
TapTree: Process-Tree based Host Behavior
Modeling and Threat Detection Framework via

Sequential Pattern Mining

Mohammad Mamun and Scott Buffett

National Research Council Canada, Fredericton, NB, Canada
{Mohammad.Mamun,Scott.Buffett}@nrc-cnrc.gc.ca

Abstract. Host behaviour modelling is widely deployed in today’s cor-
porate environments to aid in the detection and analysis of cyber attacks.
Audit logs containing system-level events are frequently used for behavior
modeling as they can provide detailed insight into cyber-threat occur-
rences. However, mapping low-level system events in audit logs to high-
level behaviors has been a major challenge in identifying host contextual
behavior for the purpose of detecting potential cyber threats. Relying on
domain expert knowledge may limit its practical implementation. This
paper presents TapTree, an automated process-tree based technique to
extract host behavior by compiling system events’ semantic information.
After extracting behaviors as system generated process trees, TapTree
integrates event semantics as a representation of behaviors. To further
reduce pattern matching workloads for the analyst, TapTree aggregates
semantically equivalent patterns and optimizes representative behaviors.
In our evaluation against a recent benchmark audit log dataset (DARPA
OpTC), TapTree employs tree pattern queries and sequential pattern
mining techniques to deduce the semantics of connected system events,
achieving high accuracy for behavior abstraction and then Advanced Per-
sistent Threat (APT) attack detection. Moreover, we illustrate how to
update the baseline model gradually online, allowing it to adapt to new
log patterns over time.

Keywords: Process tree · Behavioral Anomaly Detection · sequential
pattern mining · APT detection

1 Introduction

Since modern information systems have become critical and essential components
of contemporary businesses and organisations, insider threat detection is becom-
ing a rapidly growing topic of study in the cybersecurity domain. An emerging
cyberattack, known as APT, poses a huge threat to these information systems,
first by breaching hosts inside a target system and then stealthily infiltrating ad-
ditional hosts through the internal network to steal sensitive information. Since
attackers often sabotage legitimate services executing on endpoints, it is critical
to detect malicious behaviour on endpoint computers promptly and efficiently

ar
X

iv
:2

31
2.

07
57

5v
1

 [
cs

.C
R

]
 1

0
D

ec
 2

02
3

2 M. Mamun & S.Buffett

following a breach, prior to major harm being caused. Several recent studies
demonstrate that malicious behaviour can be detected by leveraging patterns of
benign behavior against other, seemingly benign actions that, when combined,
signal something potentially more destructive [1,2,3,4].

Unfortunately, the volume of log events produced by a typical host is huge.
For instance, a single desktop computer, let alone servers in large enterprise
network, can generate over a million events each day [5]. Processing massive
amounts of audit log events and filtering out irrelevant system events in order
to recognize representative host behavior requires a tedious manual effort [6].
Existing solutions to this problem include techniques such as tag propagation [7]
and graph matching [8,1,9], that mostly rely on domain expert knowledge or on a
knowledge store of expert-defined rules [10]. To address this issue, our objective is
to develop an efficient method for extracting representative behavior (i.e. [10,11])
for cyber analyst investigation. More precisely, we automate the extraction of
host behavior using procedural task analysis on system log events and then
aggregate semantically related tasks to construct baseline host behavior. Due to
the fact that recurring or similar tasks have been aggregated together, TapTree
can significantly reduce the number of events to analyze.

Existing anomaly detection approaches convert user operations into sequences
to analyze sequential relationship between log entries, and then employ sequence
processing techniques, such as deep learning [3,12,13,2,14], natural language pro-
cessing [15], to learn from previous events and predict the next event. These
methods at the log-entry level model user behaviour and indicate discrepancies
as anomalies. However, this approach is oblivious to other relationships. For ex-
ample, a user’s daily activity is relatively regular over time in terms of the logical
relationship among periods [1]. Moreover, event logs may also be generated con-
currently by many threads, aliases, or tasks [2]. If this relationship in the log is
disregarded, prediction methods based on continuous logs may suffer a loss of
reliability.

We construct a baseline behavior model and assess its ability to correctly
detect malicious behaviour on a recently released APT attack dataset (DARPA
OpTC public dataset [16]). Evaluation results on 14 randomly selected hosts
from the OpTC dataset show that TapTree recognizes targeted host behavior
with accuracy over 99% with false positive rate (FPR) of less than 0.8% when
using tree pattern queries, for a given candidate partial match threshold. We
show that this threshold can then be adjusted to cast a wider net and achieve a
perfect 100% recall on malicious behaviour detection, while still keeping the FPR
relatively low at 2.9%. For the sequential pattern-based analysis, we show that
FPR can be further reduced to below 0.1%, while maintaining high accuracy
(>99.9%) and recall (67%), whereas recall can be improved to 86% while still
maintaining FPR < 1%. Moreover, we quantify the proportion of process trees
that are reduced in number as a result of similar pattern aggregation. Our results
demonstrate that TapTree can reduce the number of process-trees from raw
audit logs by 98% percent after aggregation and thus substantially reduce the

Title Suppressed Due to Excessive Length 3

analysis overhead associated with abnormal behavior investigation. Our major
contributions are summarized:

– We present TapTree, a process tree-based host behavior modeling. TapTree
automatically encapsulates host contextual behaviors from raw audit log
events using system generated process-tree. To our knowledge, this is the
first approach to host behavioral abstraction that utilizes system process
trees to aggregate semantically equivalent patterns.

– To reduce analysis overhead for the analyst and enable efficient detection,
TapTree considers noise reduction, optimized tree growth such as forward
pruning and aggregation of similar behaviors.

– As part of validation of proposed behavioral abstraction model, we conduct a
systematic evaluation by abstracting benign behavior in a given context e.g.
APT attack against Darpa-OpTC dataset. We propose the use of sub-tree
pattern and sequential pattern queries to detect discriminatory behaviour
and identify insider threats automatically. Experimental results using Darpa-
OpTC data demonstrate that TapTree’s baseline behavior is effective against
both benign and malicious behaviors. In terms of mining speed, TapTree
outperforms baseline generation model without aggregation by two orders of
magnitude.

