
ar
X

iv
:2

20
6.

14
55

6v
1

 [
cs

.D
M

]
 2

9
Ju

n
20

22

Linearizing Partial Search Orders

Robert Scheffler

Institute of Mathematics, Brandenburg University of Technology,

Cottbus, Germany

robert.scheffler@b-tu.de

In recent years, questions about the construction of special orderings of a
given graph search were studied by several authors. On the one hand, the
so called end-vertex problem introduced by Corneil et al. in 2010 asks for
search orderings ending in a special vertex. On the other hand, the problem
of finding orderings that induce a given search tree was introduced already in
the 1980s by Hagerup and received new attention most recently by Beisegel et
al. Here, we introduce a generalization of some of these problems by studying
the question whether there is a search ordering that is a linear extension of
a given partial order on a graph’s vertex set. We show that this problem can
be solved in polynomial time on chordal bipartite graphs for LBFS, which
also implies the first polynomial-time algorithms for the end-vertex problem
and two search tree problems for this combination of graph class and search.
Furthermore, we present polynomial-time algorithms for LBFS and MCS on
split graphs which generalize known results for the end-vertex and search
tree problems.

1 Introduction

The graph searches Breadth First Search (BFS) and Depth First Search (DFS) are con-
sidered as some of the most basic algorithms in both graph theory and computer science.
Taught in many undergraduate courses around the world, they are an elementary com-
ponent of several graph algorithms. There are also many other more sophisticated graph
searches, e.g., the Lexicographic Breadth First Search (LBFS) [21] or the Maximum Car-
dinality Search (MCS) [22] which are also used to solve several graph problems among
them the recognition problems of graph classes [6, 9, 13, 14], the computation of minimal
separators [20] as well as the computation of minimal triangulations [5].

In recent years, different problems of finding special search orderings have gained
attention from several researchers. One of these problems is the end-vertex problem
introduced in 2010 by Corneil et al. [11]. It asks whether a given vertex in a graph

1

http://arxiv.org/abs/2206.14556v1

can be visited last by some graph search. The problem was motivated by multi-sweep
algorithms where a search is applied several times to a graph such that every application
starts in the vertex where the preceding search ordering has ended. Corneil et al. [11]
showed that the end-vertex problem isNP-complete for LBFS on weakly chordal graphs.
Similar results were obtained for other searches such as BFS, DFS and MCS [2, 7, 8],
while for several graph classes, among them split graphs, polynomial-time algorithms
were presented in [2, 7, 8, 11, 15].

An important structure closely related to a graph search is the corresponding search
tree. Such a tree contains all the vertices of the graph and for every vertex different from
the start vertex exactly one edge to a vertex preceding it in the search ordering. Such
trees can be of particular interest as for instance the tree obtained by a BFS contains the
shortest paths from the root to all other vertices in the graph and the trees generated
by DFS can be used for fast planarity testing [18]. The problem of deciding whether a
given spanning tree of a graph can be obtained by a particular search was introduced
by Hagerup [16] in 1985, who presented a linear-time algorithm for recognizing DFS-
trees. In the same year, Hagerup and Nowak [17] gave a similar result for the BFS-tree
recognition. Recently, Beisegel et al. [3, 4] introduced a more general framework for
the search tree recognition problem. They introduced the term F-tree for search trees
where a vertex is connected to its first visited neighbor, i.e., BFS-like trees, and L-trees
for search trees where a vertex is connected to its most recently visited neighbor, i.e.,
DFS-like trees. They showed, among other things, that the F-tree recognition is NP-
complete for LBFS and MCS on weakly chordal graphs, while the problem can be solved
in polynomial time for both searches on chordal graphs.

Our Contribution. There seems to be a strong relationship between the complexity
of the end-vertex problem and the recognition problem of F-trees. There are many
combinations of graph classes and graph searches where both problems are NP-complete
or both problems are solvable in polynomial time. To further study this relationship,
we present a generalization of these two problems by introducing the Partial Search
Order Problem (PSOP) of a graph search A. Given a graph G and a partial order π
on its vertex set, it asks whether there is a search ordering produced by A which is
a linear extension of π. We show that a greedy algorithm solves the PSOP of Generic
Search, i.e., the search where every vertex can be visited next as long as it has an already
visited neighbor. Furthermore, we present a polynomial-time algorithm for the PSOP
of LBFS on chordal bipartite graphs, i.e., bipartite graphs without induced cycles of
length larger than four. This result also implies a polynomial-time algorithm for the
end-vertex problem on chordal bipartite graphs, a generalization of the result by Gorzny
and Huang [15] on the end-vertex problem of LBFS on AT-free bipartite graphs. For
split graphs, we will give polynomial-time algorithms for the PSOP of LBFS and MCS
that generalize the results on the end-vertex problem [2, 8] and the F-tree problem [3]
of these searches on this graph class.

2

2 Preliminaries

General Notation. The graphs considered in this paper are finite, undirected, simple
and connected. Given a graph G, we denote by V (G) the set of vertices and by E(G)
the set of edges. For a vertex v ∈ V (G), we denote by N(v) the neighborhood of v in G,
i.e., the set N(v) = {u ∈ V | uv ∈ E}, where an edge between u and v in G is denoted
by uv. The neighborhood of a set A ⊂ V (G) is the union of the neighborhoods of the
vertices in A. The distance of a vertex v to a vertex w is the number of edges of the
shortest path from v to w. The set N ℓ(v) contains all vertices whose distance to the
vertex v is equal to ℓ.

A clique in a graph G is a set of pairwise adjacent vertices and an independent set in
G is a set of pairwise nonadjacent vertices. A split graph G is a graph whose vertex set
can be partitioned into sets C and I, such that C is a clique in G and I is an independent
set in G. We call such a partition a split partition. A graph is bipartite if its vertex set
can be partitioned into two independent sets X and Y . A bipartite graph G is called
chordal bipartite if every induced cycle contained in G has a length of four. Note that
there is a strong relationship between split graphs and bipartite graphs. Every bipartite
graph is a spanning subgraph of a split graph and every split graph can be made to a
bipartite graph by removing the edges between the clique vertices.

A tree is an acyclic connected graph. A spanning tree of a graph G is an acyclic
connected subgraph of G which contains all vertices of G. A tree together with a dis-
tinguished root vertex r is said to be rooted. In such a rooted tree T , a vertex v is the
parent of vertex w if v is an element of the unique path from w to the root r and the
edge vw is contained in T . A vertex w is called the child of v if v is the parent of w.

A vertex ordering of G is a bijection σ : {1, 2, . . . , |V (G)|} → V (G). We denote by
σ−1(v) the position of vertex v ∈ V (G). Given two vertices u and v in G we say that u
is to the left (resp. to the right) of v if σ−1(u) < σ−1(v) (resp. σ−1(u) > σ−1(v)) and
we denote this by u ≺σ v (resp. u ≻σ v).

A partial order π on a set X is a reflexive, antisymmetric and transitive binary relation
on X. We also denote (x, y) ∈ π by x ≺π y if x 6= y. A linear extension of π is a total
order σ of the elements of X that fulfills all conditions of π, i.e., if x ≺π y, then x ≺σ y.
We will often use the term “σ extends π”. For a binary relation π′ on X we say that
the reflexive and transitive closure of π′ is the smallest binary relation π ⊇ π′ that is
reflexive and transitive.

