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Abstract. NoSQL databases are preferred to relational ones for stor-
ing heterogeneous data with variable schema and structure. However,
their schemaless nature adds complexity to analytical applications, in
which a single OLAP analysis often involves large sets of data with dif-
ferent schemas. In this tutorial we describe the main approaches to en-
able OLAP on NoSQL data. We start from schema-on-read approaches,
where data are left unchanged in their structure until they are accessed
by the user, so they are put into multidimensional form at query time.
Specifically, we show how this enables a form of approximated OLAP
that embraces the inherent variety of schemaless data. Then we move to
schema-on-write approaches, where a fixed multidimensional structure
is forced onto data, which are loaded into a data warehouse to be then
queried. In particular, we introduce multi-model data warehouses as a
way to store data in multidimensional form and, at the same time, let
each piece of data be natively represented through the most appropriate
NoSQL model.

Keywords: NoSQL databases · OLAP · Multi-model databases

1 Introduction and Motivation

In recent years, NoSQL databases have been progressively eroding the predom-
inance of relational databases [17]. A NoSQL database provides a mechanism
for storage and retrieval of data that is modeled differently from the tabular
relations used in relational databases; the particular suitability of a given type
of NoSQL database (key-value, columnar, document-based, or graph-based) de-
pends on the busines problem it must address. Among the potential benefits
of NoSQL databases, we mention better performance scaling, no ACID trans-
actions, and no need for a unique schema. Indeed, NoSQL databases adopt a
schemaless representation for data: schema is a “soft” concept and the instances
referring to the same concept can be stored using different local schemas. Hence,
these databases are preferred to relational ones for storing heterogeneous data
with variable schemas and structural forms, such as those located in data lakes.
Typical schema variants within a collection consist in missing or additional fields,
in different names or types for a field, and in different structures for instances
[15].

The growing use of NoSQL databases has resulted in vast amounts of semi-
structured data holding precious information, which could be profitably inte-
grated into existing business intelligence (BI) systems [1]. On-Line Analytical
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Processing (OLAP) is the querying paradigm normally used in the context of BI
to analyze data stored in data warehouses, and it has been recognized to be an
effective way for running analytics over big NoSQL data as well [12]. The OLAP
paradigm entails dynamic analyses that read a huge quantity of data to com-
pute a set of numbers that quantitatively describe a given business phenomenon.
It assumes that data follow the multidimensional model [18], whose main con-
cepts are facts (i.e., business phenomena such as sales), dimensions (coordinates
used to analyze a fact, e.g., store, product, and date), measures (quantitative
attributes that describe fact occurrences, e.g., sales revenue), and hierarchies

(sequences of attributes that group dimension members at increasing levels of
aggregation). OLAP comes in sessions, i.e., sequences of queries each obtained
from the other by applying one OLAP operator (mainly, roll-up, drill-down,
and slice-and-dice). Unfortunately, although the absence of a unique schema in
NoSQL data grants flexibility to operational applications, it adds complexity to
OLAP applications, in which a single analysis often involves large sets of data
with different (and often conflicting) schemas.

In this tutorial we explore the most promising directions for enabling OLAP
analyses on NoSQL data, distinguishing between the two approaches that can be
followed (see Figure 1 for an intuition): schema-on-write and schema-on-read [11].
Schema-on-write approaches force a (fixed) multidimensional structure in data,
load them into a data warehouse using an ETL (Extract, Transform, and Load)
process, then let these data be queried by users via OLAP tools. We discuss these
approaches in Section 2. Schema-on-read approaches leave data unchanged in
their structure until they are accessed by the user. The multidimensional schema
is not devised at design time and forced in a data warehouse, but decided by
every single user at querying time; clearly, this requires OLAP queries to be
rewritten over NoSQL data sources. These approaches are the subject of Section
3. Finally, in Section 4 we draw the conclusions.

Fig. 1. In schema-on-read approaches (top), the user has a multidimensional view
of data stored in their native (heterogeneous) form; in schema-on-write approaches
(bottom), data are put into multidimensional form and stored



OLAP and NoSQL: Happily Ever After 3

2 Schema-on-Read Approaches

In these approaches, source data are left unchanged in their own model and struc-
ture, to be directly queried in an OLAP fashion by the end-user without putting
them in multidimensional form. Rather than being devised at design time, a
multidimensional schema for accessing data is decided at querying time; while
this requires OLAP queries to be rewritten over data sources on-the-fly and thus
might give performance problems, it entails higher querying flexibility, simpler
ETL, and lower effort for evolution. Schema-on-read approaches to enable OLAP
on NoSQL data ground their roots into techniques for (i) schema discovery from
XML/JSON documents, which deal with heterogeneity, quality, versioning, simi-
larity, and comprehensiveness to produce unified schemas, schema matches, and
skeleton schemas [3, 22, 24]; (ii) schema matching for XML/JSON documents
using clustering or machine learning, in some cases considering a context [14,
5]; (iii) multidimensional design from XML/JSON/columnar data, possibly by
detecting and chasing functional dependencies [13, 23].