1.1 Analyzing the problem

Two characteristics must be satisfied for behavioral model to be deemed effec-
tive: (i) behavioral distinctiveness to accurately represent the host behavior and
(ii) behavioral consistency to identify deviant behaviors [17]. We study ways
to satisfy these requirements while decreasing or eliminating the bulk of false
positive occurrences.

To address this issue, our approach is to construct heterogeneous temporal
process trees from homogeneous system events representing the target behavior
and then use the forest (group of trees) to build the host model. Note that the
number of system events might be enormous, highly interconnected, and noisy.
For instance, the installation of a single package during an APT campaign may
create over 50 thousand system log events [10]. In addition, the number of log
entries containing information about suspicious/malicious activity is quite small.
Rather than using all trees, we select the most discriminating patterns in the
forest by grouping similar/redundant actions to aid analysts’ analysis (e.g. if a
behavior is a subset of another, it gets merged). Such representative behavior-
specific forest (with modest number of trees) is simpler to interpret, faster to
match, and easier to maintain.

A representative pattern should be frequent in the intended representative
behavior and rare in deviant behavior. For example, a system administrator
often logs into servers and does certain tasks that a human resources professional
performs seldom. A sample benign/malicious tree pattern from Darpa-OpTC is
presented in Figure 2 containing the number of edges occurrences in the pattern.

4 M. Mamun & S.Buffett

Detection algorithms are primarily based on two pattern matching tech-
niques: 1) a tree search method for pattern matching (Section 3.3) and 2) a
sequential pattern mining classification algorithm (Section 3.3) on the sequence
generated from the Temporal tree set as discussed in Section 3.2.

Fig. 1: TapTree pipeline for behavioral anomaly detection

Fig. 2: Sample task trees (process name, depth, occurrence-edge)

(a) Benign (b) Malicious

2 Overview

2.1 Assumption

TapTree is designed to work with complex event data structures that are both
hierarchical and sequential in nature (filiation-relationship of events). We pre-
sume that behaviors are audited at the kernel level and their activities are logged
in system-call audit logs. The integrity and security of the underlying audit log
monitoring platform (SIEM security) are beyond the scope of this study and are
thus considered to be a component of the trusted computing base.

Rather than focusing on a single user’s sessions [10] or a single user’s one
day data [18], we target multiple users’ whole dataset (7 days data) for behavior
modeling and validation. Results show that our approach is broadly applicable
across hosts, days/sessions behavior.

Title Suppressed Due to Excessive Length 5

A naive way to obtain the semantic representation of a host behavior is to
gather up individual tasks (collection of process-trees) derived from its com-
ponent events. This approach, however, may overlook the relative weights of
relationships between events (edges in the tree) and noisy relations in the rep-
resentative behavior.

A process-tree is a collection of relationships (edges) between low-level oper-
ations such as process-creation, file-opening, etc., triggered by user activity. We
assume that benign tasks (typical user behavior) have a strong correlation. How-
ever, there may be fewer connections between benign and abnormal operations.
While these operations also mirror user behavior, not all of them contribute to
the semantics of host behavior. In light of these observations, TapTree identi-
fies the relationships that are frequent within a task (process-tree) and across
tasks/behaviors. This approach provides a higher discriminative weight to the
relationships in the process-tree that are less prevalent.

3 System Design

TapTree is a host behavior modeling and threat detection system. It is com-
prised of three main components: process-tree construction, representative be-
havior generation, and behavioral stability evaluation (e.g. anomaly detection).
Figure 1 depicts TapTree’s detailed approach that takes system audit logs as
input data, generate temporal process-trees as individual tasks/behaviors, ag-
gregates/abstracts behavior semantics to output representative behaviors.

3.1 Process-tree construction

Hierarchical structure of process tree derived from an audit log reflects causal
relationships between running processes of a computer system. Besides provid-
ing a holistic view of the system process life cycle, this property of the system
process tree offers valuable contextual information about an event’s proximity
continually evolving over time [19]. The first component of TapTree is a process-
chain based heuristic technique for mapping relationships between log entries
that reflect hosts’ behavior across several streams, such as file operation, au-
thentication, flow, etc., into a task-process-tree.

TapTree primarily considers three types of relationships for generating process-
trees: 1) the filiation relationship that forms a hierarchy across all running op-
erating system processes, 2) sequential relationship between traces and 3) the
logical relationship among tasks.

A task-process-tree (see Fig. 2) is a temporal semantic behavior tree repre-
sented by a tuple T := (V,E,R):

– V is a set of nodes where v ∈ V represents a path to the program (e.g.
\\System32\\conhost.exe) that initiates an event (e.g. Process-creation)

– E ⊂ V × V × R is a set of directed edges where e = (u, v, r) ∈ E denotes a
chronologically ordered relationship between executing programs.

6 M. Mamun & S.Buffett

– R is a set of possible occurrences between nodes V , where r ∈ R is a positive
integer. Therefore, each e ∈ E is assigned a weight w(u, v) : R+ that implies
the frequency/occurrence of the two program (u → v) invoking each other.

The process-tree data associated with a target behavior/task is used to con-
struct a program-path tree, as these behaviors are typically executed by a sin-
gle thread. This work focuses on the program-paths since our empirical findings
show that using program-path instead of raw events is quite effective at abstract-
ing host behaviors. Additionally, it offers significant computational benefits over
more complex provenance/knowledge graph models.

3.2 Fusion of host behaviors

A behavior instance, such as a process-tree in our case, consists of a series of
events connected semantically. Program-path identifies the path to the program
initiated by an event. A fine-grained associations between these behavior in-
stances can provide high-level abstraction for generating effective behavioral
model.

