
Minimal Roman Dominating Functions:
Extensions and Enumeration

Faisal N. Abu-Khzam1[0000−0001−5221−8421], Henning
Fernau2[0000−0002−4444−3220], and Kevin Mann2[0000−0002−0880−2513]

1 Department of Computer Science and Mathematics
Lebanese American University, Beirut, Lebanon.

faisal.abukhzam@lau.edu.lb
2 Universität Trier, Fachber. 4 – Abteilung Informatikwissenschaften

54286 Trier, Germany.
{fernau,mann}@uni-trier.de

Abstract Roman domination is one of the many variants of domination
that keeps most of the complexity features of the classical domination
problem. We prove that Roman domination behaves differently in two as-
pects: enumeration and extension. We develop non-trivial enumeration
algorithms for minimal Roman domination functions with polynomial
delay and polynomial space. Recall that the existence of a similar enu-
meration result for minimal dominating sets is open for decades. Our
result is based on a polynomial-time algorithm for Extension Roman
Domination: Given a graph G = (V,E) and a function f : V → {0, 1, 2},
is there a minimal Roman domination function f̃ with f ≤ f̃? Here, ≤
lifts 0 < 1 < 2 pointwise; minimality is understood in this order. Our enu-
meration algorithm is also analyzed from an input-sensitive viewpoint,
leading to a run-time estimate of O(1.9332n) for graphs of order n; this
is complemented by a lower bound example of Ω(1.7441n).

Keywords: Roman domination · Extension problems · Enumeration.

1 Introduction

This paper combines four lines of research: (a) studying variations of domination
problems, here the Roman domination [17,21,28]; (b) input-sensitive enumera-
tion of minimal solutions, a topic that has drawn attention in particular from
people also interested in domination problems [2,18,19,26,27]; (c) related to (and
motivated by) enumeration, extension problems have been introduced and stud-
ied in particular in the context of domination problems3 in [3,9,11,12,32,33,40]:
is a given set a subset of any minimal dominating set?; (d) the Hitting Set
Transversal Problem is the question if all minimal hitting sets of a hyper-
graph can be enumerated with polynomial delay (or even output-polynomial)
3 Historically, a logical extension problem [10] should be mentioned, as it has led to
[40, Théorème 2.16], dealing with an extension variant of 3-Hitting Set; also see
[40, Proposition 3.39] concerning implications for Extension Dominating Set.

ar
X

iv
:2

20
4.

04
76

5v
1

 [
cs

.D
S]

 1
0

A
pr

 2
02

2

2 F. Abu-Khzam et al.

only: this question is open for four decades by now and is equivalent to several
enumeration problems in logic, database theory and also to enumerating minimal
dominating sets in graphs, see [20,22,25,31]. By way of contrast, we show that
enumerating all minimal Roman domination functions is possible with polyno-
mial delay, a result which is quite surprising in view of the general similarities
between the complexities of domination and Roman domination problems.

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

Figure 1. The Roman Empire in the times of Constantine

Roman Domination comes with a nice (hi)story: namely, it should reflect
the idea of how to secure the Roman Empire by positioning the armies (legions)
on the various parts of the Empire in a way that either (1) a specific region r is
also the location of at least one army or (2) one region r′ neighboring r has two
armies, so that r′ can afford sending off one army to the region r (in case of an
attack) without diminishing self-defense capabilities. More specifically, Emperor
Constantine had a look at a map of his empire (as discussed in [49], also see
Fig. 1).4 Related is the island hopping strategy pursued by General MacArthur
in World War II in the Pacific theater to gradually increase the US-secured areas.

Roman Domination has received a lot of attention from the algorithmic
community in the past 15 years [4,15,21,24,35,36,39,43,44,47]. Relevant to our
paper is the development of exact algorithms for Roman Domination: com-
bining ideas from [35,46], an O(1.5014n) exponential-time and -space algorithm
(making use of known Set Cover algorithms via a transformation to Partial
Dominating Set) was presented in [48]. In [14,16,23,30,34,38,37,42,50,51,52],
more combinatorial studies can be found. This culminated in a chapter on Ro-
man domination, stretching over nearly 50 pages in the monograph [29]. There
is also an interesting link to the notion of a differential of a graph, introduced
in [41], see [7], also adding further algorithmic thoughts, as expressed in [1,5,6].
For instance, in [5] an exponential-time algorithm was published, based on a
direct Measure-and-Conquer approach.
4 The historical background is also nicely described in the online Johns Hopkins Mag-
azine, visit http://www.jhu.edu/~jhumag/0497web/locate3.html to pre-view [45].

http://www.jhu.edu/~jhumag/0497web/locate3.html

Minimal Roman Dominating Functions: Extensions and Enumeration 3

One of the ideas leading to the development of the area of extension problems
(as described in [12]) was to cut branches of search trees as early as possible, in
the following sense: to each node of the search tree, a so-called pre-solution U
can be associated, and it is asked if it is possible to extend U to a meaningful
solution S. In the case of Dominating Set, this means that U is a set of vertices
and a ‘meaningful solution’ is an inclusion-wise minimal dominating set. Notice
that such a strategy would work not only for computing smallest dominating sets,
but also for computing largest minimal dominating set, or for counting minimal
solutions, or for enumerating them. Alas, as it has been shown by many examples,
extension problems turn out to be quite hard problems. Even for combinatorial
problems whose standard decision version is solvable in polynomial time (for
instance, Edge Cover), its extension variation is NP-hard. In such a case, the
approach might still be viable, as possibly parameterized algorithms exist with
respect to the parameter ‘pre-solution size’. This would be interesting, as this
parameter is small when a big gain can be expected in terms of an early abort of
a search tree branch. In particular for Extension Dominating Set, this hope
is not fulfilled. To the contrary, with this parameterization |U |, Extension
Dominating Set is one of the few problems known to be complete for the
parameterized complexity class W[3], as shown in [8].

With an appropriate definition of the notion of minimality, Roman Domina-
tion becomes one of the few examples where the hope seeing extension variants
being efficiently solvable turns out to be true, as we will show in this paper.
This is quite a surprising result, as in nearly any other way, Roman Domina-
tion behaves most similar to Dominating Set. Together with its combinatorial
foundations (a characterization of minimal Roman domination functions), this
constitutes the first main result of this paper. The main algorithmic exploit of
this result is a non-trivial polynomial-space enumeration algorithm for minimal
Roman domination functions that guarantees polynomial delay only, which is
the second main result of the paper. As mentioned above, the corresponding
question for enumerating minimal dominating sets is open since decades, and
we are not aware of any other modification of the concept of domination that
seems to preserve any other of the difficulties of Dominating Set, like classical
or parameterized or approximation complexities, apart from the complexity of
extension and enumeration. Our enumeration algorithm is a branching algorithm
that we analyzed with a simple Measure & Conquer approach, yielding a running
time of O(1.9332n), which also gives an upper bound on the number of minimal
Roman dominating functions of an n-vertex graph. This result is complemented
by a simple example that proves a lower bound of Ω(1.7441n) for the number of
minimal Roman dominating functions on graphs of order n.

2 Definitions

Let N = {1, 2, 3, . . . } be the set of positive integers. For n ∈ N, let [n] = {m ∈ N |
m ≤ n}. We only consider undirected simple graphs. Let G = (V,E) be a graph.
For U ⊆ V , G[U] denotes the graph induced by U . For v ∈ V , NG(v) := {u ∈ V |

4 F. Abu-Khzam et al.

{u, v} ∈ E} denotes the open neighborhood of v, while NG[v] := NG(v) ∪ {v} is
the closed neighborhood of v. We extend such set-valued functions X : V → 2V

to X : 2V → 2V by setting X(U) =
⋃

u∈U X(u). Subset D ⊆ V is a dominating
set, or ds for short, if NG[D] = V . For D ⊆ V and v ∈ D, define the private
neighborhood of v ∈ V with respect to D as PG,D (v) := NG [v] \ NG [D \ {v}].
A function f : V → {0, 1, 2} is called a Roman dominating function, or rdf for
short, if for each v ∈ V with f (v) = 0, there exists a u ∈ NG (v) with f (u) = 2.
To simplify the notation, we define Vi (f) := {v ∈ V | f (v) = i} for i ∈ {0, 1, 2}.
The weight wf of a function f : V → {0, 1, 2} equals |V1 (f) | + 2|V2 (f) |. The
classical Roman Domination problem asks, given G and an integer k, if there
exists an rdf for G of weight at most k. Connecting to the original motivation, G
models a map of regions, and if the region vertex v belongs to Vi, then we place
i armies on v.

For the definition of the problem Extension Roman Domination, we need
to define the order ≤ on {0, 1, 2}V first: for f, g ∈ {0, 1, 2}V , let f ≤ g if and
only if f (v) ≤ g (v) for all v ∈ V . In other words, we extend the usual linear
ordering ≤ on {0, 1, 2} to functions mapping to {0, 1, 2} in a pointwise manner.
We call a function f ∈ {0, 1, 2}V a minimal Roman dominating function if and
only if f is a rdf and there exists no rdf g, g 6= f , with g ≤ f .5 The weights
of minimal rdf can vary considerably. Consider for example a star K1,n with
center c. Then, f1(c) = 2, f1(v) = 0 otherwise; f2(v) = 1 for all vertices v;
f3(c) = 0, f3(u) = 2 for one u 6= c, f3(v) = 1 otherwise, define three minimal
rdf with weights wf1 = 2, and wf2 = wf3 = n+ 1.

Problem name: Extension Roman Domination, or ExtRD for short
Given: A graph G = (V,E) and a function f ∈ {0, 1, 2}V .
Question: Is there a minimal rdf f̃ ∈ {0, 1, 2}V with f ≤ f̃?

As our first main result, we are going to show that ExtRD can be solved in
polynomial time in section 4. To this end, we need some understanding of the
combinatorial nature of this problem, which we provide in section 3.

The second problem that we consider is that of enumeration, both from an
output-sensitive and from an input-sensitive perspective.

Problem name: Roman Domination Enumeration, or RDEnum for short
Given: A graph G = (V,E).
Task: Enumerate all minimal rdf f ∈ {0, 1, 2}V of G!