In this tutorial we focus on two schema-on-read approaches, namely, Graph
OLAP and Approximate OLAP; for other examples of schema-on-read approaches,
see [2, 11, 19].

2.1 Graph OLAP

Given a graph-structured dataset, Graph OLAP [9] aims at returning a mul-
tidimensional view of it to enable efficient OLAP analyses. Source data are
seen as a collection of network snapshots, each including some informational
attributes (e.g., month and socialNetwork) and one graph (e.g., one where nodes
are users and edges represent their interactions); both nodes and edges of this
graph may be described by attributes (e.g., name is an attribute of user nodes,
numberOfMessages is an attribute of collaboration edges). The multidimensional
view of graph data provided by Graph OLAP relies on the two pillars of the mul-
tidimensional model, namely, dimensions and measures. Two types of dimensions
are distinguished:

– Informational dimensions correspond to informational attributes and orga-
nize snapshots into groups based on different perspectives, where each group
corresponds to a cube cell. Hierarchies can be defined on these dimensions,
for instance, socialNetworks → all and month → year → all.

– Topological dimensions correspond to node/edge attributes and operate on
individual network snapshots. Hierarchies can be defined on these dimensions
too, e.g., user → nation → all.

As to measures, they are computed starting from numerical node/edge attributes
by aggregating them in two different ways: (i) in informational OLAP, aggre-
gation is done by grouping snapshots with identical values of informational di-
mensions; (ii) in topological OLAP, aggregation is done by grouping nodes with
identical values of topological dimensions inside individual networks. An example
is shown in Figure 2.
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Fig. 2. Informational and topological OLAP in the Graph OLAP approach: in the
first case, interactions are grouped on all social networks, in the second one, they are
grouped by user’s nation

2.2 Approximate OLAP

The basic idea of Approximate OLAP [16] is to enable multidimensional querying
of document data with variable schemas, embracing data heterogeneity as an
inherent source of information wealth in schemaless sources. Both inter-schema
and intra-schema variety are considered; aimed at pursuing an inclusive approach
to integration, OLAP querying is carried out on a “soft” schema where each
source attribute is present to some extent. The approach encompasses four phases
(see Figure 3 for an example):

1. Schema extraction, whose goal is to identify the set of distinct, tree-like local
schemas that occur inside a collection of documents.

2. Schema integration, which relies on inter-schema mappings and schema inte-
gration techniques to determine a tree-like global schema that gives the user
a single and comprehensive description of the contents of the collection.

3. FD enrichment. An OLAP-compliant multidimensional view of the docu-
ment data is obtained from the global schema by building a dependency

graph, i.e., a graph that represents functional dependencies between the doc-
ument fields; these dependencies are either inferred from the structure of the
schema or determined (in approximate form) by analyzing the documents.

4. Querying. Here, the user can formulate OLAP queries on the dependency
graph and execute them on the documents. To this end, each query is trans-
lated to the query language of the underlying document-oriented DBMS and
reformulated into multiple queries, one for each local schema in the collec-
tion; the results presented to the user are obtained by merging the results of
the single local queries. To make users aware of the impact of schema variety,
a set of indicators describing the quality and reliability of the query result
are computed.
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_id
User.FullName
User.Age
StartedOn
Facility.Name
Facility.Chain
SessionType

DurationMins

Sets_id
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Weight
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Type
ExCalories

WS

Sets

Exercises

[ { "_id" : ObjectId("54a4332f44cfc02424f961d4"),
"User" : 
{ "FullName" : ”John Smith",

"Age" : 42  },
"StartedOn" : ISODate("2017-06-15T10:20:44.000Z"),
"Facility" :
{ "Name" : "PureGym Piccadilly",

"Chain" : "PureGym"  },
"SessionType" : "RunningProgram",
"DurationMins": 90,
"Exercises" : 
[ { "Type" : "Leg press",

"ExCalories" : 28,
"Sets" :
[ { "Reps" : 14,

"Weight" : 60  },
. . .

]  },
{ "Type" : "Tapis roulant" },
. . .