TapTree consolidates behavior instances using two widely used approaches for
behavioral abstraction— path-based approach [20,2,3] by splitting up process-
trees into paths and contextual-representation based approach [10] by extracting
sub-tree as an instance of a behavior. The following sections cover TapTree’s
approach to behavior consolidation.

Temporal tree set generation A temporal tree set is a collection of unique
task process-trees where the trees with the same number of elements and rela-
tions/edges are merged. Because the trees are weighted, the weight of an edge
between two or more similar trees is equal to the sum of the weights of its edges.
As the trees are weighted, the edge’s weight is equal to the maximum of its
edges’ weights.

Formally, a temporal tree set F ⊆ T of task trees is a set of (n ≥ 0) disjoint
weighted directed trees such that,

– For all P = (VP , EP , RP), Q = (VQ, EQ, RQ) ∈ F , VP ̸= VQ, EP ̸= EQ

,RP ̸= RQ,
– For all r ∈ R where VP = VQ and EP = EQ, p ∈ P and q ∈ Q

r = Max(wp(ep), wq(eq)).

Clustering trees This method consolidates the relationships within a tree in
order to avoid repeating patterns. Duplicate relations/edges at the leaf level of
the tree are merged in this stage.

A clustering of the leaves of the tree T can be defined by cutting a subset
of edges C ⊆ E. One method for achieving this is to solve the max-diameter
min-cut partitioning problem [21]. We define a partition level {L1, L2, . . . , LN}
of L to be an admissible clustering if it can be obtained by removing some edge

Title Suppressed Due to Excessive Length 7

set C from E and assigning leaves of each of the resulting connected components
to a set Li(where N ≤ |C|+ 1).

Let T = (V,E,R) be a directed tree containing two edges e1 = (u1, v1, r1)
and e2 = (u2, v2, r2) with u1 ̸= v1, u2 ̸= v2, u1 = u2, v1 = v2 where {v1, v2}
are leaf nodes. Merging e1 and e2 results a new tree T ′ = (V ′, E′, R′), where
V ′ = (V \ {u2, v2}), E′ = (E \ {e2}), r′ ∈ R′ = r, or Max(w(e1), w(e2)) if
r1 ̸= r2.

Table 1: TapTree baseline model generation and matching efficiency

Method #Trees Baseline Generation
(in s)

Pattern Matching
(in ms)

Temporal Tree set 3501 135.51 −
Clustered Trees 2372 163.25 65.3992

Semantic Aggregation 36 4301.83 47.0608

Semantic aggregation After redundant instance aggregation, we deduce the
semantics of a behavior instances naturally by combining trees derived from
clustered trees. Identifying a pattern, whether it is a new one to aggregate or a
previously discovered one, can help in averting instances of repetitive behavior.

Recall, a naive way to obtaining the semantic representation of a behaviour
instance is to consider all the trees derived from the events. However, this ap-
proach may work only if the baseline semantics of behavior (temporal tree set) is
decently small or it does not need updating over time. In practice, this technique
is not efficient from the view point of detection (matching) for a large enterprise
system where thousands of flow of events need to be examined in a certain pe-
riod. Additionally, this assumption is frequently incorrect due to the way tree
relations are weighted differently to represent the semantics of behaviour and
the effect of noisy events.
Induced subtree: Given a tree pair (T1, T2) where T1 := (V1, E1, R1), T2 :=
(V2, E2, R2), we say T2 is an induced subtree of T1 denoted by T2 ⪯ T1, if
and only if,

1. V2 ⊆ V1 and E2 ⊆ E1,
2. Filiation relationships in T2 must be preserved in T1. That is, parent-child

relations for all e = (u, v) ∈ T2 is identical to that of T1,
3. The left-to-right ordering of siblings in T2 must be a subordering of the

associated nodes in T1.

Growing baseline trees: Using consecutive growth options (forward, backward,
and inward) as described in [8] for searching a given behavior pattern against
baseline patterns ensures a complete and non-repetitive search in the pattern
space. In this manner, behavior pattern trees are iteratively merged if they are

8 M. Mamun & S.Buffett

not induced subtrees of the baseline trees in order to construct a baseline behavior
model.

Let Ta = (Va, Ea, Ra) and Tb = (Vb, Eb, Rb) be two directed trees. A merging
of two trees (Ta∪Tb) results a new tree Tab = (Vab, Eab) such that Eab = Ea

⋃
Eb

and Vab = Va

⋃
Vb that satisfies Va1 ∈ Vb or Vb1 ∈ Va where Va1 and Vb1 are the

roots of Ta and Tb respectively.
Table 1 outlines a comparative analysis of the aforementioned methods for be-

havior consolidation in relation to baseline construction. We present the volume
of behavior patterns and the execution time (in seconds) required to generate
the pattern in each phase of the baseline generation model in the number of trees
and baseline generation column of the table.

3.3 Behavioral anomaly detection

Behavioral anomaly detection (BAD) is expected to effectively resolve a variety
of security issues by detecting deviations from a host’s normal behavioral pat-
terns. BAD enables the monitoring of applications for malicious behavior (e.g. in-
trusion, compromise detection), thereby improving protection against Zero Day
attacks. Host behavior abstraction model discussed in the previous section can
be used for behavioral anomaly detection such as APT attacks. Given the behav-
ior representation for any host or server we can utilize (1) unsupervised model/
one-class classifier (tree pattern matching) or (2) supervised model/ binary clas-
sifier (sequential pattern matching) to identify evidence of anomalous behavioral
events.

The tree pattern matching algorithm compares a sequence of operations to
a baseline model in order to determine whether a task is abnormal. The tree
search method allows for a trade-off between recall and the false positive rate
in detection. Note that an exhaustive search of the tree will always return the
prototype that is closest to the input vector. However, alternative search methods
can be used to determine a task that is a close match to the baseline but not
necessarily an exact match.

Sequential pattern-based analysis works specifically on a set of event traces
(i.e. sequences) extracted from the task trees, and identifies common temporal
patterns that reside in those sequences. This can be used to establish a model
of baseline activity, against which new activity can be measured to determine
the likelihood that the new activity appears as expected and is not malicious,
or to construct a classification model on labeled data in the case that sufficient
samples of malicious activity can be obtained.

In the following, we discuss tree pattern queries and sequential pattern queries
in detail that were used to evaluate TapTree’s efficacy in identifying behavioral
abnormalities.

Tree Pattern Queries. We conduct a systematic study of tree matching al-
gorithms that determine the likelihood of a pattern occurring by performing a
recursive comparison on each node of the tree. When a mismatch is detected,
the comparison procedure is terminated.

Title Suppressed Due to Excessive Length 9

Typically, queries on trees are executed using one of two classic graph traver-
sal strategies: breadth-first search (BFS) or depth-first search (DFS). We use a
modified DFS graph-querying algorithm for tree pattern queries. DFS can ex-
pand one intermediate result at a time, starting from the first variable in the
pattern and continuing to the next ones until the whole pattern is matched.
DFS can expand a single intermediate result at a time, beginning with the first
variable in the pattern and progressing through the remaining variables until the
entire pattern is matched.

Let (Ti, P) be the baseline trees (target host behavior model) T and a pat-
tern tree P pair where children of all nodes are labelled and ordered. P matches
at node t if there is a 1− 1 mapping from nodes of P to T such that: 1) root of
P , RP ↔ t and 2) if ∃(i ∈ P ↔ j ∈ T), all the children follows. Let λv be the
path from RP to v. v matches T at node u ∈ T if λv matches T at u.

Exact Match: In this method, the pattern tree P must be matched exactly with
any of the trees in the baseline patterns with respect to node label, inheritance,
and order relationship. An exact match of a pattern P into a baseline tree T is
a mapping Fexact : P −→ T for each nodes of P that satisfies:

– For each u ∈ P, label(u) = label(F(u))
– If ∃ui → uj ∈ P then F(ui) is a parent of F(uj) ∈ T . If ui ⇒ uj ∈ P , F(uj)

is a descendant of F(ui) ∈ T
– For any edge e : ui ⇒ uj ∈ P where label(ui) = label(F(ui)) and label(uj) =

label(F(uj)), e(c) ≤ F(e(c)) where c is the frequency count of the relation
such as ui ⇒ uj

– For any (ui, uj) ∈ P if ui is to the right of uj , F(ui) is to the right of F(uj).

Partial Match: In this method, the pattern tree P must be matched partially
with any of the trees in the baseline model such that the root element and all
elements connected directly and indirectly to the root are matched with respect
to node label, inheritance and order relationship to the baseline tree. A partial
match pattern P into a baseline tree T is a mapping Fpartial : P −→ T that
returns R that satisfies:

– Let ∃R
– If ∃ui → uj ∈ P then F(ui) is a parent of F(uj) ∈ T . If ui ⇒ uj ∈ P , F(uj)

is a descendant of F(ui) ∈ T
– ∃ edge e : ui ⇒ uj ∈ P where label(ui) = label(F(ui)) and label(uj) =

label(F(uj)), e(c) ≤ F(e(c)) where c is the frequency count of the relation
such as ui ⇒ uj implies e ∈ R

– R ⊆ P

Scoring Matched patterns: While exact matches do not require a threshold for de-
tection, partial matches require the computation of a score in order to determine
if they are anomalous. Following pattern matching, we establish a threshold for
detecting malicious task trees. That is, pattern task-process-trees with a score
greater than the threshold are deemed abnormal.

10 M. Mamun & S.Buffett

The percentage of items that match is used to calculate the score for a partial
match. We consider the same weight or variable weight based on the depth of the
element in the tree for the scoring calculation. Our intuition here is to prioritize
the matches that are deeper in the tree. For a given pattern T , let R be the
partial match tree for the pattern, T be the baseline tree, ω be the weight and
δ represent the threshold. Partial match for the same weight is determined by:

– k =
|R|∑
i=1

ωi(= 1) and l =
|T |∑
i=1

ωi(= 1)

– x = k/l
– If x ≥ δ then Match Else Not Match

A partial match with variable weight calculates the pattern matching score
based on the item’s depth in a tree. Partial match for the variable weight is
determined by:

– k =
|R|∑
i=1

ωi(= depth(Ri)) and l =
|T |∑
i=1

ωi(= depth(Ri)

– x = k/l
– If x ≥ δ then Match Else Not Match

Sequential Pattern Analysis. We propose the use of sequential pattern anal-
ysis on the set of task trees as a means for exploiting the temporal nature of
the data. Specifically, a set of traces of activity is extracted from each task tree,
where each trace is a sequence of actions performed as part of that task. Given a
set of such traces, sequential pattern analysis, using such techniques as sequential
pattern mining and classification, can be conducted to identify common patterns
of interest, which can then be used to help determine the likelihood of a task
containing malicious activity.

Sequential pattern mining (SPM) [22,23] is a collection of techniques that
focus on the identification of frequently occurring patterns of items (i.e., ob-
jects, events, etc.), where ordering of these items is preserved. Let I be a set
of items, and S be a set of input sequences, where each s ∈ S consists of an
ordered list of itemsets, or sets of items from I, also known as transactions. A
sequence ⟨a1a2 . . . an⟩ is said to be contained in another sequence ⟨b1b2 . . . bm⟩
if there exist integers i1, i2, . . . , in with i1 < i2 < . . . < in such that a1 ⊆
bi1 , a2 ⊆ bi2 , . . . , an ⊆ bin . A sequence s ∈ S supports a sequence s′ if s′ is
contained in s. The support sup(s′) for a sequence s′ given a set S of input
sequences is the percentage of sequences in S that support s′, and is equal
to sup(s′) = |{s ∈ S|s supports s′}| /|S|. A sequence s′ is deemed a sequential
pattern if sup(s′) is greater than some pre-specified minimum support. Such a
pattern with a total cardinality of its itemsets summing to n is referred to as an
n-sequence or n-pattern. A sequential pattern s′ is a maximal sequential pattern
in a set S′ of sequential patterns if ∀s′′ ∈ S′ where s′′ ̸= s′, s′′ does not contain
s′. The general goal of sequential pattern mining is then to identify the set S′

Title Suppressed Due to Excessive Length 11

that contains all (and only those) sequences that are deemed sequential pat-
terns according to the above. In some cases, the set consisting of only maximal
sequential patterns is preferred.

Given a supervised learning model in which input sequences are assigned
and labeled according to two or more classes, sequence classification [24,25,26]
techniques can be used to attempt to classify new sequences, by using frequent
sequential patterns as features in the classification. In addition to the above
SPM model, consider the addition of a set of class labels and a labeling function
ℓ : S → L that labels the input set. S is thus a set of examples, where each
example s ∈ S can be represented by a set of features from the set SP ′ of fre-
quent sequential patterns. Selected features should exhibit each of the following
properties:

– High frequency
– Significantly higher representation in one class than the other(s)
– No redundancy

Given these identified features, standard machine learning based classification
methods such as SVM or Naïve Bayes can be used to build a classification model
and label new instances accordingly by considering the feature patterns that they
do and do not contain.

Sequential pattern analysis can be used either 1) to obtain a baseline model
for normal activity, against which new activity can be measured in order to
identify potential anomalies, or 2) to train a supervised classifier on labeled data
containing both baseline and malicious activity in order to classify new instances
as benign or malicious. In the former case, sequential pattern mining can be used
to identify frequent patterns that occur typically in the baseline activity, which
can then be used to measure common volumes of noise, i.e. activity that does
not conform to identified regular patterns, within the baseline data in order to
ascertain a tolerable level. Noise from new activity can then be measured against
these tolerance levels, and any excessively noisy activity can then be identified
as potentially anomalous. For the latter, a classifier can be trained to detect
malicious traces, as outlined above, if the required labeled data exists.

4 Experiment & Evaluation

Our experiment is conducted on a workstation equipped with an Intel Core i7-
10750H processor running at 2.6 GHz, 128 GB of RAM, and six cores. For data
extraction, process tree construction, training, and tuning model we use Spark
3.0.2 and Python libraries.

4.1 Experiment dataset

We choose OpTC dataset as it enables significant study in the area of process
trees. Process trees encapsulate sequential data in log events that are semanti-
cally related but chronologically distorted. Enterprise operating systems are, by

12 M. Mamun & S.Buffett

definition, process-oriented. Each process can be traced back to the process that
launched it; each state change can be traced back to the process that caused it
to occur.

We evaluate TapTree mainly on OpTC dataset: a benign dataset from 5
hosts, a malicious dataset from 16 hosts. To perform in-depth analysis and min-
ing of log entries within a day/host, we separate each log entry into seven key
characteristics (object, action, processID, ParentProcessID, image path, time,
and host) and constructed process-trees from the raw events for the benign and
malicious hosts. This way, we were able to generate 91,242 process trees from
the benign dataset, but only 39 from the malicious dataset.

We consider user-specific artifacts because the same user may approach a
task differently each time it is completed, or because various users may offer
similar actions for a given task. Therefore, for benign activity dataset, we target
all activities conducted by five targeted hosts over a seven-day period.

Malicious activities in Darpa-OPTC dataset has been generated mainly from
three APT activities on windows systems: Remote Code Execution and Shell
Code Injection aka Beacon (Cobalt Strike), Remote Code Execution and Lat-
eral Movement aka Powershell Empire, Credential Harvesting aka Customized
Mimikatz. APT activities come with an extremely small percentage of any dataset
(less than 0.001% in Darpa-OpTC dataset). For example, Darpa-OpTC’s red
team targets just 27 hosts out of 1000 networked hosts for launching a series of
APT attacks while engaging in benign activities. We capture malicious events
from all the hosts over

Prior to matching, the evaluation dataset is filtered to remove trees that do
not meet specified thresholds. For example, the smallest threshold tested used a
minimum of 3 nodes and a minimum depth of 2, resulting in 44608 benign trees
and 27 malicious trees, whereas the strictest threshold tested used a minimum
of 5 nodes and a minimum depth of 3, resulting in 13,146 benign trees and 16
malicious trees.

4.2 Evaluation

We evaluate the effectiveness of TapTree for behavior abstraction from three
aspects. (1) Comparative study on the effectiveness of tree and sequence based
data mining for user behavior footprint (2) How does query accuracy vary when
pattern size in queries changes? (3) How does the amount of training data affect
query accuracy? (4) The performance penalty associated with various thresh-
old and pattern queries. Evaluations are conducted on each of the tree pattern
queries and sequential pattern analysis approaches using the experiment dataset
from DARPA OpTC dataset.

Tests are carried out at several thresholds such as the percentage of partial
match, the minimum number of nodes and depth (tree pattern queries approach),
and minimum likelihood of trace maliciousness needed for classification (sequen-
tial pattern analysis approach). Performance is measured using k-fold (k = 10)
cross-validation for the larger set of benign instances, and leave-one-out cross-
validation for the smaller set containing malicious instances.

Title Suppressed Due to Excessive Length 13

To analyze TapTree’s accuracy in abstracting host behavior and compare the
efficacy of behavior models (see Section 3.2), we use five users’ data (chosen at
random from 1000 windows hosts) to construct a baseline host model, and any
user except those five for pattern matching. Table 1 shows the average run-time
required to match a tree. While the time required to generate baseline trees
from semantic aggregation is longer than that required to generate clustered
trees or a Temporal Tree set (4301.83 seconds versus 163.25 and 135.51 seconds,
respectively), the result is a significantly smaller number of behavioral trees for
matching (36 trees compared to 3501 trees). This reduction in the tree size helps
improve tree matching time. That is, compared to Clustered Tree, the average
time required to match a new behaviour tree with semantic aggregation can be
lowered by 39%. Although there is a cost associated with the baseline generation
time associated with semantic aggregation of trees, the baseline tree generation
process only needs to be performed once, whereas matching trees is a recurrent
activity.