Graph Searches. A graph search is an algorithm that, given a graph G as input, outputs
a vertex ordering of G. All graph searches considered in this paper can be formalized
adapting a framework introduced by Corneil et al. [10] (a similar framework is given
in [19]). This framework uses subsets of N+ as vertex labels. Whenever a vertex is
visited, its index in the search ordering is added to the labels of its unvisited neighbors.
The search A is defined via a strict partial order ≺A on the elements of P(N+) (see
Algorithm 1). For a given graph search A we say that a vertex ordering σ of a graph G
is an A-ordering of G if σ can be the output of A with input G.

In the following, we define the searches considered in this paper by presenting suitable

3

Algorithm 1: Label Search(≺A)

Input: A graph G
Output: A search ordering σ of G

1 begin

2 foreach v ∈ V (G) do label(v) ← ∅;
3 for i ← 1 to |V (G)| do
4 Eligible ← {x ∈ V (G) | x unnumbered and ∄ unnumbered y ∈ V (G)
5 such that label(x) ≺A label(y)};
6 let v be an arbitrary vertex in Eligible;
7 σ(i) ← v; /* assigns to v the number i */

8 foreach unnumbered vertex w ∈ N(v) do label(w) ← label(w) ∪ {i};

partial orders ≺A (see [10]). The Generic Search (GS) is equal to the Label Search(≺GS)
where A ≺GS B if and only if A = ∅ and B 6= ∅. Thus, any vertex with a numbered
neighbor can be numbered next.

The partial label order ≺BFS for Breadth First Search (BFS) is defined as follows:
A ≺BFS B if and only if A = ∅ and B 6= ∅ or min(A) > min(B). For the Lexicographic
Breadth First Search (LBFS) [21] we consider the partial order ≺LBFS with A ≺LBFS B
if and only if A (B or min(A \B) > min(B \ A).

The Maximum Cardinality Search (MCS) [22] uses the partial order ≺MCS with
A ≺MCS B if and only if |A| < |B|. The Maximal Neighborhood Search (MNS) [12]
is defined using ≺MNS with A ≺MNS B if and only if A (B. If A ≺MNS B, then it
also holds that A ≺LBFS B and A ≺MCS B. Thus, any ordering produced by LBFS or
MCS is also an MNS ordering.

Search orderings of these searches can be characterized using so-called 4-point condi-
tions (see [12]). The condition for LBFS is given in the following lemma. We will use
the condition of LBFS given in the following lemma several times throughout the paper.

Lemma 1 ([12]). A vertex ordering σ of a graph G is an LBFS ordering if and only if
the following property holds: For all vertices a, b, c ∈ V (G) with a ≺σ b ≺σ c, ac ∈ E(G)
and ab /∈ E(G) there is a vertex d ∈ V (G) with d ≺σ a, bd ∈ E(G) and cd /∈ E(G).

In the search algorithms following the framework given in Algorithm 1, any of the
vertices in the set Eligible can be chosen as the next vertex. Some applications use
special variants of these searches that involve tie-breaking. For any instantiation A of
Algorithm 1, we define the graph search A+ as follows: Add a vertex ordering ρ of
graph G as additional input and replace line 6 in Algorithm 1 with “let v be the vertex
in Eligible that is leftmost in ρ”. Note that this corresponds to the algorithm TBLS
given in [10]. The search ordering A+(ρ) is unique since there are no ties to break.

The following lemma gives a strong property for all A+-searches considered here and
will be used several times.

Lemma 2. Let G be a graph and ρ be a vertex ordering of G. Let A be a graph search in
{GS, BFS, LBFS, MCS, MNS} and σ the A+(ρ) ordering of G. If u ≺σ v and v ≺ρ u,
then there is a vertex x with x ≺σ u and xu ∈ E(G) and xv /∈ E(G).

4

Proof. Assume for contradiction that for any vertex x with x ≺σ u and xu ∈ E(G) it
also holds xv ∈ E(G). It can be checked easily that the strict partial order ≺A given for
any of the given graph searches A has the following property: If A ⊆ B, then for any C
with B ≺A C it also holds A ≺A C. Consider the step i in the computation of σ where
u was numbered by the search A. Since v ≺ρ u, the vertex v was not an element of
Eligible. Therefore, there was an unnumbered vertex x with label(v) ≺A label(x). Due to
the assumption on u and v, it held that label(u) ⊆ label(v). Due to the property of ≺A

mentioned above, it held that label(u) ≺A label(x) and u was not an element of Eligible;
a contradiction.

3 The Partial Search Order Problem

We start this section by introducing the problem considered in this paper.

Problem 3. Partial Search Order Problem (PSOP) of graph search A

Instance: A graph G, a partial order π on V (G).

Task: Decide whether there is an A-ordering of G that extends π.

We will also consider a special variant, where the start vertex of the search ordering
is fixed. We call this problem the rooted partial search order problem. Note that the
general problem and the rooted problem are polynomial time equivalent. If we have a
polynomial time algorithm to solve the rooted problem we can apply it |V (G)| times
to solve the general problem. On the other hand, the rooted problem with fixed start
vertex r can be solved by a general algorithm. To this end, we add all the tuples (r, v),
v ∈ V (G), to the partial order π. Note that in the following we always assume that a
given start vertex r is a minimal element of the partial order π since otherwise we can
reject the input immediately.

The end-vertex problem of a graph search A introduced by Corneil et al. [11] in 2010
asks whether the vertex t can be the last vertex of an A-ordering of a given graph G. This
question can be encoded by the partial order π := {(u, v) | u, v ∈ V (G), u = v or v = t},
leading to the following observation.

Observation 4. The end-vertex problem of a graph search A on a graph G can be solved
by solving the PSOP of A on G for a partial order of size O(|V (G)|).

From this observation it follows directly that the partial search order problem is NP-
complete for BFS, DFS, LBFS, LDFS, MCS and MNS [2, 8, 11].

In [3], Beisegel et al. introduced the terms F-tree and L-tree of a search ordering.
For this we only consider search orderings produced by a connected graph searches, i.e.,
a graph search that outputs search orderings of the Generic Search. In the F-tree of
such an ordering, every vertex different from the start vertex is connected to its leftmost
neighbor in the search ordering. In the L-tree, any vertex v different from the start vertex
is connected to its rightmost neighbor that is to the left of v in the search ordering. The

5

problem of deciding whether a given spanning tree of a graph can be the F-tree (L-
tree) of a search ordering of a given type is called F-tree (L-tree) recognition problem.
If the start vertex is fixed, it is called the rooted F-tree (L-tree) recognition problem.
The rooted F-tree recognition problem is a special case of the (rooted) PSOP, as the
following proposition shows.

Proposition 5. Let A be a connected graph search. Given a graph G and a spanning
tree T of G rooted in r, we define π to be the reflexive, transitive closure of the relation
R := {(x, y) | x is parent of y in T or there is child z of x in T with yz ∈ E(G)}. The
tree T is the F-tree of an A-ordering σ of G if and only if π is a partial order and σ
extends π.

Therefore, the rooted F-tree problem of a graph search A on a graph G can be solved
by solving the (rooted) PSOP of A on G.

Proof. Assume T is the F-tree of the A-ordering σ starting in r. Then for any vertex
y ∈ V (G) with parent x ∈ V (G) it holds that x ≺σ y. Furthermore, for any neighbor z
of y different from x it holds that x ≺σ z since otherwise the edge xy would not be an
element of T . Therefore, σ must be a linear extension of R and, thus, of π.

On the other hand, let the A-ordering σ be a linear extension of π. Let y be an
arbitrary vertex in G and let x be the parent of y in T . Following from the construction
of R and π, the vertex x is the leftmost neighbor of y in σ. Therefore, the edge xy is
part of the F-tree of σ. Hence, this F-tree must be equal to T .