]
} ,

. . . 
]
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Fig. 3. Steps in approximate OLAP (adapted from [16]): a JSON document (top-left),
its local schema (top-right, numerical fields in italica), its mappings with the global
schema (bottom-left), and its dependency graph (bottom-right, grey arcs represent
approximate functional dependencies discovered on documents)
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3 Schema-on-Write Approaches

In these approaches, source data are moved into a data warehouse; this requires
that they are put into multidimensional form to be then queried in an OLAP
fashion by the user. The multidimensional schema is decided at design time and
forced onto data at the time of writing them in the data warehouse, which en-
tails better performances and simpler query formulation with no need for query
rewriting. Schema-on-write approaches are based on the literature on (i) multi-
dimensional design from NoSQL data [13, 23] and (ii) NoSQL data warehouses,
that aim at storing warehoused data in document/columnar/graph form by fol-
lowing design guidelines.

In this tutorial we distinguish between mono-model approaches, in which
multidimensional data are stored in the data warehouse according to a single
model (e.g., document-based), and multi-model approaches, in which a multi-
model DBMS is used to grant higher storage flexibility.

3.1 Mono-Model Approaches

Several examples of schema-on-write approaches targeting a single NoSQL model
can be found in the literature.

We start with the document-based model, for which some papers have pro-
posed and compared different solutions to multidimensional design. Specifically,
four solutions are proposed in [10]: (i) a denormalized flat schema (where a fact
is stored using a single collection of documents including all its measures and
levels with no nesting); (ii) a deco schema (denormalized like the previous one,
but the measures and the levels of each dimension are stored in separate subdoc-
uments); (iii) a shattered schema (where each dimension is stored in a separate
collection of documents and connected to the fact documents using a reference,
see Figure 4 for an example); and (iv) a hybrid schema (like a shattered schema,
but with all documents stored within a single collection). Based on experimental
tests, it is argued that (i) the first two schemas require about 4 times the space
required by the other two, which leads to significantly higher loading times; and
(ii) denormalized flat schemas and shattered schemas tend to have better query-
ing performances; however, there is not a single winner between these two since
the execution times largely depend on the query features (mostly, on the num-
ber of joins they require). Similarly, two solutions are proposed in [8] and [28]:
(i) a simple schema (where the fact and each dimension are stored in separate
documents of the same collection, like in the hybrid schema mentioned above)
and (ii) a hierarchical schema (like a simple schema, but using separate docu-
ments for each dimension hierarchy, much like the shattered schema mentioned
above). The experimental comparison does not highlight significant differences
in loading time and querying performance.

As to the graph-based model, in [26] two solutions are proposed. In the first
one, the fact is stored in a graph node having measures as properties, and each
level is stored in a node with its properties; the fact node points to the dimension
nodes, which in turn point to the level nodes following the structure of the
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<PK,FK> IdDate : Int

<PK,FK> OrderCode : Int

InfoOrder : JSON

<PK> IdProduct : Int

<FK> IdCity : Int

InfoProduct : JSON

<PK> OrderCode : Int

<FK> idCustomer : Int

InfoOrderCode : JSON

<PK> IdCustomer : Int

<FK> IdCity : Int

InfoCustomer : JSON

<PK> IdDate : Int

InfoDate : JSON

<PK> IdCity : Int

InfoCity : JSON

<PK,FK> IdProduct : Int

<PK,FK> IdCustomer : Int

InfoRating : JSON

Product

City

Rating
Customer

Date

Order OrderCode

InfoCity

{ city

state

country

}

InfoProduct

{ name

productASIN

price

type

category

vendor

industry

}

InfoRating

{ rating

posneg

}

InfoCustomer

{ customer

firstName

lastName

gender

birthdate

browserUsed

tags

[ tag

weight ]

knownCustomers

[ idCustomer ]

}

InfoOrderCode

{ shipmentMode

}

InfoDate

{ date

month

monthYear

fourMonthsP

quarter

semester

year

}

InfoOrder

{ vat

discount

netPrice

totalPrice

products

[ quantity

weight

idProduct

]

}

Fig. 4. A shattered schema

hierarchies (as also suggested in [7]). The second one is similar, except that the
fact node points to a single node, which in turn points to each dimension node.
A third solution is proposed in [27], where the fact node points to the dimension
nodes, and each dimension node includes all the levels and properties of the
corresponding hierarchy. Note that these three solutions are not experimentally
compared in terms of efficiency.