From an output-sensitive perspective, it is interesting to perform this enu-
meration without repetitions and with polynomial delay, which means that there
is a polynomial p such that between the consecutive outputs of any two minimal
rdf of a graph of order n that are enumerated, no more than p(n) time elapses,

5 According to [29], this notion of minimality for rdf was coined by Cockayne but then
dismissed, as it does not give a proper notion of upper Roman domination number.
However, in our context, this definition seems to be the most natural one, as it also
perfectly fits the extension framework proposed in [13]. We will propose in section 7
yet another notion of minimal rdf that also fits the mentioned extension framework.

Minimal Roman Dominating Functions: Extensions and Enumeration 5

including the corner-cases at the beginning and at the end of the algorithm.
From an input-sensitive perspective, we want to upper-bound the running time
of the algorithm, measured against the order of the input graph. The obtained
run-time bound should not be too different from known lower bounds, given by
graph families where one can prove that a certain number of minimal rdf must
exist. Our algorithm will be analyzed from both perspectives and achieves both
goals. This is explained in section 5 and in section 6.

3 Properties of Minimal Roman Dominating Functions

Theorem 1. Let G = (V,E) be a graph and f : V → {0, 1, 2} be a minimal rdf.
Then NG [V2 (f)] ∩ V1 (f) = ∅ holds.

Proof. Assume that there exists a {u, v} ∈ E with f (v) = 2 and f (u) = 1. Let

f̃ : V → {0, 1, 2}, w 7→

{
f (w) , w 6= u

0, w = u

We show that f̃ is a rdf, which contradicts the minimality of f , as f̃ ≤ f

and f̃ (u) < f (u) are given by construction. Consider w ∈ V0

(
f̃
)
. If w = u,

w is dominated by v, as {u, v} ∈ E. Consider w 6= u. Since f is a rdf and
V0 (f) ∪ {u} = V0

(
f̃
)
, there exists a t ∈ NG [w] ∩ V2 (f). By construction of f̃ ,

V2 (f) = V2

(
f̃
)
holds. This implies NG [w] ∩ V2

(
f̃
)
6= ∅. Hence, f̃ is a rdf. ut

Theorem 2. Let G = (V,E) be a graph and f : V → {0, 1, 2} be a minimal rdf.
Then for all v ∈ V2 (f), PG[V0(f)∪V2(f)],V2(f) (v) * {v} holds.

Proof. Define G′ := G [V \ V1 (f)] = G [V0 (f) ∪ V2 (f)]. In contrast to the claim,
assume that there exists a v ∈ V2 (f) with PG′,V2(f)(v) ⊆ {v}. Define

f̃ : V → {0, 1, 2}, w 7→

{
f (w) , w 6= v

1, w = v

We show that f̃ is a rdf, which contradicts the minimality of f , as f̃ ≤ f and
f̃ (v) < f (v) are given by construction. Let u ∈ V0

(
f̃
)
= V0 (f). We must show

that some neighbor of u belongs to V2
(
f̃
)
= V2 (f) \ {v}. Then, f̃ is a rdf.

First, assume that u is a neighbor of v. By the choice of v, u is not a private
neighbor of v. Hence, there exists a w ∈ NG [u]∩(V2 (f) \ {v}) = NG [u]∩V2

(
f̃
)
.

Secondly, if u ∈ V0
(
f̃
)
is not a neighbor of v, then there exists a w ∈ V2 (f)\{v}

that dominates u, i.e., w ∈ NG [u] ∩ (V2 (f) \ {v}) = NG [u] ∩ V2
(
f̃
)
. ut

As each v ∈ V0 (f) has to be dominated by a w ∈ V2 (f), the next claim follows.

6 F. Abu-Khzam et al.

Corollary 1. Let G = (V,E) be a graph and f ∈ {0, 1, 2}V be a minimal rdf.
Then, V2 := V2 (f) is a minimal ds of G [NG[V2]], with NG[V2] = V0 (f) ∪ V2.

Remark 1. We can generalize the last statement as follows: Let G = (V,E)
be a graph and f : V → {0, 1, 2} be a minimal rdf. Let I ⊆ V1(f) be an
independent set in G. Then, V2 (f)∪ I is a minimal ds of G [V0 (f) ∪ V2 (f) ∪ I].
If I is a maximal independent set in G[V1(f)], then V2 (f)∪ I is a minimal ds of
G [V0 (f) ∪ V2 (f) ∪ V1(f)].

This allows us to deduce the following characterization result.

Theorem 3. Let G = (V,E) be a graph, f : V → {0, 1, 2} and abbreviate
G′ := G [V0 (f) ∪ V2 (f)]. Then, f is a minimal rdf if and only if the following
conditions hold:

1. NG [V2 (f)] ∩ V1 (f) = ∅,
2. ∀v ∈ V2 (f) : PG′,V2(f) (v) * {v}, also called privacy condition, and
3. V2 (f) is a minimal dominating set of G′.

Proof. The “only if” follows by Theorem 1, Theorem 2 and Corollary 1.
Let f be a function that fulfills the three conditions. Since V2 (f) is a domi-

nating set on G′, for each u ∈ V0 (f), there exists a v ∈ V2 (f)∩NG [u]. Therefore,
f is a rdf. Let f̃ : V → {0, 1, 2} be a minimal rdf with f̃ ≤ f . Therefore, f̃ (also)
satisfies the three conditions by Theorem 1, Theorem 2 and Corollary 1. Assume
that there exists a v ∈ V with f̃ (v) < f (v). Hence, V2

(
f̃
)
⊆ V2 (f) \ {v}.

Case 1: f̃ (v) = 0, f (v) = 1. Therefore, there exists a u ∈ NG (v) with f (u) ≥
f̃ (u) = 2. This contradicts Condition 1.
Case 2: f̃ (v) ∈ {0, 1}, f (v) = 2. Let u ∈ NG (v) with f(u) = 0. This implies
f̃(u) = 0 and

∅ 6= NG [u] ∩ V2
(
f̃
)
⊆ NG [u] ∩ V2 (f) \ {v}

holds. Therefore, NG (v) ⊆ NG [V2 (f) \ {v}]. This contradicts Condition 2.
Thus, f̃ = f holds and f is minimal. ut

We conclude this section with an upper bound on the size of V2(f).

Lemma 1. Let G = (V,E) be a graph and f : V → {0, 1, 2} be a minimal rdf.
Then 2 |V2 (f) | ≤ |V | holds.

Proof. Consider a graph G = (V,E) and a minimal rdf f : V → {0, 1, 2}. For
each v ∈ V2 (f), let Pf (v) = PG[V0(f)∪V2(f)],V2(f) (v) \ {v} ⊆ V \ V2 (f). By
Theorem 2, these sets are not empty and, by definition, they do not intersect.
Hence, we get:

|V | = |V2 (f) |+ |V \ V2 (f) | ≥ |V2 (f) |+

∣∣∣∣∣∣
⋃

v∈V2(f)

Pf (v)

∣∣∣∣∣∣ ≥ 2 |V2 (f) | .

Therefore, the claim is true. ut

Minimal Roman Dominating Functions: Extensions and Enumeration 7

4 A Polynomial-time Algorithm for ExtRD

With Theorem 6, we can construct an algorithm that solves the problem Ex-
tension Roman domination in polynomial time.

Algorithm 1 Solving instances of ExtRD
1: procedure ExtRD Solver(G, f)

Input: A graph G = (V,E) and a function f : V → {0, 1, 2}.
Output: Is there a minimal Roman dominating function f̃ with f ≤ f̃?

2: f̃ := f .
3: M2 := V2 (f). { Invariant: M2 = V2(f̃) }
4: M :=M2. { All v ∈ V2(f̃) are considered below; invariant: M ⊆M2. }
5: while M 6= ∅ do
6: Choose v ∈M . { Hence, f̃(v) = 2. }
7: for u ∈ N (v) do
8: if f̃ (u) = 1 then
9: f̃ (u) := 2.
10: Add u to M and to M2.
11: Delete v from M .
12: for v ∈M2 do
13: if NG (v) ⊆ NG [M2 \ {v}] then
14: Return No.
15: for v ∈ V \NG [M2] do
16: f̃ (v) := 1.
17: Return Yes.

Theorem 4. Let G = (V,E) be a graph and f : V → {0, 1, 2}. For the inputs
G, f , Algorithm 1 returns yes if and only if (G, f) is a yes-instance of ExtRD.
In this case, the function f̃ computed by Algorithm 1 is a minimal rdf.

Proof. First observe that the invariants stated in Lines 3 and 4 of Algorithm 1
are true whenever entering or leaving the while-loop.

Let the answer of the algorithm be yes and f̃ be the function computed by the
algorithm. We will show that f̃ satisfies the conditions formulated in Theorem 6.

Observing the if-condition in Line 8, clearly after the while-loop, no neigh-
bor u of v ∈ V2

(
f̃
)

fulfills f̃ (u) = 1. Hence, f̃ satisfies Condition 1. If the

function f̃ would contradict Condition 2 of Theorem 6, then we would get to
Line 14 and the algorithm would answer no. As we are considering a yes-answer
of our algorithm, we can assume that this privacy condition holds after the for-
loop of Line 12. We also can assume that M2 = V2

(
f̃
)
is a minimal ds of the

graph G [NG [M2]]. Otherwise, for such a v ∈ M2 and each u ∈ NG (v), there

8 F. Abu-Khzam et al.

would exist a w ∈ NG [u] ∩ (M2 \ {v}). In this case, the algorithm would return
no in Line 14. In the for-loop of Line 15, we update for all v ∈ V \NG [M2] the
value f̃ (v) to 1. With the while-loop, this implies NG [M2] = V0

(
f̃
)
∪ V2

(
f̃
)
.

Therefore, V2
(
f̃
)
is a minimal ds of G

[
V0

(
f̃
)
∪ V2

(
f̃
)]

. Since we do not up-

date the values of f̃ to two in this last for-loop, Condition 2 from Theorem 6
holds. By the while-loop and the for-loop starting in Line 15, it is trivial to see
that Condition 1 also holds for the final f̃ . We can now use Theorem 6 to see
that f̃ is a minimal rdf.

Since we never decrease f̃ in this algorithm, starting with f̃ = f in Line 2,
we get f ≤ f̃ . Therefore, (G, f) is a yes-instance of ExtRD.

