Skip to main content

Knowledge Graph Embeddings with Ontologies: Reification for Representing Arbitrary Relations

  • Conference paper
  • First Online:
KI 2022: Advances in Artificial Intelligence (KI 2022)

Abstract

Knowledge graph embeddings offer prospects to integrate machine learning and symbolic reasoning. Learning algorithms are designed that map constants, concepts, and relations to geometric entities in a real-valued domain \(\mathbb {R}^n\). By identifying logics that feature these geometric entities as their model, one is able to achieve a tight integration of logic reasoning with machine learning. However, interesting description logics are more expressive than current knowledge graph embeddings, as description logics allow concept definitions using arbitrary relations, such as non-functional relationships and partial ones. By contrast, geometric models of relations used so far in knowledge graph embeddings such as translations, rotations, or linear functions can only represent total functional relationships. In this paper we describe a new geometric model of the description logic \(\mathcal {ALC}\) based on cones that exploits reification combined with linear functions to represent arbitrary relations. While this paper primarily describes reification in context of a particular model for \(\mathcal {ALC}\), the proposed reification technique is general and applicable with other ontology languages and knowledge graph embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baader, F.: Description logic terminology. In: Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) The Description Logic Handbook, pp. 485–495. Cambridge University Press (2003)

    Google Scholar 

  2. Bai, Y., Ying, R., Ren, H., Leskovec, J.: Modeling heterogeneous hierarchies with relation-specific hyperbolic cones. In: Proceedings 35th Annual Conference on Neural Information Processing Systems (NeurIPS 2021). arXiv:2110.14923 (2021)

  3. Bordes, A., Usunier, N., García-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting Held 5–8 December 2013, Lake Tahoe, Nevada, United States, pp. 2787–2795 (2013). http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data

  4. Conradie, W., Palmigiano, A., Robinson, C., Wijnberg, N.: Non-distributive logics: from semantics to meaning. arXiv e-prints arXiv:2002.04257, February 2020

  5. Deng, J., et al.: Large-scale object classification using label relation graphs. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 48–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_4

    Chapter  Google Scholar 

  6. Garg, D., Ikbal, S., Srivastava, S.K., Vishwakarma, H., Karanam, H., Subramaniam, L.V.: Quantum embedding of knowledge for reasoning. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  7. Gutiérrez-Basulto, V., Schockaert, S.: From knowledge graph embedding to ontology embedding? An analysis of the compatibility between vector space representations and rules. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Proceedings of KR 2018, pp. 379–388. AAAI Press (2018)

    Google Scholar 

  8. Hartonas, C.: Reasoning with incomplete information in generalized Galois logics without distribution: the case of negation and modal operators. In: Bimbó, K. (ed.) J. Michael Dunn on Information Based Logics. OCL, vol. 8, pp. 279–312. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29300-4_14

    Chapter  MATH  Google Scholar 

  9. Kulmanov, M., Liu-Wei, W., Yan, Y., Hoehndorf, R.: EL embeddings: geometric construction of models for the description logic EL++. In: Proceedings of IJCAI 2019 (2019)

    Google Scholar 

  10. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 2181–2187. AAAI Press (2015)

    Google Scholar 

  11. Mehran Kazemi, S., Poole, D.: SimplE embedding for link prediction in knowledge graphs. arXiv e-prints arXiv:1802.04868, February 2018

  12. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML 2011, Omnipress, USA, pp. 809–816 (2011). http://dl.acm.org/citation.cfm?id=3104482.3104584

  13. Özçep, Ö.L., Leemhuis, M., Wolter, D.: Cone semantics for logics with negation. In: Bessiere, C. (ed.) Proceedings of IJCAI 2020, pp. 1820–1826 (2020). ijcai.org

  14. Ren, H., Hu, W., Leskovec, J.: Query2box: reasoning over knowledge graphs in vector space using box embeddings. In: International Conference on Learning Representations (2020)

    Google Scholar 

  15. Schild, K.: A correspondence theory for terminological logics: preliminary report. In: Proceedings of IJCAI 1991, pp. 466–471 (1991)

    Google Scholar 

  16. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. arXiv e-prints arXiv:1902.10197, February 2019

  17. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28, no. 1, June 2014. https://ojs.aaai.org/index.php/AAAI/article/view/8870

  18. Zhang, Z., Wang, J., Jiajun, C., Shuiwang, J., Feng, W.: ConE: cone embeddings for multi-hop reasoning over knowledge graphs. In: Proceedings 35th Annual Conference on Neural Information Processing Systems (NeurIPS 2021) (2021)

    Google Scholar 

Download references

Acknowledgements

The research of Mena Leemhuis and Özgür L. Özçep is funded by the BMBF-funded project SmaDi. Diedrich Wolter acknowledges support by Technologieallianz Oberfranken and BMBF (Dependable Intelligent Software Lab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mena Leemhuis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leemhuis, M., Özçep, Ö.L., Wolter, D. (2022). Knowledge Graph Embeddings with Ontologies: Reification for Representing Arbitrary Relations. In: Bergmann, R., Malburg, L., Rodermund, S.C., Timm, I.J. (eds) KI 2022: Advances in Artificial Intelligence. KI 2022. Lecture Notes in Computer Science(), vol 13404. Springer, Cham. https://doi.org/10.1007/978-3-031-15791-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15791-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15790-5

  • Online ISBN: 978-3-031-15791-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics