proof of Theorem 6

Proof. We define the BRP T by:

∀k ∈ IN T [k] = T ′[k + 1]

i.e. T ′ is positively-shifted by 1 from T . Notice that T satisfies all conditions
of Theorem 4 (specifically, the conditions of T ′ imply that T is non-monotone).
Hence, NTPNE(T ) is NPC, which allows us to construct a Turing-reduction
from it. Let N be the largest index s.t T ′[N ] = 1, i.e. ∀k > N T ′[k] = 0. For
convenience, we demonstrate the general form of T ′:

T ′ = [1, 0, 0, ..., 1︸︷︷︸
m

, 1, ?, ?, ..., 1︸︷︷︸
N

, 0, 0, ...]

where m is defined in Theorem 6 itself. Let P be a PGG defined by T on
a graph G = (V,E). Denote V = {v1, ..., vn}. We construct n PGGs P ′

1, ..., P
′
n

corresponding to T ′, on the graphs G′
1 = (V ′

1 , E
′
1), ..., G′

n = (V ′
n, E

′
n) respectively.

For each i ∈ [n], G′
i contains the graph G, and in addition, each node is connected

to a unique Node Gadget (NG) composed of 2m nodes, and node vi is additionally
connected to a Force-1-Gadget (FG).

Node Gadget (shown in Figure 9). For each node vj ∈ V , the Node Gadget
is defined as follows. We construct a (m + 1)− Clique Denoted Cj , from which
one of the nodes, denoted bj , will be referred to as the ’ng-bridge’ (node-gadget-
bridge) node. To bj , we connect m − 1 ’Antenna’ nodes, all of which have only
bj as a neighbor. We also connect bj to vj .

Force-1-Gadget (shown in Figure 10). The Force-1-Gadget of vi consists of 3
layers. The first layer consists of only a single ’fg-bridge’ (force-gadget-bridge)
node, denoted bfg, which is also the only node in the gadget connected to vi.
The second layer consists of N nodes, all of which are connected to bfg. The
third layer consists of m ·N nodes, such that each node of the previous layer is
connected to m unique ones of them (i.e. layer 2 nodes don’t share any layer 3
nodes).

We begin by proving the following lemmas.



Complexity of Public Goods Games on Graphs 23

Fig. 9. Node-Gadget with m = 3 Fig. 10. Force-1-Gadget with m = 3, N = 4

Lemma 14. Fix i ∈ [n], and let s′ be a PNE of the PGG P ′
i . Let vj ∈ V be

some node in G′
i. Then the ng-bridge node bj must be set to 1 according to s′. In

addition, when bj = 1 there exists an assignment s.t all nodes of the Node-Gadget
play their best response.

Proof. Assume by way of contradiction that bj = 0. Since the ’Antennas’ of the
node gadget are only adjacent to bj , their best response according to T ′ is 1
regardless of bj ’s strategy, hence they all must be set to 1. Therefore bj has (at
least) m − 1 supporting neighbors. Examine the remaining nodes of the Clique
Cj of the NG (excluding bj). Since bj = 0, they can’t all be set to 0, because
then each of them is not playing its best response. Therefore, at least one node
in Cj must be playing 1, denoted c. Hence, all other nodes in Cj must be set
to 0, otherwise c would have between 2 to m − 1 supporting neighbors, thus it
would not be playing its best response according to T ′. Altogether, bj must have
either m or m+ 1 supporting neighbor, depending on the strategy of vj . In both
cases bj is not playing its best response according to T ′, in contradiction to s′

being a PNE.
Note that when bj = 1, we can set all its Antenna nodes to 0 and all of the

nodes in the Clique Cj to 1, and have that all nodes in the NG play their best
response (regardless of the strategy of vj). ut

Lemma 15. For any i ∈ [n], in any PNE of P ′
i , vi must be set to 1. In addition,

there is only one possibility for an assignment of the Force-1-Gadget nodes, and
in this assignment bfg = 0.

Proof. We begin by showing the assignment of the FG nodes. Assume by way
of contradiction that the fg-bridge node bfg is set to 1. Let x be some node
from layer 2 of the FG. If x = 1 then all its Antenna nodes must be set to
1 according to T ′, and therefore x has one supporting neighbor, and prefers
playing 0. If x = 0, then all its Antenna nodes must be set to 0 according to T ′,
and therefore x has m + 1 supporting neighbors, and prefers playing 1. Hence,



24 M. Gilboa and N. Nisan

bfg = 0. Now, if x is playing 0, all its Antenna nodes must play 1, hence x has m
supporting neighbors, which means it isn’t playing its best response. Thus, all
nodes in layer 2 of the FG must play 1, and therefore all Antenna nodes (layer
3 of the FG) must play 0.

Now, assume by way of contradiction that vi = 0. Then the fg-bridge node
bfg has N supporting neighbors (from layer 2), and yet plays 0, in contradiction
to T ′. Therefore, vi must be set to 1. In this case, bfg has N + 1 supporting
neighbors, which means it is indeed playing its best response, concluding the
proof of the lemma. ut

Lemma 16. Fix i ∈ [n]. There exists an NTPNE in P s.t vi = 1 iff there exists
an NTPNE in P ′

i .

Proof. Let s be an NTPNE in P s.t vi = 1 according to s. We construct the
strategy profile s′ of P ′

i such that all NG-nodes and FG-nodes are assigned
according to the PNEs described in the proofs of Lemmas 14 and 15 respectively,
and additionally

∀vk ∈ V v′k = vk

We now show that s′ is an NTPNE in P ′
i . We have already shown in Lemmas

14 and 15 that all NG nodes and FG nodes play their best response. It remains
to be shown that the original nodes also play their best response. Let vk ∈ V be
some node in G′

i. By definition s′k = sk. vk is adjacent in G′
i to all nodes it was

adjacent to in G, and by definition all its (original) neighbors receive the same
assignment in s′ as they did in s. In addition, from Lemma 14 we have that vk
has one additional supporting neighbor, which is the ng-bridge node bk. From
Lemma 15 we have that even if k = i, the additional fg-bridge node is assigned
0, so it does not affect vk. Therefore, vk has exactly one additional supporting
neighbor in P ′

i than it does in P . Since T ′ is shifted by 1 from T , and since s
is a PNE, we have that vk must be playing its best response in s′i as well, and
thus s′ is an NTPNE14.

In the other direction, Let s′ be an NTPNE in P ′
i . We construct the strategy

profile s of P where

∀vk ∈ V sk = s′k

Let vk ∈ V be some node in G. In G′
i, the equivalent node had exactly the same

neighbors from V (all of which play the same in both games), and according to
Lemmas 14 and 15, it had exactly one additional supporting neighbor from the
node gadget. Therefore, by definition of s, vk has 1 less supporting neighbor in
Gi according to s than it did in G′

i according to s′. Since T ′ is shifted by 1 from
T , and since s′ is an NTPNE, we have that vk must be playing its best response
in s, and thus s is a PNE. In addition, from Lemma 15 we have that vi must
play 1 in s′, and therefore also in s, hence s is non-trivial, i.e. s is an NTPNE.

ut
14 clearly there exists a non-zero assignment in s′, for example the ng-bridge nodes.



Complexity of Public Goods Games on Graphs 25

We now continue with the proof of the theorem. According to Lemma 16,
if there doesn’t exist an NTPNE in P , then for all i ∈ [n] there doesn’t exist
an NTPNE in P ′

i . On the other hand, if there does exist an NTPNE s in P ,
then there must be some node vi ∈ V s.t vi = 1 according to s. Therefore, from
Lemma 16, we have that P ′

i has an NTPNE. Therefore, given an oracle A which
solves NTPNE(T ′), we run A on each of the games P ′

1, ..., P
′
n. If there exists an

NTPNE in one of them, there must exist one in P , and otherwise there must
not exist one in P . ut

A.4 Proof of Theorem 7

Proof. We construct a many-one reduction from NTPNE(T ). Let P be a PGG
defined by T on a graph G = (V,E). Denote V = {v1, ..., vn}. We construct
the PGG P ′ corresponding to T ′, on the graph G′ = (V ′, E′). G′ contains the
graph G, and in addition, each node is connected to a unique Node Gadget (NG)
composed of 4 nodes.

Fig. 11. Node-Gadget

Node-Gadget (shown in Figure 11). For each node vj ∈ V , the 4 nodes of its
Node Gadget, denoted a, b, c, d, form a cycle. vj is connected to a, b.

Lemma 17. Let s′ be a PNE of the PGG P ′, and let vj ∈ V be some node
in G′. Then nodes a, b of vj’s Node-Gadget must be set to 1 according to s′. In
addition, if a = b = 1 there exists an assignment to c, d s.t a, b, c, d play their
best response.

Proof. We first prove a, b must be set to 1. Assume by way of contradiction that
the claim is incorrect. Divide into two cases.

Case 1: Assume vj is playing 0. If both a and b play 0 then each of them must
have some supporting neighbor, and therefore c, d must play 1. This leads to a
contradiction in c, d, each of which has one supporting neighbor and, according
to T ′, prefers playing 0. If only one of a, b plays 0, w.l.o.g a = 1 and b = 0, then
c must play 0, otherwise b has two supporting neighbors and prefers to play 1.



26 M. Gilboa and N. Nisan

d has only one supporting neighbor and thus, by the definition of T ′, prefers to
play 0. The contradiction comes from c which has no supporting neighbors, and
yet plays 0. Notice that, in this case, if a = b = c = d = 1 then they all play
their best response.