Now we assume that (G, f) is a yes-instance, but the algorithm returns no.
Therefore, there exists a minimal rdf f with f ≤ f . Since NG

[
V2
(
f
)]
∩V1

(
f
)
=

∅, f̃ ≤ f holds for the function f̃ in Line 12. This impliesM2 = V2

(
f̃
)
⊆ V2

(
f
)
.

The algorithm returns no if and only if there exists a v ∈M2 with

NG (v) ⊆ NG [M2 \ {v}] ⊆ NG

[
V2
(
f
)
\ {v}

]
.

Applying again Theorem 6, we see that f cannot be a minimal rdf, contradicting
our assumption. ut

In Proposition 1, we prove that our algorithm needs polynomial time only.

Proposition 1. Algorithm 1 runs in time cubic in the order of the input graph.

Proof. Let G = (V,E) be the input graph. Define n = |V |. Up to Line 4, the
algorithm can run in linear time. As each vertex can only be once in M and we
look at the neighbors of each element in M , the while-loop runs in time O

(
n2
)
.

In the for-loop starting in Line 12, we build for all v ∈M2 the set NG [M2 \ {v}].
This needs O

(
n3
)
time. The other steps of this loop run in time O

(
n2
)
. The

last for-loop requires linear time. Hence, the algorithm runs in time O
(
n3
)
. ut

5 Enumerating Minimal RDF for General Graphs

For general graphs, our general combinatorial observations allow us to strengthen
the (trivial) O∗(3n)-algorithm for enumerating all minimal rdf for graphs of or-
der n down toO∗(2n), as displayed in Algorithm 2. To understand the correctness
of this enumeration algorithm, the following lemma is crucial.

Lemma 2. Let G = (V,E) be a graph with V2 ⊆ V such that PG,V2
(v) * {v}

for each v ∈ V2 holds. Then there exists exactly one minimal rdf f ∈ {0, 1, 2}V
with V2 = V2 (f). Algorithm 1 can calculate f .

Proof. Define

f : V → {0, 1, 2}, v 7→


2, v ∈ V2
1, v /∈ N [V2]

0, otherwise

Minimal Roman Dominating Functions: Extensions and Enumeration 9

Algorithm 2 A simple enumeration algorithm for minimal rdf
1: procedure RD Enumeration(G)

Input: A graph G = (V,E).
Output: Enumeration of all minimal rdf f : V → {0, 1, 2}.

2: for all functions f : V → {1, 2} do
3: for all v ∈ V with f(v) = 1 do
4: if ∃u ∈ NG(v) : f(u) = 2 then
5: f(v) := 0.
6: Build graph G′ induced by f−1({0, 2}) = V0(f) ∪ V2(f).
7: private-test := 1.
8: for all v ∈ V with f(v) = 2 do
9: if PG′,V2(F)(v) ⊆ {v} then
10: private-test := 0.
11: if private-test = 1 and if f−1(2) = V2(f) is a minimal ds of G′ then
12: Output the current function f : V → {0, 1, 2}.

Hence, NG [V2] = V2 ∪ V0 (f). With the assumption PG,V2
(v) * {v}, V2 is a

minimal ds of G[V2 ∪V0 (f)]. Furthermore, NG [V2]∩V1 (f) = ∅. As V2 = V2 (f),
all conditions of Theorem 6 hold and f is a minimal rdf.

Let f̃ ∈ {0, 1, 2}V be a minimal rdf with V2 = V2

(
f̃
)
. If there exists some

v ∈ V0 (f)∩V1
(
f̃
)
, this contradicts Condition 1, as v ∈ NG [V2] = NG

[
V2

(
f̃
)]

.

Therefore, V0 (f) ⊆ V0

(
f̃
)
holds. By the assumption that f̃ is a rdf, for each

v ∈ V0

(
f̃
)

there exists a u ∈ V2

(
f̃
)
∩ N [v] = V2 ∩ N [v]. This implies v ∈

NG [V2] \ V2 = V0 (f). Therefore, V0 (f) = V0

(
f̃
)
holds. This implies f = f̃ .

Define:

f̂ : V → {0, 1, 2}, v 7→

{
2, v ∈ V2
0, v /∈ V2

.

It is trivial to see that f̂ ≤ f . By Theorem 4, Algorithm 1 returns yes for the
input f̂ . Let f be the the minimal rdf produced by Algorithm 1, given f̂ . We want
to show that V2 = V2

(
f
)
. We do this by looking at the steps of the algorithm.

Since V1
(
f̂
)
= ∅, the algorithm never gets into the If-clause in Line 8. This is

the only way to update a vertex to the value 2. Therefore, V2 = V2
(
f
)
. ut

Proposition 2. Let G = (V,E) be a graph. For minimal rdf f, g ∈ {0, 1, 2}V
with V2 (f) = V2 (g), it holds f = g.

Proof. By Theorem 2, V2 (f) fulfills the conditions of Lemma 2. Therefore, there
exists a unique minimal rdf h ∈ {0, 1, 2}V with V2 (h) = V2 (f) = V2 (g). Thus.
f = g = h holds. ut

10 F. Abu-Khzam et al.

Hence, there is a bijection between the minimal rdf of a graph G = (V,E)
and subsets V2 ⊆ V that satisfy the condition of Lemma 2.

Proposition 3. All minimal rdf of a graph of order n can be enumerated in
time O∗(2n).

Proof. Consider Algorithm 2. The running time claim is obvious. The correctness
of the algorithm is clear due to Theorem 6 and Lemma 2. ut

The presented algorithm clearly needs polynomial space only, but it is less
clear if it has polynomial delay. Below, we will present a branching algorithm that
has both of these desirable properties, and moreover, its running time is below
2n. How good or bad such an enumeration is, clearly also depends on examples
that provide a lower bound on the number of objects that are enumerated. The
next lemma explains why the upper bounds for enumerating minimal rdf must
be bigger than those for enumerating minimal dominating sets.

Lemma 3. A disjoint collection of c cycles on five vertices yields a graph of
order n = 5c that has (16)c many minimal rdf.

Proof. Let C5 be a cycle of length 5 with V (C5) = {v1, . . . , v5} and E (C5) =
{{vi, vi+1} | i ∈ [4]} ∪ {{v1, v5}}. For a f ∈ {0, 1, 2}V (C5) there are at least the
following sixteen possibilities for (f (v1) , . . . , f (v5)):

– zero occurrences of 2: (1, 1, 1, 1, 1);
– one occurrence of 2: (2, 0, 1, 1, 0) and four more cyclic shifts;
– two adjacent occurrences of 2: (2, 2, 0, 1, 0) and four more cyclic shifts;
– two non-adjacent occurrences of 2: (2, 0, 2, 0, 0) and four more cyclic shifts.

Therefore, there are at least 16 minimal rdf on C5. To prove that these are all
the minimal rdf, we use Lemma 1, which implies |V2 (f) | ≤ |V (C5)|

2 < 3. Hence,
the number of minimal rdf on C5 is at most

(
5
0

)
+
(
5
1

)
+
(
5
2

)
= 16. ut

Corollary 2. There are graphs of order n that have at least 5
√
16

n ∈ Ω(1.7441n)
many minimal rdf.

We checked with the help of a computer program that there are no other
connected graphs of order at most eight that yield (by taking disjoint unions) a
bigger lower bound.

6 A Refined Enumeration Algorithm

In this section, we are going to prove the following result, which can be considered
as the second main result of this paper.

Theorem 5. There is a polynomial-space algorithm that enumerates all mini-
mal rdf of a given graph of order n with polynomial delay and in time O∗(1.9332n).

Minimal Roman Dominating Functions: Extensions and Enumeration 11

Notice that this is in stark contrast to what is known about the enumer-
ation of minimal dominating sets, or, equivalently, of minimal hitting sets in
hypergraphs. Here, it is a long-standing open problem if minimal hitting sets in
hypergraphs can be enumerated with polynomial delay.

The remainder of this section is dedicated to describing the proof of this
theorem.

6.1 A bird’s eye view on the algorithm

As all along the search tree, from inner nodes we branch into the two cases if a
certain vertex is assigned 2 or not, it is clear that (with some care concerning
the final processing in leaf nodes) no minimal rdf is output twice. Hence, there
is no need for the branching algorithm to store intermediate results to test (in
a final step) if any solution was generated twice. Therefore, our algorithm needs
only polynomial space, as detailed in Proposition 7 and Corollary 4.

Because we have a polynomial-time procedure that can test if a certain given
pre-solution can be extended to a minimal rdf, we can build (a slightly modified
version of) this test into an enumeration procedure, hence avoiding unnecessary
branchings. Therefore, whenever we start with our binary branching, we know
that at least one of the search tree branches will return at least one new minimal
rdf. Hence, we will not move to more than N nodes in the search tree before
outputting a new minimal rdf, where N is upper-bounded by twice the order of
the input graph. This is the basic explanation for the claimed polynomial delay,
as detailed in Proposition 5.

Let G = (V,E) be a graph. Let us call a(ny partial) function

f : V −→ {0, 1, 2, 1, 2}

a generalized Roman domination function, or grdf for short. Extending previously
introduced notation, let V1(f) = {x ∈ V | f(x) = 1}, and V2(f) = {x ∈ V |
f(x) = 2}. A vertex is said to be active if it has not been assigned a value (yet)
under f ; these vertices are collected in the set A(f). Hence, for any grdf f , we
have the partition V = A(f) ∪ V0(f) ∪ V1(f) ∪ V2(f) ∪ V1(f) ∪ V2(f).