Note that the general F-tree recognition problem without fixed start vertex can be
solved by deciding the partial search order problem for any possible root. The L-tree
recognition problem, however, is not a special case of the partial search order problem.
For a vertex w, its parent v and another neighbor z of w, it must either hold that
v ≺σ w ≺σ z or that z ≺σ v ≺σ w. These constraints cannot be encoded using a
partial order. Nevertheless, we will see in Section 5 that on bipartite graphs the PSOP
of (L)BFS is a generalization of the L-tree recognition problem of (L)BFS.

We conclude this section with a simple algorithm for the rooted PSOP of Generic
Search (see Algorithm 2 for the pseudocode). First the algorithm visits the given start
vertex r. Afterwards it looks for a vertex with an already visited neighbor among all
vertices that are minimal in the remaining partial order. If no such vertex exists, then
it rejects. Otherwise, it visits one of these vertices next.

Theorem 6. Algorithm 2 solves the rooted partial search order problem of Generic
Search for a graph G and a partial order π in time O(|V (G)| + |E(G)| + |π|).

Proof. In Algorithm 2 every vertex x different from r is not inserted into S before a
neighbor of x was numbered. As only vertices contained in S are visited, we know that
every ordering σ returned by Algorithm 2 is a Generic Search ordering of G. Further-
more, σ is a linear extension of π since a vertex v is only added to σ if for any (x, v) ∈ π
it holds that x is already numbered in σ.

If Algorithm 2 returns “π cannot be linearized”, then there is at least one vertex in
V (G) that was not inserted into S. Assume for contradiction that there is a Generic

6

Algorithm 2: Rooted PSOP of Generic Search

Input: Connected graph G, a vertex r ∈ V (G), a partial order π on V (G)
Output: GS ordering σ of G extending π or “π cannot be linearized”

1 begin

2 S ← {r}; i← 1;
3 while S 6= ∅ do
4 let v be an arbitrary element of S;
5 remove v from S and from π;
6 σ(i) ← v; i ← i+ 1;
7 foreach w ∈ N(v) do mark w;
8 foreach marked x ∈ V (G) which is minimal in π do S ← S ∪ {x};

9 if i = |V (G)| + 1 then return σ;
10 else return “π cannot be linearized”;

Search ordering σ of G starting in r that is a linear extension of π and let v be the
leftmost vertex in σ that was not inserted into S. Since σ is a GS ordering, there is
a neighbor w of v which is to the left of v in σ. Vertex w has been added to S and,
therefore, v was marked by Algorithm 2. As v was not inserted into S, there must be a
vertex x that was also not inserted into S with x ≺π v. However, due to the choice of v,
vertex x must be to the right of v in σ. This is contradiction since σ was chosen to be
a linear extension of π.

It remains to show that Algorithm 2 can be implemented such that it has a linear
running time. We encode π with a directed graph Dπ, i.e., the edge (x, y) ∈ E(Dπ) if
and only if x ≺π y. Whenever we visit a vertex v we iterate through its neighborhood in
G and mark the neighbors. If there is a neighbor w that is minimal in π, i.e., its in-degree
in Dπ is zero, then we add w to S. Afterwards we iterate through the out-neighborhood
of v in Dπ. If there is a marked out-neighbor with in-degree one, then we add this
vertex to S. Afterwards, we delete v from Dπ. Summarizing, the algorithm iterates
through every neighborhood in G and through every out-neighborhood in Dπ at most
once. Therefore, the total running time is bounded by O(|V (G)| + |E(G)| + |π|).

4 One-Before-All Orderings

Before we present algorithms for the PSOP we introduce a new ordering problem that
will be used in the following two sections to solve the PSOP of LBFS on both chordal
bipartite graphs and split graphs.

Problem 7. One-Before-All Problem (OBAP)

Instance: A set M , a set Q ⊆ P(M), a relation R ⊆ Q×Q

Task: Decide whether there is a linear ordering σ of M fulfilling the One-Before-All
property, i.e., for all A,B ∈ Q with (A,B) ∈ R and B 6= ∅ there is an x ∈ A such
that for all y ∈ B it holds that x ≺σ y.

7

Note that every partial order π on a set X can be encoded as an OBAP instance by
setting M = X, Q = {{x} | x ∈ X} and R = {({x}, {y}) | x ≺π y}. Thus, the OBAP
generalizes the problem of finding a linear extension of an partial order.

Algorithm 3: OBAP

Input: A set M , a set Q ⊆ P(M), a relation R ⊆ Q×Q.
Output: An OBA-ordering σ of the elements in M or “No ordering”.

1 begin

2 r(A)← 0 ∀A ∈ Q; t(x)← 0 ∀x ∈M ; S ← ∅; i← 1;
3 foreach (A,B) ∈ R do r(B)← r(B) + 1;
4 foreach A ∈ Q with r(A) > 0 do

5 foreach x ∈ A do t(x)← t(x) + 1;

6 foreach x ∈M with t(x) = 0 do S ← S ∪ {x};
7 while S 6= ∅ do
8 let x be an element in S;
9 S ← S \ {x}; σ(i)← x; i← i+ 1;

10 foreach A ∈ Q with x ∈ A do

11 Q ← Q \ {A};
12 foreach (A,B) ∈ R do

13 R← R \ {(A,B)};
14 r(B)← r(B) − 1;
15 if r(B) = 0 then

16 foreach y ∈ B do

17 t(y)← t(y)− 1;
18 if t(y) = 0 then S ← S ∪ {y};

19 if i = |M |+ 1 then return σ;
20 else return “No ordering”;

In the following we describe how we can solve the one-before-all problem in time linear
in the input size |M |+ |R|+

∑
A∈Q |A| (see Algorithm 3 for the pseudocode). For every

set A ∈ Q we introduce a counter r(A) containing the number of tuples (X,A) ∈ R.
For every element x ∈M the variable t(x) counts the number of sets A ∈ Q with x ∈ A
and r(A) > 0. Our algorithm builds the ordering σ from left to right. It is not difficult
to see that an element x can be chosen next if and only if t(x) = 0. As long as such
an element exists, the algorithm chooses one, deletes all tuples (A,B) with x ∈ A from
R and updates the r- and the t-values. If no such element exists, then the algorithm
returns “No ordering”.

Theorem 8. Given a set M , a set Q ⊆ P(M) and a relation R ⊆ Q×Q, Algorithm 3
returns a linear ordering σ of M fulfilling the one-before-all property if and only if such
an ordering exists. The running time of the algorithm is O(|M |+ |R|+

∑
A∈Q |A|).

Proof. Assume Algorithm 3 returns the ordering σ that is not a feasible OBA ordering.
Then there are sets A,B ∈ Q with (A,B) ∈ R such that there is an x ∈ B that is to the
left of any element of A in σ. Tuples are only deleted from R if an element of the left

8

set of the tuple received an index in σ. Therefore, the tuple (A,B) was still in R when
x was inserted into S. This is a contradiction, because t(x) would have been larger than
zero.

Assume that there is an OBA ordering σ′ but Algorithm 3 returns “No ordering”. Let
X be the subset of M containing all elements that has not been inserted into σ during
the execution of the algorithm. Let x the leftmost element in σ′ that is an element of
X. Since x was not inserted into S by the algorithm, the condition t(x) > 0 still holds
at the end of Algorithm 3. This implies that there are sets A and B with (A,B) ∈ R
and A ⊆ X and x ∈ B. Thus, all elements of A are to the right of x in σ′. This is a
contradiction to the fact that σ′ is an OBA ordering.

Let γ =
∑

A∈Q |A|. To achieve the claimed running time we use the following data
structure: Every set A in Q is a linked list with pointers to its elements in M . Further-
more, A has a linked list containing pointers to the tuples (A,B) ∈ R. Every element
x ∈M has a linked list containing the pointers to its position in the linked list of every
set A with x ∈ A. Obviously, all the steps before the while-loop can be done in time
O(|M |+ |R|+γ). We iterate at most |M | times through the while-loop. Every set in Q
is visited at most once in the foreach-loop starting in line 10. The same holds for any
tuple of R in the foreach-loop starting in line 12. As the r-value of each set B becomes
zero at most once, the set B is visited at most once in the foreach-loop starting in
line 16. Thus, the running time of the algorithm is bounded by O(|M |+ |R|+ γ).

5 Partial LBFS Orders of Chordal Bipartite Graphs

In [15], Gorzny and Huang showed that the end-vertex problem of LBFS is NP-complete
on bipartite graphs but can be solved in polynomial time on AT-free bipartite graphs. In
this section we will generalize the latter result in two ways by presenting a polynomial-
time algorithm for the partial search order problem on chordal bipartite graphs, a su-
perset of AT-free bipartite graphs.

The following result will be a key ingredient of our approach. It shows that for two
vertices x and y in the same layer Ni(r) of a BFS starting in r that have a common
neighbor in the succeeding layer N i+1(r), it holds that the neighborhoods of x and y in
the preceding layer N i−1(r) are comparable.

Lemma 9. Let G be a connected chordal bipartite graph and let r be a vertex of G. Let
x and y be two vertices in N i(r). If there is a vertex z ∈ N i+1(r) which is adjacent to
both x and y, then N(x) ∩N i−1(r) ⊆ N(y) or N(y) ∩N i−1(r) ⊆ N(x).

Proof. Assume x has a neighbor u in N i−1(r) which is not a neighbor of y and y has
a neighbor v in N i−1(r) which is not a neighbor of x. Let pu and pv be shortest paths
from u to r and v to r, respectively, which shares the maximal number of edges. Let w
be the first vertex (starting from u and v, respectively) that is both in pu and pv. Let
p∗u be the subpath of pu between u and w and let p∗v be the subpath of pv between v and
w. The paths p∗u and p∗v and the edges xu, yv, xz and yz form a cycle C of length at
least six in G. Due to the choice of pu and pv and the fact that two vertices of G can

9

Algorithm 4: Rooted PSOP of LBFS on chordal bipartite graphs
Input: Connected chordal bipartite graph G, vertex r ∈ V (G), partial order π on V (G)
Output: An LBFS ordering σ of G extending π or “π cannot be linearized”

1 begin

2 let k be the maximal distance of a vertex v ∈ V (G) from r;

3 Qi ← {{x} | x ∈ N i(r)} ∀i ∈ {1, . . . , k};

4 Ri ← {({x}, {y}) | x, y ∈ N i(r), x ≺π y} ∀i ∈ {1, . . . , k};
5 for i ← k downto 2 do

6 foreach (A,B) ∈ Ri do

7 A′ ← [N(A) ∩N i−1(r)] \N(B);

8 A′′ ← {v ∈ A′ | N(v) ∩N i−2(r) = N(A′) ∩N i−2(r)};

9 B′ ← [N(B) ∩N i−1(r)] \N(A);
10 Qi−1 ← Qi−1 ∪ {A

′′, B′};
11 Ri−1 ← Ri−1 ∪ {(A

′′, B′)};

12 let ρ be an empty vertex ordering;
13 for i ← k downto 1 do

14 if there is an OBA-ordering σ for input (N i(r), Qi, Ri) then

15 ρ ← σ ++ ρ

16 else return “π cannot be linearized”;

17 ρ ← r ++ ρ;
18 return LBFS+(ρ) of G;

only be adjacent if they lie in consecutive layers, the cycle C is an induced cycle. This
is a contradiction since G is chordal bipartite.

Algorithm 4 presents the pseudocode of an algorithm for the rooted PSOP of LBFS
on chordal bipartite graphs. We assume that the partial order π contains only tuples
where both elements are in the same layer of a BFS starting in r. Otherwise, the tuple
is trivially fulfilled by any BFS ordering starting in r or no such BFS ordering fulfills
the tuple. The algorithm constructs an OBAP-instance with set Qi ⊆ P(N

i(r)) and
Ri ⊆ Qi × Qi for any layer i of the BFS. First we add the tuple ({x}, {y})to the set
Ri for every tuple (x, y) ∈ π with x, y ∈ N i(r). Now the algorithm iterates through
all layers starting in the last one. For any element (A,B) ∈ Ri the algorithm inserts a
tuple (A′′, B′) to the relation Ri−1. The set A′′ contains all neighbors of set A in layer
i− 1 that are not neighbors of set B and whose neighborhood in layer i− 2 is maximal
among all these neighbors. The set B′ contains all neighbors of B in the layer i− 1 that
are not neighbors of A. At the end, the algorithm checks whether the OBAP-instance
(N i(r),Qi,Ri) of every layer i can be solved. If this is not the case, then the algorithm
rejects. Otherwise, it concatenates the computed OBA-orderings. The resulting ordering
ρ is used as tie-breaker for a LBFS+ whose result is returned by the algorithm.

The following lemma is a direct consequence of the construction of the elements of Ri

and Lemma 9.

Lemma 10. Let (A,B) ∈ Ri. For any x ∈ A it holds that N(A)∩N i−1(r) ⊆ N(x) and
if B 6= ∅ then there is a vertex y ∈ B with N(B) ∩N i−1(r) ⊆ N(y).

10

Proof. The first claim follows immediately from the construction of Ri in Algorithm 4
(see lines 4 and 8).

For the second claim we first observe that the claim trivially holds if (A,B) was
inserted into Ri in line 4 as |B| = 1. Furthermore, it follows directly that the claim
holds for all elements of Rk. Now assume that the claim holds for all elements of Ri and
let (A′, B′) be an element of Ri−1 with B′ 6= ∅ that was inserted into Ri−1 in line 11.
Then there is an element (A,B) ∈ Ri for which it holds that B′ ⊆ N(B)∩N i−1(r) and, by
assumption on Ri, there is a vertex x ∈ B with B′ ⊆ N(x). This means that all elements
of B′ have a common neighbor inN i(r). It follows from Lemma 9 that the neighborhoods
of the elements of B′ in N i−2(r) can be ordered by inclusion. Thus, there must be a
vertex y ∈ B′ for which it holds that N(B′) ∩N i−2(r) = N(y) ∩N i−2(r) ⊆ N(y).

Using this lemma, we can show the correctness of Algorithm 4.

Theorem 11. Given a connected chordal bipartite graph G, a partial order π on V (G)
and a vertex r ∈ V (G), Algorithm 4 decides in time O(|π| · |V (G)|2) whether there is an
LBFS ordering of G that starts in r and is a linear extension of π.

Proof. We first assume that Algorithm 4 returns an ordering σ. Clearly, this ordering
is an LBFS ordering. In the following we will show that the ordering σ fulfills all OBA
constraints given by the relations Ri. Since all constraints of π are covered by constraints
of some Ri this implies that σ is a linear extension of π.

Assume for contradiction that σ does not fulfill all constraints of the relations Ri.
Let i be the minimal index such that there is a tuple (A,B) ∈ Ri that is not fulfilled
by σ, i.e., there is a vertex y ∈ B that is to the left of any element of A in σ. Since
ρ fulfills the OBA constraints of Ri, there is a vertex x ∈ A that is to the left of y in
ρ. Due to Lemma 2, there must be a vertex z ≺σ y with zy ∈ E(G) and zx /∈ E(G).
If i = 1, then this is not possible since the only neighbor of vertices in N1(r) that is
to the left of some of them is the vertex r and this vertex is adjacent to all vertices in
N1(r). Thus, we may assume that i > 1. Then there is a tuple (A′′, B′) ∈ Ri−1 for
which it holds that A′′ ⊆ [N(A) \N(B)] ∩N i−1(r) and B′ = [N(B) \N(A)] ∩N i−1(r).
The vertex z is in N(B). Due to Lemma 10, the neighborhood of x in N i−1(r) is equal
to the neighborhood of A in N i−1(r) and, thus, x is adjacent to all elements of A′′. As
z /∈ N(x), vertex z is not in N(A) and, thus, vertex z is in B′. From the choice of i it
follows that the tuple (A′′, B′) is fulfilled by σ, i.e., there is a vertex v ∈ A′′ that is to
the left of any element of B′ in σ. Vertex v is not adjacent to y but vertex v is adjacent
to x. Furthermore, any vertex w ≺σ v is either adjacent to x or not adjacent to y since
otherwise w would be an element of B′ to the left of v in σ. Hence, the vertices v, x
and y do not fulfill the 4-point-condition of LBFS in Lemma 1; a contradiction as σ is
an LBFS ordering of G.

Now assume that the LBFS ordering τ of G is a linear extension of π. We will show
that τ fulfills all OBA constraints in any set Ri. Therefore, for any Ri the subordering
of τ containing the elements of N i(r) is an OBA ordering fulfilling Ri and Algorithm 4
never reaches line 16. Hence, it returns some LBFS ordering which is a linear extension
of π as was shown above.

11

Assume for contradiction that τ does not fulfill all OBA constraints. Let i be the
maximal index for which there is a tuple (A′′, B′) ∈ Ri that is not fulfilled by τ , i.e., there
is a vertex y′ ∈ B′ that is to the left of any element of A′′ in τ . Since τ is a linear extension
of π, the tuple (A′′, B′) was inserted into Ri in line 11 and not in line 4. Therefore, there
is a tuple (A,B) ∈ Ri+1 with A′′ ⊆ N(A) ∩ N i(r) and B′ = [N(B) \ N(A)] ∩ N i(r).
Due to the choice of i, the constraint given by (A,B) is fulfilled, i.e, there is a vertex
x ∈ A that is to the left of any element of B in τ . Let y be an element of B such that
N(B)∩N i(r) ⊆ N(y). As B′ is not empty, B is not empty and the vertex y must exist,
due to Lemma 10. It holds that yy′ ∈ E(G) and xy′ /∈ E(G). Due to Lemma 1, there
is a vertex z ≺τ y′ with zx ∈ E(G) and zy /∈ E(G). Let z be the leftmost vertex in
τ fulfilling this property. By the choice of y and y′, the vertex z is not an element of
N(B) ∩ N i(r) and not an element of A′′. However, z ∈ [N(A) \ N(B)] ∩ N i(r). Due
to Lemma 10, there is a vertex in A that is adjacent to all vertices in N(A) ∩N i(r). It
follows from Lemma 9 that the neighborhoods in N i−1(r) of the vertices contained in
N(A) ∩N i(r) are ordered by inclusion. Therefore, there must be a vertex z′ in the set
X = [N(A)\N(B)]∩N i(r) whose neighborhood in N i−1(r) is equal to the neighborhood
of the set X in N i−1(r). Due to the construction of A′′ in Algorithm 4, the vertex z′ is
in A′′. Furthermore, it holds that z ≺τ z′, due to the choice of z. However, it holds that
N(z)∩N i−1(r) (N(z′)∩N i−1(r) as z is not in A′′. Note that any neighbor of z to the
left of z in τ must be in N i−1(r) and, thus, it is also a neighbor of z′. Furthermore, there
is at least one neighbor a of z′ in N i−1(r) that is not adjacent to z. As vertex a must
be also to the left of z in τ , the vertices a, z and z′ contradict the 4-point condition of
LBFS given in Lemma 1.

It remains to show that the algorithm has a running time within the given bound.
In a pre-processing step we compute the size of the neighborhood of every vertex in its
preceding layer. This can be done in time linear in the size of the graph. Then we
can compute the tuple (A′′, B′) ∈ Ri−1 for any tuple (A,B) ∈ Ri in time |V (G)| as
the vertices in A and B with the most neighbors in the preceding layer are exactly the
vertices that are adjacent to all neighbors of A and B in the preceding layer, due to
Lemma 10. For any tuple in π, there is at most one tuple in every Ri. Thus, the total
number of tuples in the R-sets is bounded by |π| · |V (G)| and the total size of the sets in
these tuples is bounded by |π| · |V (G)|2. By Theorem 8, we need time O(|π| · |V (G)|2) in
total to solve all OBA instances. The final LBFS+ needs only linear time (c.f. [13]).

Due to Observation 4, we can solve the end-vertex problem of LBFS on chordal bi-
partite graphs by solving the rooted PSOP |V (G)| times with a partial order of size
O(|V (G)|). This leads to the following time bound.

Corollary 12. Given a connected chordal bipartite graph G, we can solve the end-vertex
problem of LBFS on G in time O(|V (G)|4) .

Similarly, it follows from Proposition 5 that the rooted F-tree recognition problem
can be solved in time O(|V (G)|4). Different to the general case, we can show that for
BFS orderings of bipartite graphs the L-tree recognition problem can also be reduced to
the partial search order problem.

12

Proposition 13. The rooted L-tree recognition problem of any graph search A that
produces BFS orderings can be solved on a bipartite graph G by solving the rooted PSOP
of A on G.

Proof. For every vertex y 6= r with parent x in T , we insert the tuple (x, y) to the partial
order π. For any neighbor z of y that is in the same layer as x, we insert the tuple (z, x)
to π. We claim that any BFS ordering σ extending π has T as its L-tree. Let ab be
an edge of T . W.l.o.g. vertex a is the parent of b. From the construction of π and σ
it follows that a ≺σ b. Let c be a neighbor of b different from a with c ≺σ b. As G is
bipartite and σ is a BFS ordering, vertex c is in the same layer as the vertex a. Hence,
it holds that c ≺π a. As σ is a linear extension of π, it also holds that c ≺σ a. Thus, c is
not adjacent to b in the L-tree of σ. This implies that a is the parent of b in this L-tree
and, thus, the L-tree of σ is equal to T .

This proposition and the observation above lead to the following time bound for the
search tree recognition problems on chordal bipartite graphs.

Corollary 14. On a chordal bipartite graph G, we can solve the rooted F-tree and the
rooted L-tree recognition problem of LBFS in time O(|V (G)|4).

6 Partial LBFS and MCS Orders of Split Graphs

Both the end-vertex problem and the F-tree recognition problem of several searches are
well studied on split graphs (see [2, 4, 8]). In this section we will generalize some of these
results to the partial search order problem.

Consider a split graph G with a split partition consisting of a clique C and an in-
dependent set I. During a computation of an MNS ordering of G, every vertex that
has labeled some vertex in I has also labeled every unnumbered vertex contained in
C. Therefore, we can choose a vertex of C as the next vertex as long as there are still
unnumbered vertices in C. This means that it is not a problem to force a clique vertex
to be to the left of an independent vertex in an MNS ordering. However, forcing a vertex
of I to be to the left of a vertex of C is more difficult. We will call a vertex of I that
is left to a vertex of C in a vertex ordering σ a premature vertex of σ. The neighbors
of such a premature vertex must fulfill a strong condition on their positions in σ as the
following lemma shows.

Lemma 15 ([1, Lemma 22]). Let G be a split graph with a split partition consisting of
the clique C and the independent set I. Let σ be an MNS ordering of G. If the vertex
x ∈ I is a premature vertex of σ, then any vertex of C that is to the left of x in σ is a
neighbor of x and any non-neighbor of x that is to the right of x in σ is also to the right
of any neighbor of x in σ.

Similar to total orders we will call a vertex x ∈ I a premature vertex of partial order
π if there is an element y ∈ C with x ≺π y. To decide whether a partial order π can
be extended by an MNS ordering the set of premature vertices of π must fulfill strong
properties which we define in the following.

13

Definition 16. Let G be a split graph with a split partition consisting of the clique C
and the independent set I. Let π be a partial order on V (G) and let A be a subset of I.
The tuple (π,A) fulfills the nested property if the following conditions hold:

(N1) If y ∈ C and x ≺π y, then x ∈ C ∪A.

(N2) The neighborhoods of the elements of A can be ordered by inclusion, i.e., there
are pairwise disjoint sets C1, I1, C2, I2, . . . , Ck, Ik with

⋃k
j=1

Ij = A and for any

i ∈ {1, . . . , k} and any x ∈ Ii it holds that N(x) =
⋃i

j=1
Cj.

(N3) If y ∈ Ci ∪ Ii and x ≺π y, then x ∈ Cj ∪ Ij with j ≤ i.

(N4) For any i ∈ {1, . . . , k} there is at most one vertex x ∈ Ii for which there exists a
vertex y ∈ Ci with x ≺π y.

The nested partial order πN (π,A) is defined as the reflexive and transitive closure of the
relation containing the following tuples:

(P1) (x, y) ∀x, y ∈ V (G) with x ≺π y

(P2) (x, y) ∀x ∈ Ii ∪ Ci, y ∈ V (G) \
⋃i

j=1
(Ij ∪ Cj)

(P3) (x, y) ∀x ∈ C, y ∈ I \A

(P4) (x, y) ∀x, y ∈ Ii for which ∃z ∈ Ci with x ≺π z

It is straightforward to check that πN (π,A) is a partial order if (π,A) fulfills the nested
property. We first show that the set A of the premature vertices of a partial order π
must necessarily fulfill the nested property if there is an MNS ordering extending π.
Furthermore, any such MNS ordering fulfills a large subset of the constraints given by
the nested partial order πN (π,A).

Lemma 17. Let G be a split graph with a split partition consisting of the clique C and
the independent set I and let π be a partial order on V (G). Let A = {v ∈ I | ∃w ∈
C with v ≺π w}. If there is an MNS ordering σ of G extending π, then (π,A) fulfills
the nested property. If x ≺σ y but (y, x) ∈ πN (π,A), then x /∈ A ∪ C.

Proof. Due to the definition of A, the property (N1) trivially holds true. Let σ be an
MNS ordering extending π.

Claim 1 If x, y ∈ A and x ≺σ y, then N(x) ⊆ N(y): As y ∈ A, there is a vertex
c ∈ C with y ≺π c. Since σ is a linear extension of π it also holds that x ≺σ y ≺σ c.
Due to Lemma 15, any neighbor of x is to the left of y in σ and all these vertices are
also neighbors of y. Hence, N(x) ⊆ N(y). �

Claim 1 implies that (N2) holds. Thus, we may assume in the following that the sets
Ci and Ii defined in (N2) exist.

Claim 2 If y ∈ Ii and x ≺σ y, then either x ∈ Cj ∪ Ij for some j ≤ i or x 6≺π y and
x /∈ A ∪ C: As y ∈ A, there is a vertex c ∈ C with y ≺π c. If x ∈ C, then it follows
from Lemma 15 that x ∈ N(y) and, therefore, x ∈ Cj for some j ≤ i. Thus, we may

14

assume that x ∈ I. Due to Claim 1, it holds N(x) ⊆ N(y). Thus, if x ∈ A, then x ∈ Ij
for some j ≤ i. On the other hand, if x ≺π y, then the transitivity of π implies that
x ≺π c and, thus, x is an element of A. Thus, in any case Claim 2 holds. �

Claim 2 implies that (N3) holds for all elements of all sets Ii since x ≺π y implies that
x ≺σ y.

Claim 3 If y ∈ Ci and x ≺σ y, then either x ∈ Cj ∪ Ij for some j ≤ i or x 6≺π y and
x /∈ A ∪ C: First assume that x ∈ C. If there is any vertex z ∈ Ii with x ≺σ z, then
Claim 2 implies directly that x fulfills the conditions of Claim 3. Thus, we may assume
that there is a vertex z ∈ Ii with z ≺σ x. As y ∈ N(z), it follows from Lemma 15 that x
is also in N(z) and, therefore, in some Cj with j ≤ i. Now assume that x ∈ I. It follows
from Lemma 15, that x ∈ N(y). Thus, if x ∈ A, then x ∈ Ij for some j ≤ i. On the
other hand, if x ≺π y, then x is in A. Thus, in any case Claim 3 holds. �

Similar to Claim 2, Claim 3 implies that (N3) holds for any element of any Ci. There-
fore, we have proven that (N3) holds in general.

To prove (N4), assume that there is vertex x ∈ Ii and a vertex y ∈ Ci with x ≺σ y.
Let x be the leftmost vertex of Ii in σ. By Lemma 15 any other vertex z ∈ Ii must be
to the right of any neighbor of x. Thus, z is to the right of any vertex c ∈ Ci in σ and
z 6≺π c for any c ∈ Ci. This implies property (N4).

Finally assume that there are vertices x, y ∈ V (G) with x ≺σ y but (y, x) ∈ πN (π,A).
The tuple (y, x) cannot be a tuple of π since σ is a linear extension of π. If y ∈ A∪N(A),
then it follows from Claims 2 and 3 that x /∈ A ∪ C. If y /∈ A ∪ N(A) and (y, x) /∈ π,
then it follows from the construction of πN (π,A) that x is an element of I \A. Thus, in
any case x /∈ A ∪C.

The nested property is, in a restricted way, also sufficient for the existence of a MNS
ordering extending π. We show that if (π,A) fulfills the nested property, then there is
an MNS ordering that fulfills all tuples of π that contain elements of the set A or the
clique C. This ordering can be found using an A+-algorithm.

Lemma 18. Let G be a split graph with a split partition consisting of the clique C and
the independent set I, let π be a partial order on V (G) and A be a subset of I. Assume
(π,A) fulfills the nested property and let ρ be a linear extension of π′ = πN (π,A). Then
for any graph search A ∈ {MNS, MCS, LBFS} the ordering σ = A+(ρ) of G fulfills the
following property: If x ≺π′ y, then x ≺σ y or both x and y are not in A ∪ C.

Proof. Assume for contradiction that σ does not fulfill this property. Let π′ = πN (π,A).
Let x be the leftmost vertex in σ such that there is a vertex y ∈ V (G) with x ≺σ y,
y ≺π′ x and at least one of x and y are in A ∪ C. Since ρ is a linear extension of π′,
it holds that y ≺ρ x. Due to Lemma 2, there must be a vertex z ∈ V (G) with z ≺σ x,
xz ∈ E(G) and yz /∈ E(G).

First assume that y ∈ I. If x is in A or in C, then y ∈ A, due to property (N3) or
(N1), respectively. Otherwise, y ∈ A by the choice of x and y. Thus, in any case, we
may assume that y ∈ A. Due to the choice of x, it must hold that y 6≺π′ z. Let Ii be the
set containing y. Since yz /∈ E(G) and y 6≺π′ z it follows that z ∈

⋃i
j=1

Ij . Therefore,

x ∈
⋃i

j=1
Cj since xz ∈ E(G). As y ≺π′ x it follows from (N3) that x ∈ Ci and, hence,

15

z ∈ Ii. Furthermore, (y, x) can only be an element of π′ if it is an element of π. However,
this a contradiction to the choice of x as now y ≺π′ z holds true, due to (P4) in the
definition of π′.

So we may assume that y ∈ C. As xz ∈ E(G) and yz /∈ E(G), it follows that z ∈ I
and x ∈ C. Since N(z) ⊆ N(x) ∪ {x} and z ≺σ x it follows from Lemma 2 that z ≺ρ x
and, therefore, x 6≺π′ z. By the definition of π′, it holds that z ∈ A. Let z ∈ Ii. Then
x ∈ Ci since xz ∈ E(G) and x 6≺π′ z. As y ≺π′ x, vertex y must be in Cj with j ≤ i.
Therefore, yz ∈ E(G); a contradiction.

After an instance of Algorithm 1 has visited all the clique vertices of a split graph,
the labels of the remaining independent vertices do not change anymore. Thus, a vertex
x whose label is now smaller than the label of another vertex y will be taken after y.
Therefore, it is not enough to consider only the premature vertices of π. Instead, we must
also consider all independent vertices x that π forces to be left of another independent
vertex y whose label is larger than the label of x if all clique vertices are visited. In the
case of MCS this is sufficient to characterize partial orders that are extendable.

Lemma 19. Let G be a split graph with a split partition consisting of the clique C and
the independent set I. Let π be a partial order on V (G). Let A := {u ∈ I | ∃v ∈
V (G) with v ∈ C or |N(u)| < |N(v)| such that u ≺π v}. There is an MCS ordering
which is a linear extension of π if and only if (π,A) fulfills the nested property.

Proof. First we show that it is necessary that A fulfills the nested property. To this
end, we create the relation π∗ by adding the following tuples to π: If u, v ∈ I, u ≺π v
and |N(u)| < |N(v)|, then (u,w) ∈ π∗ where w is some element of C \N(u). Note that
such a vertex w must exist since v has at least one neighbor that u does not have. We
claim that any MCS ordering σ that extends π is also a linear extension of π∗. Assume
for contradiction that the tuple (u,w) in π∗ \ π is not fulfilled by σ, i.e., w ≺σ u. As
w ∈ C and w /∈ N(u), it follows from Lemma 15 that all vertices of C are to the left
of u in σ. Since σ is a linear extension of π, it holds that u ≺σ v. However, this is
contradiction since the number of visited neighbors of u would have been strictly smaller
than the number of visited neighbors of v when u was chosen by the MCS. Therefore, σ
is a linear extension of π∗ and the reflexive and transitive closure πT of π∗ is a partial
order. Note that a vertex x is an element of A if and only if there is a vertex y ∈ C with
y ≺π∗ x. Thus, by Lemma 17 it follows that (πT , A) fulfills the nested property. Since
π is a subset of πT , the tuple (π,A) also fulfills the nested property.

It remains to show that the property is also sufficient. Assume that (π,A) fulfills
the nested property. Let ρ be a linear extension of πN (π,A) and σ be the ordering
produced by MCS+(ρ). Then, by Lemma 18, the ordering σ fulfills the condition x ≺π y
if {x, y}∩(A∪C) 6= ∅. It remains to show that x ≺σ y also holds for any pair x, y /∈ A∪C
with x ≺π y. As x is not in A, it must hold that |N(x)| ≥ |N(y)|. Due to the definition
of πN (π,A) and Lemma 18, for any vertex z ∈ C it holds that z ≺σ x and z ≺σ y. Thus,
vertex x must be to the left of y in σ since its number of visited numbers was at least
as large as the number of visited neighbors of y and x ≺ρ y.

This lemma implies a linear-time algorithm for the PSOP of MCS on split graphs.

16

Theorem 20. Given a split graph G and a partial order π on V (G), we can solve the
partial search order problem of MCS in time O(|V (G)| + |E(G)| + |π|).

Proof. First we compute the set A by iterating through all elements (u, v) ∈ π and
checking whether one of the two properties given in Lemma 19 hold. This can be done
in time O(|π|). To check condition (N2) in time O(|V (G)|+|E(G)|) we use the algorithm
described in the proof of Proposition 14 in [2]. During this process, we can label every
vertex in A ∪ N(A) with the index of its I-set or C-set and all other vertices with the
label ∞. To check condition (N3) we iterate through π a second time. Now we check
whether for all x ≺π y it holds that the label of x is smaller or equal to the label of y
and whether there is at most one vertex x in set Ii for which there exists a vertex y in
Ci with x ≺π y.

This is a generalization of the linear-time algorithms for the end-vertex problem [2]
and the F-tree recognition problem [3] of MCS on split graphs.

For LBFS there is a characterization of extendable partial orders that is similar to
Lemma 19. However, due to the more complex label structure of LBFS, the result is
slightly more complicated and uses OBA-orderings.

Lemma 21. Let G be a split graph with a split partition consisting of the clique C and
the independent set I. Let π be a partial order on V (G). Let A := {u ∈ I | ∃v ∈
V (G) with v ∈ C or N(u) (N(v) such that u ≺π v}. Let π′ be the nested partial order
πN (π,A) and let R be the following relation:

R = {(X,Y) | ∃x, y ∈ I \ A with X = N(x) \N(y), Y = N(y) \N(x), x ≺π y}

∪ {({x}, {y}) | x, y ∈ C, x ≺π′ y}.

There is an LBFS ordering extending π if and only if the tuple (π,A) fulfills the nested
property and there is an OBA-ordering for (C,Q,R) where Q is the ground set of R.

Proof. Assume that the two conditions are fulfilled and let τ be an OBA ordering for
the input (C,Q,R). Since τ fulfills the constraints of π′ on C, we can insert all elements
of I into τ such that the resulting ordering ρ is a linear extension of π′. Let σ be the
LBFS+(ρ) ordering of G. Due to Lemma 18, for any x, y ∈ A ∪ C with x ≺π y it holds
x ≺σ y. Assume for contradiction that there are vertices a, b ∈ I \ A with a ≺π b but
b ≺σ a. Since ρ is a linear extension of π, it follows from Lemma 2 that N(b) \N(a) is
not empty. Since a /∈ A, it holds that N(a) 6⊆ N(b) and, therefore, the set N(a) \N(b)
is also not empty. Due to the construction of R and ρ, there is a vertex c ∈ N(a) \N(b)
that is to the left of any element of N(b) \ N(a) in ρ. If this also holds in σ, then b
cannot be to the left of a in σ, due to the 4-point condition of LBFS in Lemma 1. Thus,
there must be a vertex d ∈ N(b) \ N(a) that is to the left of c in σ. Since c ≺ρ d, it
follows from Lemma 2 that there is a vertex z with z ≺σ d, zd ∈ E(G) and zc /∈ E(G).
Since both c and d are elements of C, the vertex z must be an element of I. If z /∈ A,
then d ≺π′ z. This contradicts Lemma 18 since z ≺σ d and d ∈ C. Therefore, we may
assume that z ∈ A. However, this means that d is an element of some Ci and c is not

17

an element of a Cj with j ≤ i. Thus, d ≺π′ c, a contradiction to the fact that c ≺ρ d
and that ρ is a linear extension of π′.