Fig. 3: Performance of TapTree on different baseline method: Semantic aggrega-
tion vs clustered Trees.

Fig. 4: Performance of TapTree on different threshold (baseline method: Semantic
aggregation)

Tree Pattern Matching Methods: TapTree methods were found to perform
extremely well when compared with existing methods, particularly when lever-
aging various threshold scores for partial matches as well as conducting proper
tree filtering based on minimum node and depth values. Tables 2a and 2b de-
pict results of TapTree methods (Semantic aggregation, Clustered Tress and

14 M. Mamun & S.Buffett

Table 2: TapTree performance compared to other Methods on OpTC dataset
[16]. TapTree data is in the tree format (#Minimum depth = 2, #Minimum
nodes = 3)

Method Accuracy FP Rate
TapTree (Semantic aggregation) 0.9913 0.008

TapTree (clustered trees) 0.9739 0.026
TapTree (sequence mining) 0.9901 0.001
DeepTaskAPT(Trace) [2] 0.9854 0.011
DeepTaskAPT(Task) [2] 0..9641 0.006

DeepLog [3] 0.8354 0.161
Random Forest 0.9052 0.083

(a) partial match threshold = 0.5

Method Recall
TapTree (Semantic aggregation) 1.0 (FPR ≈ 0.029)

TapTree (clustered trees) 1.0 (FPR ≈ 0.067)
TapTree (sequence mining) 0.8571
DeepTaskAPT (Trace) [2] 0.7587
DeepTaskAPT (Task) [2] 0.8299

DeepLog [3] 0.7202
Random Forest 0.6784

(b) partial match threshold = 0.9

Sequence Mining) against existing approaches (DeepTaskAPT (Trace) [2], Deep-
TaskAPT (Task) [2], DeepLog [3] and Random Forest). When using weighted
partial matching filtering based on five minimum nodes and three minimum
depth for trees, Semantic aggregation achieved high accuracy (0.9913) over all
existing approaches, while posting a false positive rate just slightly higher than
DeepTaskAPT (Task). Increasing the partial match percentage threshold score
from 0.5 to 0.9 allows both TapTree methods to achieve a recall score of 1.0,
which means that they were able to capture all malicious tasks, while only in-
creasing false positive rates to 0.029 and 0.067, respectively. While the Sequence
Mining TapTree method posted accuracy and recall scores slightly lower than
semantic aggregation, it produced the lowest false positive rate of all methods,
and outperformed all existing methods for each of the accuracy, fp-rate and recall
metrics. Performance of sequential pattern-based analysis is examined in detail
in the next section.

Table 3 illustrates the performance of tree pattern queries algorithms dis-
cussed in Section 3.3 based on semantic aggregation baseline model (see Section
3). Except in cases when perfect matches are required, matching threshold scores
(discussed in section Tree pattern queries) has a significant impact on TapTree’s
anomaly detection performance. The use of partial matches enables finer tun-

Title Suppressed Due to Excessive Length 15

Table 3: TapTree performance with different Threshold scores and tree pattern
queries algorithms (baseline model: semantic aggregation, Min Node = 5, Min
Depth = 3)

Method Threshold Accuracy Recall FP Rate
Exact Match – 0.900547 1.0 0.099574

0.9 0.926911 1.0 0.073178
Partial Match 0.7 0.973028 0.6875 0.026624
(same weight) 0.5 0.989439 0.4375 0.009889

0.9 0.923948 1.0 0.076145
Partial Match 0.7 0.957301 0.875 0.042599

(variable weight) 0.5 0.975232 0.5 0.02419

Fig. 5: TapTree performance when jointly tuning minimum number of nodes and
tree depth (N-D)

(a) semantic aggregation

(b) Clustered trees

ing of TapTree’s performance to optimize results for recall, accuracy, and false
positive rate (FPR). A higher threshold score value ensures improved recall per-
formance, whereas a lower score improves accuracy and FPR.

Figure 3 depicts the comparative performance on semantic aggregation vs
clustered tree with respect to accuracy and recall. As the semantic aggregation
baseline method achieves the best performance, Figure 4 describes the impact of
partial match thresholds with a given minimum number of nodes and tree depth.
In Figure 5, we jointly tune minimum number of nodes (N) and tree depth (D).
TapTree clearly achieves the best performance when N-D is 3-2 (accuracy/FPR)
and 5-3 (recall) for a given threshold of 0.7.

Sequential Pattern-Based Methods: Performance was also measured for
a sequential pattern-based classifier tasked with discerning malicious activity

16 M. Mamun & S.Buffett

Table 4: Results of sequential pattern-based malicious behaviour detection, at
various classification thresholds

Threshold TPR TNR Precision Accuracy FPR
0.1 1 0 0.00037 0.00037 1
0.2 1 0 0.00037 0.00037 1
0.3 0.92063 0.54612 0.00074 0.54633 0.45388
0.4 0.86243 0.99012 0.03080 0.99021 0.00988
0.5 0.83069 0.99717 0.09653 0.99724 0.00283
0.6 0.67196 0.99936 0.27632 0.99938 0.00064
0.7 0.42857 0.99997 0.81375 0.99990 0.00003
0.8 0.30159 1 1 0.99988 0
0.9 0 1 - 0.99978 0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
po

si
ti

ve
ra

te

ROC Curve

Fig. 6: Receiver operating characteristics (ROC) curve to demonstrate perfor-
mance of sequential pattern-based classifier at various threshold values

from benign, trained on labeled benign and malicious data extracted from the
task trees, using techniques introduced in section 3.3. In all, the training set
consisted of 5,15,888 benign traces and 189 malicious cases, with k-fold (k = 10)
cross-validation employed for the benign cases, and leave-one-out cross-validation
employed for the malicious cases. Testing was conducted at various thresholds,
where for a threshold of x, a test case was classified as malicious if and only if
the classifier’s deemed likelihood of maliciousness was greater than or equal to
x.

Table 4 shows performance at each threshold, in terms of true positive rate
TPR (i.e. recall, the percentage of malicious cases correctly classified as such),
true negative rate TNR (i.e. the percentage of benign cases correctly classified
as such), precision, accuracy and false positive rate FPR. Figure 6 depicts the

Title Suppressed Due to Excessive Length 17

receiver operating characteristics (ROC) curve, plotting the true positive rate
against the false negative rate.

Results show that the method is highly effective at correctly classifying both
benign and malicious traces, as evidenced by the high true positive and negative
rates, particularly at the 0.4 and 0.5 thresholds, as well as an ROC curve that
lies well to the top and left of the dashed line in the graph representing random
guess.

Precision is low at most levels due to the highly unbalanced nature of the
data, meaning that even high accuracy levels can result in a large number of false
positives. For example, at the 0.5 threshold, benign cases are correctly classified
almost 98% of the time, however this amounts to 1460 false positives compared
to 156 true positives at that threshold level. However, at higher threshold levels
the precision performs remarkably well, reaching 81% at 0.7 with only 16 false
positives (FPR = 0.0003) while still identifying 43% of malicious cases, and 100%
precision at 0.8 while still identifying 30% of malicious cases.

5 Related work

Sequence approaches such as [14,3,27,28,2] take log entries and concatenate them
chronologically into sequences. These techniques are primarily concerned with
capturing temporal and sequential connections between log entries, and often
make use of deep learning techniques such as Long Short-Term Memory (LSTM)
or machine learning tool such as signature kernel, to learn from previous events
and forecast future events. Although deep learning, like LSTM, may recall long-
term dependencies in sequences, it does not compare every behavior of the user
explicitly [1], and ignores interactive relationships between events or hosts [1,2].
This can hinder performance possibly prevent effective identification of APTs.
Additionally, some of them demand a considerable amount of labeled (malicious)
data during the training process or a high number of features for model creation
that might not be available in real-world deployment. In [2,1], the authors ad-
dress some of these issues through alternative methods such as finding logical
relationships between user tasks prior to applying deep learning [2], and utilizing
a graph that depicts a user’s interaction with hosts [1,29].

Meanwhile, a recent approach known as SK-Tree [18] uses streaming trees
to represent computer processes, and presents a malware detection algorithm
leveraging a machine learning tool (signature kernel [30]) for time series data,
with promising results. While the SK-Tree study focused on one day of data
from a single user (0201), we attempt to expand our reach and leverage more of
the dataset to include data captured from multiple users over multiple days.

6 Limitations

This section discusses some of the inherent limitations of the design choice, as
well as the ramifications and potential extensions of this work.

18 M. Mamun & S.Buffett

TapTree’s design relies on process-tree to abstract host activities. Therefore,
it may not be effective at detecting attacks that do not result in spawning new
processes in the operating system. For example, attacks such as buffer overflows,
which do not involve the creation of a new process, are not protected by Tap-
Tree. Baseline model may require periodic retraining due to semantic shifts in
user/host behaviour and addition of previously unseen behaviour patterns. An
analyst can identify new host behaviours over the course of time, sanitise them,
and decide carefully whether to include the new behaviours in the baseline model
for re-training. Our empirical experiment shows that TapTree can recognise an
unknown tree pattern in milliseconds, while retraining with fewer new patterns
takes seconds.

The lack of attack dataset on which to train malicious behavior classifiers
prompts further investigation into sequential pattern-based methods for devel-
oping baseline models. Also worthwhile of further study is a comparison of our
methods to relative graph-based schemes where scalability is an issue, as well as
investigation into more efficient partial matching, a robust baseline model, and
the exploration of new tree matching algorithms.

Despite the algorithms’ poor worst-case time complexity for constructing the
initial baseline tree, which is quadratic in the number of inputs, experimental
evaluations show that they perform exceptionally well in terms of average run
time, especially for pattern matching.

7 Conclusion

We present a detailed study on the effectiveness of performing sequential pattern
matching for anomaly detection. To facilitate this, we present TapTree, a task-
process-tree based model for APT detection on system log data that represents
host log data in such a way that facilitates detection of malicious behaviour. Two
distinct approaches for this detection are explored. The first attempts to match
new data to existing baseline behaviour, represented as temporal trees, in an
attempt to identify anomalies that could signify attack behaviour. The second
extracts sequential behaviour called traces from the trees for existing baseline
and malicious behaviour samples, and uses sequential pattern mining to identify
critical patterns for use in a malicious behaviour classification model.

As for detection performance evaluated using the DARPA OpTC dataset,
we demonstrate that one particular TapTree tree matching algorithm, semantic
aggregation, achieved high accuracy over all existing approaches, while both se-
mantic aggregation and Clustered Trees were found to achieve a perfect recall
by adjusting tree matching thresholds, while still maintaining low false positive
rates. The sequential pattern-based TapTree method, on the other hand, posted
the lowest false positive rate of all methods, and outperformed all existing meth-
ods for each of the accuracy, fp-rate and recall metrics.

Title Suppressed Due to Excessive Length 19

8 Acknowledgement

We would like to thank the Communications Security Establishment Canada
team, especially Dr. Benoit Hamelin for supporting the project and providing
the materials needed for this work. A special thanks to Kevin Shi from the
University of Windsor for all the support during his co-op term with NRC.

References

1. Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng.
Log2vec: A heterogeneous graph embedding based approach for detecting cyber
threats within enterprise. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, pages 1777–1794, 2019.