After performing a branching step, followed by an exhaustive application of
the reduction rules, any grdf f considered in our algorithm always satisfies the
following (grdf) invariants:

1. ∀x ∈ V1(f) ∪ V0(f)∃y ∈ NG(x) : y ∈ V2(f),
2. ∀x ∈ V2(f) : NG(x) ⊆ V1(f) ∪ V0(f) ∪ V2(f),
3. ∀x ∈ V1(f) : NG(x) ⊆ V2(f) ∪ V0(f) ∪ V1(f),
4. if V2(f) 6= ∅, then A(f) ∪ V1(f) 6= ∅.6

6 This condition assumes that our graphs have non-empty vertex sets.

12 F. Abu-Khzam et al.

For the extension test, we will therefore consider the function f̂ : V →
{0, 1, 2} that is derived from a grdf f as follows:

f̂(v) =


0, if v ∈ A(f) ∪ V0(f) ∪ V1(f) ∪ V2(f)
1, if v ∈ V1(f)
2, if v ∈ V2(f)

The enumeration algorithm uses a combination of reduction and branch-
ing rules, starting with the nowhere defined function f⊥, so that A(f⊥) = V .
The schematics of the algorithm is shown in Algorithm 3. To understand the
algorithm, call an rdf g as consistent with a grdf f if g(v) = 2 implies v ∈
A(f) ∪ V2(f) ∪ V1(f) and g(v) = 1 implies v ∈ A(f) ∪ V1(f) ∪ V2(f) and
g(v) = 0 implies v ∈ A(f)∪V0(f)∪V1(f)∪V2(f). Below, we start with present-
ing some reduction rules, which also serve as (automatically applied) actions at
each branching step, whenever applicable. The branching itself always considers
a most attractive vertex v and either gets assigned 2 or not. The running time
analysis will be performed with a measure-and-conquer approach. Our simple
measure is defined by µ(G, f) = |A(f)| + ω1|V1(f)| + ω2|V2(f)| ≤ |V | for some
constants ω1 and ω2 that have to be specified later.

The measure never increases when applying a reduction rule.

Algorithm 3 A refined enumeration algorithm for minimal rdf
1: procedure Refined RD Enumeration(G, f)

Input: A graph G = (V,E), a grdf f : V → {0, 1, 2, 1, 2}.
Assumption: There exists at least one minimal rdf consistent with f .
Output: Enumeration of all minimal rdf consistent with f .

2: if f is everywhere defined and f(V) ⊆ {0, 1, 2} then
3: Output f and return.
4: {We know that A(f) ∪ V1(f) 6= ∅. }
5: Pick a vertex v ∈ A(f) ∪ V1(f) of highest priority for branching.
6: f2 := f ; f2(v) := 2.
7: Exhaustively apply reduction rules to f2. { Invariants are valid for f2. }
8: if GenExtRD Solver

(
G, f̂2, V2(f2)

)
then

9: Refined RD Enumeration (G, f2).
10: f2 := f ; if v ∈ A(f) then f2(v) := 2 else f2(v) := 0.
11: Exhaustively apply reduction rules to f2. { Invariants are valid for f2. }
12: if GenExtRD Solver

(
G, f̂2, V2(f2)

)
then

13: Refined RD Enumeration (G, f2).

We are now presenting details of the algorithm and its analysis.

Minimal Roman Dominating Functions: Extensions and Enumeration 13

6.2 How to achieve polynomial delay and polynomial space

In this section, we need a slight modification of the problem ExtRD in order to
cope with pre-solutions. In this version, we add to an instance, usually specified
by G = (V,E) and f : V → {0, 1, 2}, a set V2 ⊆ V with V2 (f) ∩ V2 = ∅. The
question is if there exists a minimal RDF f̃ with f ≤ f̃ and V2

(
f̃
)
∩V2 = ∅. We

call this problem a generalized rdf extension problem, or GenExtRD for short.
In order to solve this problem, we modify Algorithm 1 to cope with GenExtRD
by adding an if-clause after Line 8 that asks if u ∈ V2. If this is true, then the
algorithm returns no, because it is prohibited that f̃(u) is set to 2, while this is
necessary for minimal rdf, as there is a vertex v in the neighborhood of u such
that f̃(v) has been set to 1. We call this algorithm GenExtRD Solver.

Lemma 4. Let G = (V,E) be a graph, f : V → {0, 1, 2} be a function and
V2 ⊆ V be a set with V2 (f) ∩ V2 = ∅. GenExtRD Solver gives the correct
answer when given the GenExtRD instance (G, f, V2).

Proof. In Algorithm 1, the only statement where we give a vertex the value 2 is
in the if-clause of Line 8. The modified version would first check if the vertex is
in V2. If this is true, there will be no minimal RDF solving this problem. Namely,
if we give the vertex the value 2, this would contradict V2

(
f̃
)
∩ V2 = ∅. If the

value stays 1, this would contradict Condition 1. By Theorem 4, f̃ will be a
minimal rdf with V2

(
f̃
)
∩ V2 = ∅ if the algorithm returns yes.

Assume there exists a minimal RDF f with V2
(
f
)
∩V2 = ∅ but the algorithm

returns no. First we assume that no is returned by the new if-clause. This implies
that a vertex u ∈ V1 (f) is in the neighborhood of a vertex v ∈ V that has to
have the value 2 in any minimal rdf that is bigger than f (because Theorem 4).
But this would lead to a similar contradiction as above.

Therefore, the answer no has to be returned in Line 14. That would contradict
Condition 2 or Condition 3. Thus the algorithm would correctly return yes. ut

Let f be a generalized rdf at any moment of the branching algorithm. The
next goal is to show that GenExtRD Solver could tell us in polynomial time if
there exists a minimal rdf that could be enumerated by the branching algorithm
from this point on.

Proposition 4. Let G = (V,E) be a graph, f : V → {0, 1, 2, 1, 2} be a partial
function. Then, GenExtRD Solver correctly answers if there exists some min-
imal rdf g : V → {0, 1, 2} that is consistent with f when GenExtRD Solver
is given the instance (G, f̂ , V2(f)).

The following proof makes use of the grdf invariants presented above, which
are only formally proved to hold in the next subsection, in Proposition 8.

Proof. We have to show two assertions: (1) If GenExtRD Solver answers yes
on the instance (G, f̂ , V2(f)), then there exists a minimal rdf g : V → {0, 1, 2}

14 F. Abu-Khzam et al.

that is consistent with f . (2) If there exists a minimal rdf g : V → {0, 1, 2} that
is consistent with f , then GenExtRD Solver answers yes on the instance
(G, f̂ , V2(f)).

ad (1): Assume GenExtRD Solver found a minimal rdf g such that f̂ ≤ g and
V2(g)∩ V2(f) = ∅. Let v /∈ A(f). First assume that g(v) = 2. Clearly, vertices in
V2(f) = V2(f̂) do not get changed, as they cannot be made bigger. Hence, assume
v /∈ V2(f) exists with g(v) = 2. As GenExtRD Solver will only explicitly set
the value 2 for vertices originally set to 1 (by their f -assignment) that are in
the neighborhood of vertices already set to value 2 and that do not belong to
V2(f), we have to reason about a possible v ∈ V1(f) = V1(f̂). By the third grdf
invariant, the neighborhood of v contains no vertex from V2(f) = V2(f̂), so that
the case of some v /∈ V2(f) with g(v) = 2 can be excluded.

Secondly, assume that g(v) = 1. The case v ∈ V1(f) is not critical, and
v ∈ V2(f) is not possible, as reasoned above. Notice that g(v) = 1 was set in the
last lines of the algorithm. In particular, NG(v) ∩ V2(g) = ∅. As V2(f) ⊆ V2(g),
also NG(v) ∩ V2(f) = ∅. By the first grdf invariant, v /∈ V1(f) ∪ V0(f). Hence,
only v ∈ V2(f) remains as a possibility.

Thirdly, assume that g(v) = 0. As f(v) ∈ {1, 2} is clearly impossible, v ∈
V0(f) ∪ V1(f) ∪ V2(f) must follow. Hence, g is consistent with f .
ad (2): Assume that there exists a minimal rdf g : V → {0, 1, 2} that is consistent
with f . We have to prove that f̂ ≤ g and that V2(g) ∩ V2(f) = ∅, because then
GenExtRD Solver will correctly answer yes by Lemma 4. For g(v) = 2,
then consistency implies f(v) 6= 2, and trivially f̂(v) ≤ g(v). For g(v) = 1,
v ∈ A(f)∪V1(f)∪V2(f), and hence f̂(v) ∈ {0, 1}, so that f̂(v) ≤ g(v). If g(v) = 0,
then v ∈ A(f) ∪ V0(f) ∪ V1(f) ∪ V2(f) = V0(f̂), so that again f̂(v) ≤ g(v). ut

An important consequence of the previous proposition is stated next. Notice
that our algorithm behaves quite differently from what is known about algo-
rithms the enumerate minimal ds.

Proposition 5. Procedure Refined RD Enumeration, on input G = (V,E),
outputs functions f : V → {0, 1, 2} with polynomial delay.

Proof. Although the reduction rules are only stated in the next subsection, it is
not hard to see by quickly browsing through them that they can be implemented
to run in polynomial time. Moreover, GenExtRD Solver runs in polynomial
time. Hence, all work done in an inner node of the search tree needs polynomial
time only. By the properties of GenExtRD Solver, the search tree will never
continue branching if no outputs are to be expected that are consistent with
the current grdf (that is associated to that inner node). Hence, a run of the
procedure Refined RD Enumeration dives straight through setting more and
more values of a grdf, until it is everywhere defined with values from {0, 1, 2}, and
then it returns from the recursion and dives down the next promising branch.
Clearly, the length of any search tree branch is bounded by |V |, so that at most
2|V | many inner nodes are visited between any two outputs. This also holds at

Minimal Roman Dominating Functions: Extensions and Enumeration 15

the very beginning (i.e., only polynomial time will elapse until the first function
is output) and at the very end (i.e., only polynomial time will be spent after
outputting the last function). This proves the claimed polynomial delay. ut

Proposition 6. Procedure Refined RD Enumeration correctly enumerates
all minimal rdf that are consistent with the input grdf, assuming that at least one
consistent rdf exists.

Proof. As there exists a consistent rdf, outputting the input function is correct if
the input function is already an rdf, which is checked, as we test if the given grdf
is everywhere defined at has only images in {0, 1, 2}. Also, before Refined RD
Enumeration is called recursively, we explicitly check if at least one consistent
rdf exists.

If the input grdf f is not everywhere defined or if V2(f) ∪ V1(f) 6= ∅, then
A(f) ∪ V1(f) 6= ∅ by the fourth grdf invariant. Hence, whenever Refined RD
Enumeration is called recursively, A(f) ∪ V1(f) 6= ∅ holds, as these calls are
immediately after applying all reduction rules exhaustively.

Hence, by induction and based on the previous propositions, Refined RD
Enumeration correctly enumerates all minimal rdf that are consistent with the
input grdf. ut

Corollary 3. Procedure Refined RD Enumeration correctly enumerates all
minimal rdf of a given graph G = (V,E) when provided with the nowhere defined
grdf f⊥.

Proof. Due to the previous proposition, it is sufficient to notice that all minimal
rdf are consistent with f⊥ and that the function that is constant 1 is a minimal
rdf consistent with f⊥. ut

Proposition 7. Procedure Refined RD Enumeration never enumerates any
minimal rdf consistent with the given grdf on the input graph G = (V,E) twice.

Proof. Notice that the enumeration algorithm always branches by deciding for
a vertex v from A(f) ∪ V1(f), where f is the current grdf, if f(v) is updated
to 2 or not, which means that either v ∈ A(f) is set to 2, or v ∈ V1 is set
to 0. Then, reduction rules may apply, but they never change the decision if, in
a certain branch of the search tree, f(v) = 2 is either true or false. Moreover,
they never set any vertex to 2. As any minimal rdf that is ever output in a
certain branch will be consistent with the grdf f associated to an inner node of
the search tree, Procedure Refined RD Enumeration never enumerates any
minimal rdf twice. ut

An important consequence of the last claim is that there is no need to store
all output functions in order to finally parse them to see into enumerating any
of them only once.

Corollary 4. Algorithm Refined RD Enumeration lists all minimal rdf con-
sistent with the given grdf on the input graph G = (V,E) without repetitions and
in polynomial space.

16 F. Abu-Khzam et al.

6.3 Details on reductions and branchings

For the presentation of the following rules, we assume that G = (V,E) and a
grdf f is given. We also assume that the rules are executed exhaustively in the
given order.

Reduction Rule LPN (Last Potential Private Neighbor). If v ∈ V2(f)
satisfies |NG(v) ∩ (V2(f) ∪ A(f))| = 1, then set f(x) = 0 for {x} = NG(v) ∩
(V2(f) ∪A(f)).
Reduction Rule V0. Let v ∈ V0(f). Assume there exists a unique u ∈ V2(f) ∩
NG(v). Moreover, assume that for all x ∈ NG(u) ∩ (V0(f) ∪ V1(f) ∪ V2(f)),
|NG(x) ∩ V2(f)| ≥ 2 if x 6= v. Then, for any w ∈ NG(v) ∩ A(f), set f(w) = 2
and for any w ∈ NG(v) ∩ V1(f), set f(w) = 0.

Reduction Rule V1. Let v ∈ V1(f). For any w ∈ NG(v) ∩ A(f), set f(w) = 2.
For any w ∈ NG(v) ∩ V1(f), set f(w) = 0.

Reduction Rule V2. Let v ∈ V2(f). For any w ∈ NG(v) ∩ A(f), set f(w) = 1.
For any w ∈ NG(v) ∩ V2(f), set f(w) = 0.

Reduction Rule NPD (No Potential Domination). If v ∈ V2(f) satisfies
NG(v) ⊆ V2(f) ∪ V0(f) ∪ V1(f), then set f(v) = 1 (this also applies to isolated
vertices in V2(f)).

Reduction Rule NPN (No Private Neighbor). If v ∈ A(f) satisfiesNG(v) ⊆
V0 ∪ V1(f), then set f(v) = 2 (this also applies to isolated vertices in A(f)).

Reduction Rule Isolate. If A(f) = ∅ and if v ∈ V1(f) satisfies NG(v)∩V2(f) =
∅, then set f(v) = 0.

Reduction Rule Edges. If u, v ∈ V2(f) ∪ V0(f) ∪ V1(f) and e = uv ∈ E, then
remove the edge e from G.

In the following, we first take care of the claimed grdf invariants.

Proposition 8. After exhaustively executing the proposed reduction rules, as
indicated in Algorithm 3, the claimed grdf invariants are maintained.

Proof. We argue for the correctness of the grdf invariants by induction one by
one. Notice that (trivially) all invariants hold if we start the algorithm with the
nowhere defined grdf.
1. ∀x ∈ V1(f) ∪ V0(f)∃y ∈ NG(x) : y ∈ V2(f).

We need to show that NG(x) ∩ V2(f) 6= ∅ holds for each x ∈ V0(f) ∪ V1(f).
For the inductive step, we only have to look at the reduction rules, since the
branching rules only change the value to 0 if the vertex was already in V1(f).
For each reduction rule where we set a value of a vertex to 0 or to 1, there
exists a vertex in the neighborhood with value 2, which is seen as follows.

LPN: We explicitly consider x ∈ NG(V2(f)) only to be set by f(x) = 0.
V0 &V1: We only set w to 0 if it has been in V1. By induction hypothesis,

w has a neighbor in V2(f).
V2: We explicitly consider w ∈ NG(V2(f)) only to be set to 0 or to 1.

Isolate: Only vertices from V1(f) are set to 0; apply induction hypothesis.

Minimal Roman Dominating Functions: Extensions and Enumeration 17

2. ∀x ∈ V2(f) : NG(x) ⊆ V1(f) ∪ V0(f) ∪ V2(f).
This property can only be invalidated if new vertices get the value 2 or if
vertices from V1(f) ∪ V0(f) ∪ V2(f) are changed to a value other than this
or if edges are deleted (as vertices are never deleted). The only way in which
a vertex gets v the value 2 is by branching. Immediately afterwards, the
reduction rules are executed: LPN and V2 will install the invariant for the
neighborhood of v. No reduction rule ever changes the value of a vertex
from V0(f) ∪ V2(f), while vertices from V1(f) might be set to 0 or 2. The
Reduction Rule Edges deletes no edges incident to vertices from V2(f).

3. ∀x ∈ V1(f) : NG(x) ⊆ V2(f) ∪ V0(f) ∪ V1(f).
The invariant is equivalent to the following three conditions: (a) N(V1(f))∩
A(f) = ∅, (b) N(V1(f)) ∩ V1(f) = ∅ and (c) N(V1(f)) ∩ V2(f) = ∅. Con-
ditions (a) and (b) are taken care of by Reduction Rule V1. Condition (c)
immediately follows by the already proven second invariant.

4. If V2(f) 6= ∅, then A(f) ∪ V1(f) 6= ∅.
Consider some x ∈ V2(f). By the second invariant, NG(x) ∩ V2(f) = ∅. By
the Reduction Rule Edges, NG(x) ∩

(
V2(f) ∪ V0(f) ∪ V1(f)

)
= ∅. As the

Reduction Rule NPD did not apply, the only possible neighbors of x are in
A(f) ∪ V1(f). ut

We have now to show the soundness of the proposed reduction rules. In the
context of enumerating minimal rdf, this means the following: if f, f ′ are grdf
of G = (V,E) before or after applying any of the reduction rules, then g is a
minimal rdf that is consistent with f if and only if it is consistent with f ′.

Proposition 9. All proposed reduction rules are sound.

Proof. For the soundness of the reduction rules, we also need the invariants
proven to be correct in Proposition 8. We now prove the soundness of each
reduction rule, one at a time.

If possible, we apply Reduction Rule LPN first. Consider v ∈ V2(f) with
{x} = NG(v) ∩ (V2(f) ∪ A(f)). Before the branching step, due to the second
invariant, neighbors of V2(f)-vertices are either in V0(f), V2(f) or in V1(f). As
no reduction rule adds a vertex to V2(f), v must have been put into V2(f) by
the last branching step. By the first invariant, we know that all y ∈ NG(v) ∩(
V1(f) ∪ V0(f)

)
are dominated by vertices different from v. As v ∈ V2(f), it still

needs a private neighbor to dominate. As NG(v) ∩ (V1(f) ∪ A(f)) contains one
element x only, setting f(x) = 0 is enforced for any minimal rdf (see Theorem 2).

Next, we prove Reduction Rule V0. We consider v ∈ V0(f) and u ∈ V with
{u} = V2(f)∩NG(v). We can use the rule, since u needs a private neighbor which
can only be v, by the assumption that every other neighbor of u is dominated
at least twice. To maintain the property that v is a private neighbor of u, each
A(f)-neighbor of v is set to 2 and each V1(f)-neighbor of v is set to 0. This
annotates the fact that any minimal rdf g compatible with f will satisfy (g(x) =
2 =⇒ x = u) for each x ∈ NG(v).

18 F. Abu-Khzam et al.

The soundness of Reduction Rule V1 and Reduction Rule V2 mainly follows
from Theorem 1.

Coming to the Reduction Rule NPD, notice that setting f(v) = 0 would
necessitate f(u) = 2 for some neighbor u of v, which is impossible.

For the Reduction Rule NPN, we use the fact that NG(v) ∩ V2(f) 6= ∅ holds
for each v ∈ V0(f) ∪ V1(f), which is the first invariant.7 This implies that there
is no element left for v to dominate (therefore it has no private neighbor except
itself). Thus, if v has the value 2, then it would contradict with Theorem 2.

For the soundness of Reduction Rule Isolate, we note that, since A(f) is
empty, v ∈ V1(f) can only have neighbors in V1(f) ∪ V2(f) ∪ V1(f), as V2(f)-
neighbors are prohibited. As Reduction Rule V1 was (if possible) executed before,
NG(v)∩V1(f) = ∅ holds. Therefore, v ∈ V1(f) would not have a private neighbor
if f(v) = 2, cf. the first invariant.8

Finally, the soundness of Reduction Rule Edges follows trivially from the
fact that an element of V2(f) ∪ V0(f) ∪ V1(f) cannot dominate any vertex in
V2(f)∪ V0(f)∪ V1(f). Hence, a minimal rdf g is consistent with f if and only it
is consistent with f ′, obtained by applying the Reduction Rule Edges to f . ut

In order to fully understand Algorithm 3, we need to describe priorities for
branching. We describe these priorities in the following in decreasing order for a
vertex v ∈ A(f) ∪ V1(f).

1. v ∈ A(f) and |NG(v) ∩ (A(f) ∪ V2(f))| ≥ 2;
2. any v ∈ A(f);
3. any v ∈ V1(f), preferably if |NG(v) ∩ V2(f)| 6= 2.

These priorities also split the run of our algorithm into phases, as whenever
the algorithm was once forced to pick a vertex according to some lower priority,
there will be never again the chance to pick a vertex of higher priority thereafter.
It is useful to collect some phase properties that instances must satisfy after
leaving Phase i, determined by applying the ith branching priority.

– Before entering any phase, there are no edges between vertices u, v if u, v ∈
V0(f) ∪ V1(f) ∪ V2(f) or if u ∈ V2(f) and v ∈ V2(f) ∪ A(f) or if u ∈ V1(f)
and v ∈ V1(f) ∪A(f), as we can assume that the reduction rules have been
exhaustively applied.

– After leaving the first phase, any active vertex with an active neighbor is
either pendant or has only further neighbors from V1(f) ∪ V0(f).

– After leaving the second phase, A(f) = ∅ and NG(V2(f)) ⊆ V1(f). Moreover,
any vertex x ∈ V2(f) has neighbors in V1(f).

– After leaving the third phase, A(f) = V2(f) = V1(f) = ∅, so that f is a
Roman dominating function.

7 More precisely, we also have to check that the possibly newly introduced vertices
in V0(f) or V1(f) by the branching or by the reduction rules up to this point do
maintain the invariant, but this is nothing else then re-checking the induction step
of the correctness proof of this invariant, see the proof of Proposition 8.

8 Again, one has to partially follow the induction step of the proof of Proposition 8.

Minimal Roman Dominating Functions: Extensions and Enumeration 19

Phase # Branching vector
1.1 (1− ω2, 3− 2ω1)
1.2 (1− ω2, 1 + 2ω2)
1.3 (1− ω2, 2 + ω2 − ω1)
2.1 & 2.2.b (1− ω2, 2)
2.2.a (1− ω2, 1 + ω2 + ω1)
2.2.c (1 + ω2, 1)
3.1 (ω1, ω1 + 3ω2)
3.2.a (ω1, 2ω1 + ω2)
3.2.b & 3.3.a (ω1 + ω2, ω1 + ω2)
3.3.b (2ω1 + 2ω2, 2ω1 + 2ω2, 2ω1 + 2ω2, 2ω1 + 2ω2)

Table 1. The branching vectors of different branching scenarios of the enumeration
algorithm for listing all minimal Roman domination functions of a given graph

Proposition 10. The phase properties hold.

Proof. We are considering the items on the list separately.

– Reduction Rule Edges shows the first claim. Reduction Rules V2 and V1 show
the other two claims.

– By the branching condition, we know that after leaving the first phase,
|NG(v) ∩ (A(f) ∪ V2(f))| < 2 for any active vertex v. Since v has a neigh-
bor in A(f) (say u) this implies that there cannot be any other neighbor
in A(f) ∪ V2(f). Moreover, by the Reduction Rule V1, NG(v) ∩ V1(f) = ∅,
and by the Reduction Rule V2, NG(v) ∩ V2(f) = ∅. Hence, NG(v) \ {u} ⊆
V1(f) ∪ V0(f).

– The second phase branches on each v ∈ A(f). Therefore, it ends if A(f) = ∅.
Let v ∈ V2(f). By Reduction Rule Edge, we get NG(v)∩

(
V2(f) ∪ V0 ∪ V1

)
=

∅. Reduction Rule V2 implies that v does not have a neighbor in V2(f).
Therefore we get NG(v) ⊆ V1(f). If NG(v) is empty, Reduction Rule NPD
will be triggered. Therefore, NG(v) has at least one element.

– The third phase runs on the vertices in V1(f). Thus, V1(f) = ∅ holds at
the end of this phase. Since we never put a vertex into A(f) again, A(f)
is empty. To get V2(f) = ∅, we can use the same argumentation as in the
property before, since a vertex goes only from A(f) to V2(f). ut

6.4 A Measure & Conquer Approach

We now present the branching analysis, classified by the described branching
priorities. We summarize a list of all resulting branching vectors in Table 1.

Branching in Phase 1. We are always branching on an active vertex v. In the
first branch, we set f(v) = 2. In the second branch, we set f(v) = 2. In the first
branch, in addition the Reduction Rule V2 triggers at least twice. In order to

20 F. Abu-Khzam et al.

determine a lower bound on the branching vector, we describe three worst-case
scenarios; all other reductions of the measure can be only better.

1. |NG(v)∩A(f)| = 2, i.e., v has two active neighbors x and y. The correspond-
ing recurrence is: T (µ) = T (µ− (1−ω2)) + T (µ− (1+ 2(1−ω1))), as either
v moves from A(f) to V2(f) and x, y move from A(f) to V1(f), or v itself
moves from A(f) to V2(f). The branching vector is hence: (1−ω2, 3− 2ω1),
as noted in the first row of Table 1.

2. |NG(v) ∩ V2(f)| = 2. The corresponding recurrence is: T (µ) = T (µ − (1 −
ω2)) + T (µ− (1 + 2ω2)), see the second row of Table 1.

3. |NG(v) ∩ A(f)| = 1 and |NG(v) ∩ V2(f)| = 1, leading to T (µ) = T (µ− (1−
ω2)) + T (µ− (1 + (1− ω1) + ω2)), see Table 1, third row.

Branching in Phase 2. We are again branching on an active vertex v. By
Reduction Rule NPN, we can assume that NG(v) 6= ∅. In the first branch, we
set f(v) = 2. In the second branch, we set f(v) = 2.

1. If NG(v) ∩ A(f) = {x}, then NG(v) ∩ V2(f) = ∅ in this phase. Therefore,
in the first branch, f(x) = 0 is enforced by Reduction Rule LPN. Notice
that this might further trigger Reduction Rule V0 if NG(x)∩ (A(f)∪ V1(f))
contains vertices other than v. The corresponding worst-case recurrence is:
T (µ) = T (µ− (1− ω2)) + T (µ− (1 + 1)), see Table 1, fourth row.

2. If NG(v) ∩ V2(f) = {x}, then NG(v) ∩A(f) = ∅ in this phase. Therefore, in
the first branch, f(x) = 0 is enforced by Reduction Rule LPN. We consider
several sub-cases now.
(a) NG(x) ∩ V1(f) 6= ∅. Reduction Rule V0 will put all these vertices into

V0(f). The corresponding worst-case recurrence is: T (µ) = T (µ − (1 −
ω2)) + T (µ− (1 + ω2 + ω1)), see Table 1, fifth row.

(b) |NG(x) ∩ A(f)| ≥ 2. Reduction Rule V0 will put all these vertices into
V2(f) (except for v). The corresponding worst-case recurrence is: T (µ) =
T (µ− (1− ω2)) + T (µ− (1 + ω2 + (1− ω2))), see Table 1, fourth row.

(c) Recall that by Reduction Rule Edges,NG(x)∩(V2(f)∪V0(f)∪V1(f)) = ∅,
so that (if the first two cases do not apply) now we have NG(x) \ {v} ⊆
V2(f). By the properties listed above, also NG(x) ∩ V2(f) = ∅ is clear,
so that now |NG(x)| = 1, i.e., x is a pendant vertex. In this situation,
we do not gain anymore from the first branch, but when f(v) = 2 is
set, Reduction Rule NPD triggers and sets f(x) = 1. The corresponding
worst-case recurrence is: T (µ) = T (µ− (1+ω2))+T (µ− (1−ω2 +ω2)),
see Table 1, sixth row.

Branching in Phase 3. As A(f) = ∅, we are now branching on a vertex
v ∈ V1(f). Due to Reduction Rule Isolate, we know that NG(v) ∩ V2(f) 6= ∅. In
the first branch, we consider setting f(v) = 2, while in the second branch, we
set f(v) = 0. Again, we discuss several scenarios in the following.

Minimal Roman Dominating Functions: Extensions and Enumeration 21

1. Assume that |NG(v)∩V2(f)| ≥ 3. If we set f(v) = 2, then Reduction Rule V2
triggers at least thrice. The corresponding worst-case recurrence is: T (µ) =
T (µ − ω1) + T (µ − (ω1 + 3ω2)), with a branching vector of (ω1, ω1 + 3ω2),
see Table 1, seventh row.

2. Assume that |NG(v)∩V2(f)| = 1, i.e., there is some (unique) u ∈ V2(f) such
that NG(v) ∩ V2(f) = {u}. We consider two sub-cases:
(a) If |NG(u) ∩ V1(f)| ≥ 2, then if we set f(v) = 2, then first Reduction

Rule LPN triggers f(u) = 0, which in turn sets f(w) = 0 for all w ∈
NG(u)∩ V1(f), w 6= u, by Reduction Rule V0. The corresponding worst-
case recurrence is: T (µ) = T (µ − ω1) + T (µ − (ω2 + 2ω1)), see Table 1,
eighth row.

(b) If |NG(u) ∩ V1(f)| = 1, then u is a pendant vertex. Hence, in the first
branch, we have (as above) f(v) = 2 and f(u) = 0, while in the second
branch, we have f(v) = 0 and f(u) = 1 by Reduction Rule NPD. This
decreases the measure by ω1 + ω2 in both branches, see Table 1, nineth
row. This scenario happens in particular if the graph G′ induced by
V1(f)∪V2(f) contains a connected component which is a P2. Therefore,
we refer to this (also) as a P2-branching below.

3. Assume that |NG(v)∩V2(f)| = 2, i.e., there are some u1, u2 ∈ V2(f) such that
NG(v) ∩ V2(f) = {u1, u2}. Notice that in the first branch, when f(v) = 2,
Reduction Rule V2 triggers twice, already reducing the measure by ω1+2ω2.
We consider further sub-cases:
(a) If |NG(u1) ∩ V1(f)| = 1, then u1 is a pendant vertex. As in the previous

sub-case, this helps us reduce the measure in the second branch by ω1 +
ω2 due to Reduction Rule NPD, which obviously puts us in a better
branching than Table 1, nineth row. Similarly, we can discuss the case
|NG(u2) ∩ V1(f)| = 1.

(b) If |NG(u1) ∩ V1(f)| = 2, then we know now that the graph G′ induced
by V1(f)∪V2(f) is bipartite after removing edges between vertices from
V1(f), and vertices from V1(f) all have degree two and vertices from
V2(f) all have degree at least two. The worst case for the following
branching is hence given by a K2,2 as a connected component in G′:
Testing now all possibilities of setting the V2(f)-vertices to 0 or to 1 will
determine all values of the V1(f)-vertices by reduction rules. Hence, we
have in particular for the K2,2 a scenario with four branches, and in each
branch, the measure is reduced by 2ω2 + 2ω1 (K2,2-branching).

Proposition 11. On input graphs of order n, Algorithm Refined RD Enu-
meration runs in time O∗(1.9332n).

Proof. We follow the run-time analysis that led us to the branching vectors listed
in Table 1. The claim follows by choosing as weights ω1 = 2

3 and ω2 = 0.38488.
ut

The two worst-case branchings (with the chosen weights ω1 = 2
3 and ω2 =

0.38488) are 1.1, 3.2.b and 3.3. If we want to further improve on our figures, we
would have to work on a deeper analysis in these cases. For the P2-branching,

22 F. Abu-Khzam et al.

it might be an idea to combine it with the branchings where it could ever origi-
nate from. Notice that adjacent V1-V2-vertices can be only produced in the first
branching phase. But we would then have to improve also on Phase 3.3, the
worst case being a K2,2-branching in Case 3.3 (b).
Let us finally summarize the corner-stones of our reasoning.

Proof (Theorem 5). Several important properties have been claimed and proved
about Algorithm 3 that show the claim of our second main theorem.

– The algorithm correctly enumerates all minimal rdf; see Corollary 3.
– The algorithm needs polynomial space only; see Corollary 4.
– The algorithm achieves polynomial delay; see Proposition 5.
– The algorithm runs in time O∗(1.9332n) on input graphs of order n; see

Proposition 11. ut

7 An Alternative Notion of Minimal RDF

So far, we focused on an ordering of the functions V → {0, 1, 2} that was derived
from the linear ordering 0 < 1 < 2. Due to the different functionalities, it
might be not that clear if 2 should be bigger than 1. If we rather choose as a
basic partial ordering 0 < 1, 2, with 1, 2 being incomparable, this yields another
ordering for the functions V → {0, 1, 2}, again lifted pointwise. Being reminiscent
of partial orderings, let us call the resulting notion of minimality PO-minimal
rdf. Recall that the notion of minimality for Roman dominating functions that
we considered so far and that we also view as the most natural interpretation of
this notion has been refuted in the literature, because it leads to a trivial notion
of Upper Roman Domination, because the minimal rdf f : V → {0, 1, 2} with
biggest sum

∑
v∈V f(v) is achieved by the constant function f = 1. This is no

longer true for the (new) problem Upper PO-Roman Domination.
Also, this can be seen as a natural pointwise lifting of the inclusion ordering,

keeping in mind that f ≤PO g iff V1(f) ⊆ V1(g) and V2(f) ⊆ V2(g).
More interesting for the storyline of this paper are the following results:

Theorem 6. Let G = (V,E) be a graph, f : V → {0, 1, 2} and abbreviate
G′ := G [V0 (f) ∪ V2 (f)]. Then, f is a PO-minimal rdf if and only if the following
conditions hold:

1. NG [V2 (f)] ∩ V1 (f) = ∅,
2. V2 (f) is a minimal dominating set of G′.

Proof. First we look into the “only if”-part. The first condition follows analo-
gously from Theorem 1. For the other condition, we assume that there exists a
graph G = (V,E) and a PO-minimal-rdf f : V → {0, 1, 2} such that V2(f) is
not a minimal dominating set in G′. Since f is a rdf, V2(f) is a dominating set
in G′. Thus, V2(f) is not irredundant in G′. Hence, there exists a v ∈ V2(f) such
that N [v] ⊆ NG[V2(f) \ {v}]. Define

f̃ : V → {0, 1, 2}, w 7→

{
f (w) , w 6= v

0, w = v
.

Minimal Roman Dominating Functions: Extensions and Enumeration 23

Clearly, vertices w ∈ (V0(f) ∪ V1(f)) \NG[v] are dominated by f̃ . But NG[v] is
also dominated, since NG[v] ⊆ NG[V2(f) \ {v}] holds. This would contradict the
PO-minimality of f .

Let f be a function that fulfills the two conditions. Since V2 (f) is a dominat-
ing set in G′, for each u ∈ V0 (f), there exists a v ∈ V2 (f) ∩NG [u]. Therefore,
f is a rdf. Let f̃ : V → {0, 1, 2} be a PO-minimal rdf such that f̃ is smaller
than f with respect to the partial ordering. Therefore, f̃ (also) satisfies the
two conditions. Assume that there exists a v ∈ V with f̃ (v) < f (v). Hence,
V2

(
f̃
)
⊆ V2 (f) \ {v}.

Case 1: f̃ (v) = 0 and f (v) = 1. Therefore, there exists a vertex u ∈ NG (v)

with f (u) ≥ f̃ (u) = 2. This contradicts Condition 1.
Case 2: f̃ (v) = 0 and f (v) = 2. Thus, for each u ∈ V0(f) ∩ NG[v] ⊆ V0(f̃) ∩
NG[v] there exists a w ∈ V2(f̃) ∩ NG(u) ⊆ V2(f) ∩ NG(u). This implies, that
V2(f) is not irredundant in G′, which contradicts the second condition.

Therefore, f̃ = f holds and f is PO-minimal. ut

Based on this characterization of PO-minimality, we can again derive a pos-
itive algorithmic results for the corresponding extension problem.

Theorem 7. The extension problem ExtPO-RDF can be solved in polynomial
time.

Proof. For this problem, we have to modify Algorithm 1 again. This time, we
have to modify Line 13 to if NG[v] ⊆ N [M2 \ {v}] do. The rest of the proof is
analogous to the proof of Theorem 4. ut

Furthermore, we can show that for PO-minimal rdf, the simple enumeration
algorithm is already provably optimal.

Theorem 8. There is a polynomial-space algorithm that enumerates all PO-
minimal rdf of a given graph of order n in time O∗(2n) with polynomial delay.
Moreover, there is a family of graphs Gn, with Gn being of order n, such that
Gn has 2n many PO-minimal rdf.

Proof. The algorithm itself works similar to Algorithm 2, but we have to inte-
grate the extension tests as in Algorithm 3. Therefore, we need to combine our
two modifications for Algorithm 1. This new version would solve the GenExtPO-
RDF, where a graph G = (V,E), a function f : V → {0, 1, 2} and a set V2 are
given and we need to find a PO-minimal rdf f̃ with f ≤ f̃ and V2∩V2 (f) = ∅ (to
prove this, combine the proofs of Lemma 4 and Theorem 7). To see optimality
of the enumeration algorithm, notice that the null graph (edge-less graph) of
order n has any mapping f : V → {1, 2} as a PO-minimal rdf. ut

It follows that the (relatively simple) enumeration algorithm is optimal for
PO-minimal rdf. If one dislikes the fact that our graph family is disconnected,
consider the starK1,n that has 2n+1many different PO-minimal rdf: If V (K1,n) =

24 F. Abu-Khzam et al.

{0, 1, . . . , n}, with 0 being the center and i ∈ {1, . . . , n} being the ‘ray vertices’
of this star, then either put f(0) = 2 and f(i) = 0 for i ∈ {1, . . . , n}, or f(j) = 1
for j ∈ {0, 1, . . . , n}, or f(0) = 0 and f(i) ∈ {1, 2} is arbitrary for i ∈ {1, . . . , n}
(except for f(j) = 1 for j ∈ {1, . . . , n}). This example proves that there cannot
be any general enumeration algorithm running in time O((2−ε)n) for any ε > 0,
even for connected graphs of order n.

8 Conclusions

While the combinatorial concept of Roman domination leads to a number of
complexity results that are completely analogous to what is known about the
combinatorial concept of domination, the two concepts lead to distinctively dif-
ferent results when it comes to enumeration and extension problems. These are
the main messages and results of the present paper.

We are currently working on improved enumeration and also on counting of
minimal rdf in special graph classes. Our first results are very promising; for
instance, there are good chances to completely close the gap between lower and
upper bounds for enumerating minimal rdf for some graph classes.

Another line of research is looking into problems that are similar to Roman
domination, in order to better understand the specialties of Roman domination
in contrast to the classical domination problem. What makes Roman domination
behave different from classical domination when it comes to finding extensions
or to enumeration?

Finally, let us mention that our main branching algorithm also gives an input-
sensitive enumeration algorithm for minimal Roman dominating functions in the
sense of Chellali et al. [16]. However, we do not know of a polynomial-delay
enumeration algorithm in that case. This is another interesting line of research.
Here, the best lower bound we could find was a repetition of a C4, leading to
4
√
8 ≥ 1.68179 as the basis.

References

1. Abu-Khzam, F.N., Bazgan, C., Chopin, M., Fernau, H.: Data reductions and com-
binatorial bounds for improved approximation algorithms. Journal of Computer
and System Sciences 82(3), 503–520 (2016)

2. Abu-Khzam, F.N., Heggernes, P.: Enumerating minimal dominating sets in chordal
graphs. Information Processing Letters 116(12), 739–743 (2016)

3. Bazgan, C., Brankovic, L., Casel, K., Fernau, H., Jansen, K., Klein, K.M., Lampis,
M., Liedloff, M., Monnot, J., Paschos, V.: The many facets of upper domination.
Theoretical Computer Science 717, 2–25 (2018)

4. Benecke, S.: Higher Order Domination of Graphs. Master’s thesis, Department of
Applied Mathematics of the University of Stellebosch, South Africa, http://dip.
sun.ac.za/~vuuren/Theses/Benecke.pdf (2004)

5. Bermudo, S., Fernau, H.: Computing the differential of a graph: hardness, approx-
imability and exact algorithms. Discrete Applied Mathematics 165, 69–82 (2014)

http://dip.sun.ac.za/~vuuren/Theses/Benecke.pdf
http://dip.sun.ac.za/~vuuren/Theses/Benecke.pdf

Minimal Roman Dominating Functions: Extensions and Enumeration 25

6. Bermudo, S., Fernau, H.: Combinatorics for smaller kernels: The differential of a
graph. Theoretical Computer Science 562, 330–345 (2015)

7. Bermudo, S., Fernau, H., Sigarreta, J.M.: The differential and the Roman domina-
tion number of a graph. Applicable Analysis and Discrete Mathematics 8, 155–171
(2014)