Finally, as to the column-based model, different strategies to arrange at-
tributes into column-families (CFs) are proposed in [25]: (i) a sameCF schema,
where all attributes are put in the same CF; (ii) a CNSSB schema, where each
dimension is stored in a different CF; and (iii) a factDate schema, where some of
the most-frequently used dimensions (in their example, the date dimension) are
grouped together with fact data. Based on experimental tests, the authors con-
clude that the sameCF schema provides better performance for high-dimensional
queries (three or four dimensions), while the CNSSB and factDate schemas are
preferable for low-dimensional queries (one or two dimensions). In the same di-
rection, in [6] the authors propose an approach that clusters in the same CFs
attributes that are frequently used together in the workload queries.

3.2 Multi-Model Approaches

ADBMS normally handles a specific data model (e.g., relational DBMSs, document-
based DBMSs, etc.). When an application needs different types of data, the first
possible solution is to integrate all data into a single DBMS; however, this means
that some types of data cannot be stored and analyzed, and that querying per-
formances may be unsatisfactory. The second solution is to use two or more
DBMSs together (polyglot persistence); even in this case there are drawbacks,
since technically managing more DBMSs is a challenge, the learning curve for
developers is steep, performance optimization may be inadequate, and there is
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a risk of data inconsistency. To overcome these issues, multi-model databases

(MMDBMSs, e.g., PostgreSQL and ArangoDB) natively support different data
models under a single query language to grant performance, scalability, and
fault tolerance, so as to reduce maintenance and data integration issues, speed
up development, and eliminate migration problems.

As argued in [4], a multi-model data warehouse (MMDW) can store data
according to the multidimensional model and, at the same time, let each of its
elements be natively represented through the most appropriate model; among
the benefits, reducing the cost for ETL and ensuring better flexibility, extensi-
bility, and evolvability thanks to the use of schemaless models. However, in a
multi-model setting, several alternatives emerge for the logical representation of
dimensions and facts, and some of them may be better than others from one or
more points of view. Some preliminary tests show that:

– Different dimensions can use different models.
– From the points of view of querying performance, query formulation concise-

ness, data storage, and complexity of ETL, a multidimensional implementa-
tion via the relational model is generally better than a document-based one,
which in turn is better than a graph-based one.

– From the point of view of flexibility, extensibility, and evolvability, schemaless
models (namely, document- and graph-based) are preferable to the relational
one.

Figure 5 shows an optimal multi-model schema for the same multidimensional
data of Figure 4.

DT_Date

<PK> IdDate : Int

Date : Date

Month : Int

MonthYear : String

4-MonthsP : String

Quarter : String

Semester : String

Year : Int

FT_Order

<PK,FK> OrderCode : Int

<PK,FK> IdDate : Int

InfoOrder : JSON

DT_City

<PK> IdCity : Int

City : String

State : String

Country: String

Customer

IdCustomer

customer

firstName

lastName

gender

birthdate

browserUsed

IdCity

<PK> IdProduct : Int

<FK> IdCity : Int

InfoProduct : JSON

InfoProduct

{ name

productASIN

price

type

category

vendor

industry

}

DT_Product

BT_Cust_Tag

<PK> IdCustomer: Int

<PK> Tag : String

Weight : Double

<PK> OrderCode : Int

<FK> IdCustomer : Int

InfoOrderCode : JSON

OrderCode

InfoOrderCode

{ shipmentMode

}

InfoOrder

{ vat

discount

netPrice

totalPrice

products

[ idProduct

quantity

weight

rating

{ rating

posneg

}

]

}

Fig. 5. A multi-model schema that mixes relational tables (e.g., DT Date), documents
(e.g., InfoProduct), and graphs (Customer)
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4 Conclusion

Enabling OLAP queries over NoSQL data is getting more and more important
today, but dealing with heterogeneity and schema variety intrinsic to NoSQL
DBs is a challenge. In this tutorial we have discussed some directions for enabling
OLAP on schemaless NoSQL data, using either schema-on-read or schema-on-
write approaches. Though several solutions have been proposed in the literature,
their level of maturity is not comparable yet to the one reached by relational im-
plementations. Among the relevant issues to be further investigated, we mention
the following:

– increase the efficiency of the querying phase in schema-on-read approaches
by paving the way to a more sophisticated optimization of query;

– develop techniques for online repairing of approximate functional dependen-
cies present in schemaless data, so that the user can get correct analysis
results without modifying the original data;

– extend the existing conceptual models to cope with schemaless data [21, 20]);
– understand how to select and use materialized views in MMDWs, and what

ad-hoc indexing strategies to adopt for them.
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