Case 2: Assume vj is playing 1. If both a and b play 0 then c, d must play 0,
otherwise a or b would have two supporting neighbors and would prefer playing
1 according to T ′. This leads to a contradiction in c, d, both of which have no
supporting neighbors and according to T ′ prefer playing 1. If only one of a, b
plays 0, w.l.o.g a = 1 and b = 0, then c must play 1, otherwise b has two
supporting neighbors and prefers to play 1. d has two supporting neighbors and
thus, by the definition of T ′, prefers to play 1. The contradiction comes from c
which has one supporting neighbors, and yet plays 1. Notice that, in this case,
if a = b = 1, c = d = 0 then they all play their best response. ut

We now continue with the proof of the theorem, showing that there exists an
NTPNE in P iff there exists one in P ′. Let s be an NTPNE in P . We construct
the strategy profile s′ of P ′ such that

∀vj ∈ V s′j = sj

and additionally, all nodes of the node gadgets are set according to the assign-
ments shown in Lemma 17, i.e. for each j ∈ [n] if vj = 0 then a = b = c = d = 1,
and if vj = 1 then a = b = 1, c = d = 0.

As stated during the proof of Lemma 17, all of the Node-Gadget nodes indeed
play their best response in s′. It is left to show the same for the original nodes.
Let vj ∈ V be some node in G′. By definition s′j = sj . vj is adjacent in G′ to
all nodes it was adjacent to in G, and by definition all its (original) neighbors
receive the same assignment in s′ as they did in s. In addition, according to
Lemma 17, vj must have two additional supporting neighbors from the Node-
Gadget. Therefore, if vj had k supporting neighbors in G according to s, it now
has k + 2 supporting neighbors in G′ according to s′. Since T ′ is shifted by 2
from T , and since s is an NTPNE, we have that vj must be playing its best
response in s′, and thus s′ is a PNE. Moreover, s′ is clearly non-trivial15, and
thus it is an NTPNE.

In the other direction, Let s′ be an NTPNE in P ′. We construct the strategy
profile s of P such that:

∀vj ∈ V sj = s′j

Let vj ∈ V be some node in G. According to Lemma 17, the equivalent node
in G′ had 2 additional supporting neighbors from its Node-Gadget. Other than
these neighbors, vj ’s neighbors are the same in G′ and in G, and by definition
of s they all play the same strategy in both games. Therefore, vj has exactly
2 less supporting neighbors in G according to s than it did in G′ according to
s′. Since T ′ is shifted by 2 from T , and since s′ is an NTPNE, we have that
vj must be playing its best response, and thus s is a PNE. It is left to show s

15 For example, nodes a, b of each NG must be set to 1.



Complexity of Public Goods Games on Graphs 27

is not trivial. Since T is non-flat, and T ′ is shifted by 2 from T , we have that
T ′[2] = 1. Assume by way of contradiction that all vj ∈ V play 0 according to s′,
i.e. only the NG nodes a, b of each node are assigned 1. Then we have that each
vj ∈ V has exactly 2 supporting neighbors, thus not playing its best response
according to T ′, in contradiction to s′ being a PNE. Therefore, there must be
some node vj ∈ V s.t vj = 1 in s′, and by definition of s, vj = 1 in s as well. So,
s is non-trivial, i.e. s is an NTPNE. ut

References

1. Bramoullé Y, Kranton R.: Public goods in networks. Journal of Economic theory
135(1), 478-494 (2007)

2. Kempe, D., Yu, S., Vorobeychik, Y.: Inducing equilibria in networked public goods
games through network structure modification. arXiv preprint arXiv:2002.10627
(2020)

3. Maiti, A., Dey, P.: On parameterized complexity of binary networked public goods
game. arXiv preprint arXiv:2012.01880 (2020)

4. Papadimitriou, C., Peng, B.: Public goods games in directed networks. In: Pro-
ceedings of the 22nd ACM Conference on Economics and Computation 2021, pp.
745–762. (2021)

5. Schaefer, Thomas J.: The complexity of satisfiability problems. In: Proceedings of
the tenth annual ACM symposium on Theory of computing, p. 216-226. (1978)

6. Yang, Y., Wang, J.: A refined study of the complexity of binary networked public
goods games. arXiv preprint arXiv:2012.02916, (2020)

7. Yu, S., Zhou, K., Brantingham, J., Vorobeychik, Y.: Computing equilibria in binary
networked public goods games. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34, No. 02, pp. 2310–2317. (2020)

8. Yu, S., Zhou, K., Brantingham, J., Vorobeychik, Y.: Computing equilibria in binary
networked public goods games. arXiv:1911.05788v3 (2021)


	Complexity of Public Goods Games on Graphs