8. Bläsius, T., Friedrich, T., Lischeid, J., Meeks, K., Schirneck, M.: Efficiently enu-
merating hitting sets of hypergraphs arising in data profiling. In: Algorithm Engi-
neering and Experiments (ALENEX). pp. 130–143. SIAM (2019)

9. Bonamy, M., Defrain, O., Heinrich, M., Raymond, J.F.: Enumerating minimal dom-
inating sets in triangle-free graphs. In: Niedermeier, R., Paul, C. (eds.) 36th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS 2019).
LIPIcs, vol. 126, pp. 16:1–16:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019)

10. Boros, E., Gurvich, V., Hammer, P.L.: Dual subimplicants of positive Boolean
functions. Optimization Methods and Software 10(2), 147–156 (1998)

11. Casel, K., Fernau, H., Ghadikolaei, M.K., Monnot, J., Sikora, F.: Extension of
some edge graph problems: Standard and parameterized complexity. In: Gasieniec,
L.A., Jansson, J., Levcopoulos, C. (eds.) Fundamentals of Computation Theory
- 22nd International Symposium, FCT. LNCS, vol. 11651, pp. 185–200. Springer
(2019)

12. Casel, K., Fernau, H., Ghadikolaei, M.K., Monnot, J., Sikora, F.: Abundant ex-
tensions. In: Calamoneri, T., Corò, F. (eds.) Algorithms and Complexity - 12th
International Conference, CIAC. LNCS, vol. 12701, pp. 3–17. Springer (2021).
https://doi.org/10.1007/978-3-030-75242-2_1

13. Casel, K., Fernau, H., Ghadikolaei, M.K., Monnot, J., Sikora, F.: On the complexity
of solution extension of optimization problems. Theoretical Computer Science 904,
48–65 (2022). https://doi.org/https://doi.org/10.1016/j.tcs.2021.10.017

14. Chambers, E.W., Kinnersley, B., Prince, N., West, D.B.: Extremal problems for
Roman domination. SIAM Journal of Discrete Mathematics 23, 1575–1586 (2009)

15. Chapelle, M., Cochefert, M., Couturier, J., Kratsch, D., Liedloff, M., Perez, A.:
Exact algorithms for weak Roman domination. In: Lecroq, T., Mouchard, L.
(eds.) Combinatorial Algorithms - 24th International Workshop, IWOCA. LNCS,
vol. 8288, pp. 81–93. Springer (2013)

16. Chellali, M., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., McRae, A.A.: A
Roman domination chain. Graphs and Combinatorics 32(1), 79–92 (2016)

17. Cockayne, E.J., Dreyer Jr., P., Hedetniemi, S.M., Hedetniemi, S.T.: Roman domi-
nation in graphs. Discrete Mathematics 278, 11–22 (2004)

18. Couturier, J., Heggernes, P., van ’t Hof, P., Kratsch, D.: Minimal dominating sets
in graph classes: Combinatorial bounds and enumeration. Theoretical Computer
Science 487, 82–94 (2013)

19. Couturier, J., Letourneur, R., Liedloff, M.: On the number of minimal dominating
sets on some graph classes. Theoretical Computer Science 562, 634–642 (2015)

20. Creignou, N., Kröll, M., Pichler, R., Skritek, S., Vollmer, H.: A complexity the-
ory for hard enumeration problems. Discrete Applied Mathematics 268, 191–209
(2019)

21. Dreyer, P.A.: Applications and Variations of Domination in Graphs. Ph.D. thesis,
Rutgers University, New Jersey, USA, PhD Thesis (2000)

22. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM Journal on Computing 24(6), 1278–1304 (1995)

23. Favaron, O., Karami, H., Khoeilar, R., Sheikholeslami, S.M.: On the Roman dom-
ination number of a graph. Discrete Mathematics 309(10), 3447 – 3451 (2009)

https://doi.org/10.1007/978-3-030-75242-2_1
https://doi.org/https://doi.org/10.1016/j.tcs.2021.10.017

26 F. Abu-Khzam et al.

24. Fernau, H.: Roman Domination: a parameterized perspective. International Jour-
nal of Computer Mathematics 85, 25–38 (2008)

25. Gainer-Dewar, A., Vera-Licona, P.: The minimal hitting set generation problem:
Algorithms and computation. SIAM Journal of Discrete Mathematics 31(1), 63–
100 (2017)

26. Golovach, P.A., Heggernes, P., Kanté, M.M., Kratsch, D., Villanger, Y.: Enumer-
ating minimal dominating sets in chordal bipartite graphs. Discrete Applied Math-
ematics 199, 30–36 (2016)

27. Golovach, P.A., Heggernes, P., Kratsch, D.: Enumerating minimal connected dom-
inating sets in graphs of bounded chordality. Theoretical Computer Science 630,
63–75 (2016)

28. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs, Monographs and Textbooks in Pure and Applied Mathematics, vol. 208.
Marcel Dekker (1998)

29. Haynes, T.W., Hedetniemi, S., Henning, M.A. (eds.): Topics in Domination in
Graphs, Developments in Mathematics, vol. 64. Springer (2020)

30. Hedetniemi, S.T., Rubalcaba, R.R., Slater, P.J., Walsh, M.: Few compare to the
great Roman empire. Congressus Numerantium 217, 129–136 (2013)

31. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal
dominating sets and related notions. SIAM Journal of Discrete Mathematics 28(4),
1916–1929 (2014)

32. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: Polynomial delay al-
gorithm for listing minimal edge dominating sets in graphs. In: Dehne, F., Sack,
J., Stege, U. (eds.) Workshop on Algorithms and Data Structures, WADS. LNCS,
vol. 9214, pp. 446–457. Springer (2015)

33. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: A polynomial delay
algorithm for enumerating minimal dominating sets in chordal graphs. In: Mayr,
E.W. (ed.) International Workshop on Graph-Theoretic Concepts in Computer
Science, WG 2015. LNCS, vol. 9224, pp. 138–153. Springer (2016)

34. Kraner Šumenjak, T., Pavlić, P., Tepeh, A.: On the Roman domination in the
lexicographic product of graphs. Discrete Applied Mathematics 160(13-14), 2030–
2036 (2012)

35. Liedloff, M.: Algorithmes exacts et exponentiels pour les problèmes NP-difficiles:
domination, variantes et généralisations. PhD thesis, Université Paul Verlaine -
Metz, France (2007)

36. Liedloff, M., Kloks, T., Liu, J., Peng, S.L.: Efficient algorithms for Roman domina-
tion on some classes of graphs. Discrete Applied Mathematics 156(18), 3400–3415
(2008)

37. Liu, C.H., Chang, G.J.: Roman domination on 2-connected graphs. SIAM Journal
of Discrete Mathematics 26(1), 193–205 (2012)

38. Liu, C.H., Chang, G.J.: Upper bounds on Roman domination numbers of graphs.
Discrete Mathematics 312(7), 1386–1391 (2012)

39. Liu, C.H., Chang, G.J.: Roman domination on strongly chordal graphs. Journal of
Combinatorial Optimization 26(3), 608–619 (2013)

40. Mary, A.: Énumération des dominants minimaux d’un graphe. Ph.D. thesis,
LIMOS, Université Blaise Pascal, Clermont-Ferrand, France (Nov 2013)

41. Mashburn, J.L., Haynes, T.W., Hedetniemi, S.M., Hedetniemi, S.T., Slater, P.J.:
Differentials in graphs. Utilitas Mathematica 69, 43–54 (2006)

42. Mobaraky, B.P., Sheikholeslami, S.M.: Bounds on Roman domination numbers of
graphs. Matematitchki Vesnik 60, 247–253 (2008)

Minimal Roman Dominating Functions: Extensions and Enumeration 27

43. Pagourtzis, A., Penna, P., Schlude, K., Steinhöfel, K., Taylor, D.S., Widmayer,
P.: Server placements, Roman domination and other dominating set variants. In:
Baeza-Yates, R.A., Montanari, U., Santoro, N. (eds.) Foundations of Information
Technology in the Era of Networking and Mobile Computing, IFIP 17th World
Computer Congress — TC1 Stream / 2nd IFIP International Conference on The-
oretical Computer Science IFIP TCS. pp. 280–291. Kluwer (2002), also available
as Technical Report 365, ETH Zürich, Institute of Theoretical Computer Science,
10/2001.

44. Peng, S.L., Tsai, Y.H.: Roman domination on graphs of bounded treewidth. In:
The 24th Workshop on Combinatorial Mathematics and Computation Theory. pp.
128–131 (2007)

45. ReVelle, C.S., Rosing, K.E.: Defendens imperium Romanum: A classical problem
in military strategy. American Mathematical Monthly 107, 585–594 (2000), http:
//www.jhu.edu/~jhumag/0497web/locate3.html

46. van Rooij, J.M.M.: Exact Exponential-Time Algorithms for Domination Problems
in Graphs. Ph.D. thesis, Universiteit Utrecht, The Netherlands (2011)

47. Shang, W., Wang, X., Hu, X.: Roman domination and its variants in unit disk
graphs. Discrete Mathematics, Algorithms and Applications 2(1), 99–106 (2010)

48. Shi, Z., Koh, K.M.: Counting the number of minimum Roman dominating functions
of a graph. Tech. rep., ArXiv / CoRR, abs/1403.1019 (2014)

49. Stewart, I.: Defend the Roman Empire. Scientific American pp. 136,137,139 (Dec
1999)

50. Xing, H.M., Chen, X., Chen, X.G.: A note on Roman domination in graphs. Dis-
crete Mathematics 306(24), 3338–3340 (2006)

51. Xueliang, F., Yuansheng, Y., Baoqi, J.: Roman domination in regular graphs. Dis-
crete Mathematics 309(6), 1528–1537 (2009)

52. Yero, I.G., Rodríguez-Velázquez, J.A.: Roman domination in Cartesian product
graphs and strong product graphs. Applicable Analysis and Discrete Mathematics
7, 262–274 (2013)

http://www.jhu.edu/~jhumag/0497web/locate3.html
http://www.jhu.edu/~jhumag/0497web/locate3.html

	Minimal Roman Dominating Functions: Extensions and Enumeration