2. Mohammad Mamun and Kevin Shi. Deeptaskapt: Insider apt detection using task-
tree based deep learning. arXiv preprint arXiv:2108.13989, 2021.

3. Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly de-
tection and diagnosis from system logs through deep learning. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 1285–1298, 2017.

4. Matt Tatam, Bharanidharan Shanmugam, Sami Azam, and Krishnan Kannoor-
patti. A review of threat modelling approaches for apt-style attacks. Heliyon,
7(1):e05969, 2021.

5. Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. Loggc: garbage collecting
audit log. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 1005–1016, 2013.

6. Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. Towards a timely causality analysis for enterprise
security. In NDSS, 2018.

7. Md Nahid et al. Hossain. Sleuth: Real-time attack scenario reconstruction from
cots audit data. In The 26th USENIX Security Symposium, pages 487–504, 2017.

8. Bo Zong, Xusheng Xiao, Zhichun Li, Zhenyu Wu, Zhiyun Qian, Xifeng Yan, Am-
buj K Singh, and Guofei Jiang. Behavior query discovery in system-generated
temporal graphs. arXiv preprint arXiv:1511.05911, 2015.

9. Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer.
Unicorn: Runtime provenance-based detector for advanced persistent threats.
arXiv preprint arXiv:2001.01525, 2020.

10. Jun Zeng, Zheng Leong Chua, Yinfang Chen, Kaihang Ji, Zhenkai Liang, and Jian
Mao. Watson: Abstracting behaviors from audit logs via aggregation of contextual
semantics. In Proceedings of the 28th Annual Network and Distributed System
Security Symposium, NDSS, 2021.

11. Mohammad Mamun, Rongxing Lu, and Manon Gaudet. Tell them from me: An
encrypted application profiler. In International Conference on Network and System
Security, pages 456–471. Springer, 2019.

12. Ke Zhang, Jianwu Xu, Martin Renqiang Min, Guofei Jiang, Konstantinos Pelechri-
nis, and Hui Zhang. Automated it system failure prediction: A deep learning ap-
proach. In 2016 IEEE International Conference on Big Data (Big Data), pages
1291–1300. IEEE, 2016.

13. Panpan Zheng, Shuhan Yuan, Xintao Wu, Jun Li, and Aidong Lu. One-class
adversarial nets for fraud detection. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33:01, pages 1286–1293, 2019.

20 M. Mamun & S.Buffett

14. Xu Liu, Weiyou Liu, Xiaoqiang Di, Jinqing Li, Binbin Cai, Weiwu Ren, and
Huamin Yang. Lognads: Network anomaly detection scheme based on semantic
representation. Future Generation Computer Systems, 2021.

15. Mohammad K Nammous and Khalid Saeed. Natural language processing: Speaker,
language, and gender identification with lstm. In Advanced Computing and Systems
for Security, pages 143–156. Springer, 2019.

16. Dr. Carl Weir, Rody Arantes, Henry Hannon, and Marisha Kulseng. Operationally
transparent cyber (optc). 2021.

17. Hanna et al. Mazzawi. Anomaly detection in large databases using behavioral
patterning. In 2017 IEEE 33rd International Conference on Data Engineering
(ICDE), pages 1140–1149. IEEE, 2017.

18. Thomas Cochrane, Peter Foster, Varun Chhabra, Maud Lemercier, Cristopher
Salvi, and Terry Lyons. Sk-tree: a systematic malware detection algorithm on
streaming trees via the signature kernel. arXiv preprint arXiv:2102.07904, 2021.

19. Alexander D Kent. Comprehensive, multi-source cyber-security events data set.
Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2015.

20. Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou, Jungh-
wan Rhee, Zhengzhang Chen, Wei Cheng, Carl A Gunter, et al. You are what you
do: Hunting stealthy malware via data provenance analysis. In NDSS, 2020.

21. Metin Balaban, Niema Moshiri, Uyen Mai, Xingfan Jia, and Siavash Mirarab.
Treecluster: Clustering biological sequences using phylogenetic trees. PloS one,
14(8):e0221068, 2019.

22. Rakesh Agrawal and Ramakrishnan Srikant. Mining sequential patterns. In Pro-
ceedings of the eleventh international conference on data engineering, pages 3–14.
IEEE, 1995.

23. Carl H Mooney and John F Roddick. Sequential pattern mining–approaches and
algorithms. ACM Computing Surveys (CSUR), 45(2):1–39, 2013.

24. Neal Lesh, Mohammed J Zaki, and Mitsunori Ogihara. Mining features for se-
quence classification. In Proceedings of the fifth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 342–346, 1999.

25. Neal Lesh, Mohammed J Zaki, and Mitsunori Oglhara. Scalable feature mining
for sequential data. IEEE Intelligent Systems and their Applications, 15(2):48–56,
2000.

26. Zhengzheng Xing, Jian Pei, and Eamonn Keogh. A brief survey on sequence clas-
sification. ACM Sigkdd Explorations Newsletter, 12(1):40–48, 2010.

27. Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gianluca Stringhini. Tire-
sias: Predicting security events through deep learning. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pages 592–
605, 2018.

28. Matt Tatam, Bharanidharan Shanmugam, Sami Azam, and Krishnan Kannoor-
patti. A review of threat modelling approaches for apt-style attacks. Heliyon,
7(1):e05969, 2021.

29. Zitong Li, Xiang Cheng, Lixiao Sun, Ji Zhang, and Bing Chen. A hierarchical ap-
proach for advanced persistent threat detection with attention-based graph neural
networks. Security and Communication Networks, 2021, 2021.

30. Franz J Király and Harald Oberhauser. Kernels for sequentially ordered data.
Journal of Machine Learning Research, 20(31):1–45, 2019.

	TapTree: Process-Tree based Host Behavior Modeling and Threat Detection Framework via Sequential Pattern Mining