We will now show that the conditions are also necessary. Assume that the LBFS
ordering σ is a linear extension of π. First we show that (π,A) fulfills the nested property
in a similar way we have done it in Lemma 19. We create the relation π∗ by adding the
following tuples to π: If u, v ∈ I, u ≺π v and N(u) (N(v), then (u,w) ∈ π∗ where w
is some vertex in C \ N(u). Note that such a vertex w must exist since v has at least
one neighbor that u does not have. We claim that σ is also a linear extension of π∗.
Assume for contradiction that the tuple (u,w) in π∗ \π is not fulfilled by σ, i.e., w ≺σ u.
As w ∈ C and w /∈ N(u), it follows from Lemma 15 that all vertices of C are to the
left of u in σ. Since σ is a linear extension of π, it holds that u ≺σ v. However, this is
contradiction since the label of u would have been strictly smaller than the label of v
when u was chosen by LBFS. Therefore, σ is a linear extension of π∗ and the reflexive
and transitive closure πT of π∗ is a partial order. Note that a vertex x is an element of
A if and only if there is a vertex y ∈ C with y ≺π∗ x. Thus, by Lemma 17 it follows
that (πT , A) fulfills the nested property. Since π is a subset of πT , the tuple (π,A) also
fulfills the nested property.

To show that the second condition also holds, we will prove that the ordering of the
vertices of C in σ builds an OBA ordering for (C,Q,R). Assume for contradiction that
there is a tuple (X,Y) ∈ R that is not fulfilled by σ, i.e., there is a vertex b ∈ Y that
is to the left of any vertex a ∈ X in σ. For any u, v ∈ C with u ≺π′ v it follows
from Lemma 17 that u ≺σ v. Therefore, we may assume that X = N(x) \ N(y) and
Y = N(y)\N(x) for some x, y ∈ I \A with x ≺π y. It holds that x ≺σ y, that by ∈ E(G)
and that bx /∈ E(G). By the choice of b, for any vertex z ≺σ b the edge yz is in E(G) or
the edge xz is not in E(G). If b ≺σ x, then this implies that σ is not an LBFS ordering,
due to Lemma 1. Otherwise, we can observe that the set X is not empty since in this
case N(x) (N(y) would hold and this would imply that x ∈ A. Let a ∈ X, then it holds
that x ≺σ b ≺σ a. This, however, contradicts Lemma 15 as x ∈ I, b ∈ C, bx /∈ E(G) but
ax ∈ E(G).

Again, this characterization leads to an efficient algorithm for the PSOP of LBFS on
split graphs. However, its running time is not linear.

Theorem 22. Given a split graph G and a partial order π on V (G), we can solve the
partial search order problem of LBFS in time O(|V (G)| · |π|).

Proof. First note that |V (G)| ≤ |π| ≤ |V (G)|2 as π contains all reflexive tuples. We can
compute the set A defined in Lemma 21 in time O(|π| · |V (G)|) by iterating through the
tuples of π and comparing the neighborhoods of the two vertices in time O(|V (G)|). We
check whether A fulfills the property (N2) and compute the corresponding sets Ii and
Ci in the same way we have done it in the proof of Theorem 20. Now we can compute
the nested partial order π′ = πN (π,A) in time O(|V (G)|2). We extend the relation R
defined in Lemma 21 by the set S = {({x}, {y}) | x, y ∈ V (G), x ≺π′ y} and get the
relation R′. The size of S is bounded by O(|V (G)|2) ⊆ O(V (G) · |π|). The size of R′ \S
is bounded by O(|π|) since we have inserted at most one tuple to R for any element of π.

18

a b

c
d e

f g

Figure 1: A split graph consisting of clique {a, b, c} and independent set {d, e, f, g}. Let
π be the reflexive and transitive closure of the relation {(f, e), (g, d)}. There
is no MCS ordering extending π since the set A defined in Lemma 19 contains
both f and g and, thus, (π,A) does not fulfill the nested property. There is
neither an LBFS ordering extending π as there is no OBA ordering for the
relation R = {({a}, {b, c}), ({b}, {a, c})} defined in Lemma 21. However, the
MNS ordering (f, a, b, c, e, g, d) extends π.

Since the size of the elements of the ground set of R′ is bounded by |V (G)|, the total size
of R′, its ground set Q and the elements of Q is bounded by O(|V (G)| · |π|). We compute
an OBA ordering for the input (V (G),R′,Q) in time O(|V (G)| · |π|) using Algorithm 3.
Due to Lemma 21, there is an LBFS ordering extending π if and only if such an OBA
ordering ρ exists. The algorithm has a total running time in O(|V (G)| · |π|).

Unfortunately, the ideas of Lemmas 19 and 21 cannot be directly adapted to the PSOP
of MNS. A main difficulty of this problem seems to be the identification of independent
vertices that have to be premature vertices. To illustrate this, we consider the example
given in Fig. 1. The defined partial order π has no premature vertices. Furthermore,
the set A defined in Lemma 21 is empty for π. Nevertheless, for any MNS ordering σ
extending π, one of the vertices f or g has to be a premature vertex of σ.

7 Further Research

Besides the cases considered in this paper, there are several other combinations of graph
classes and searches for which both the end-vertex problem and the F-tree recognition
problem can be solved efficiently. Examples are the searches MNS and MCS on chordal
graphs [2, 4, 7]. Can all these results be generalized to the PSOP or is there a combination
of graph search and graph class where the PSOP is hard but both the end-vertex problem
and the F-tree recognition problem can be solved in polynomial time?

As mentioned in the introduction, the graph searches considered in this paper are
used to solve several problems on graphs efficiently. This leads to the question whether
the construction of a search ordering that extends a special partial order can be used
in efficient algorithms for problems besides the end-vertex problem and the search tree
recognition problem.

The algorithms given in this paper use the complete partial order as input. Using a
Hasse diagram, it is possible to encode a partial order more efficiently. Since there are
partial orders of quadratic size where the Hasse diagram has only linear size (e.g. total
orders), it could be a good idea to study the running time of the algorithms for instances
of the PSOP where the partial order is given as Hasse diagram.

19

References

[1] Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač,
Robert Scheffler, and Martin Strehler. Recognizing graph search trees. Preprint on
arXiv, 2018. doi:10.48550/arXiv.1811.09249.

[2] Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač,
Robert Scheffler, and Martin Strehler. On the End-Vertex Problem of Graph
Searches. Discrete Mathematics & Theoretical Computer Science, 21(1), 2019.
doi:10.23638/DMTCS-21-1-13.

[3] Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač,
Robert Scheffler, and Martin Strehler. Recognizing graph search trees. In Pro-
ceedings of Lagos 2019, the tenth Latin and American Algorithms, Graphs and
Optimization Symposium, volume 346 of ENTCS, pages 99–110. Elsevier, 2019.
doi:10.1016/j.entcs.2019.08.010.

[4] Jesse Beisegel, Carolin Denkert, Ekkehard Köhler, Matjaž Krnc, Nevena Pivač,
Robert Scheffler, and Martin Strehler. The recognition problem of graph
search trees. SIAM Journal on Discrete Mathematics, 35(2):1418–1446, 2021.
doi:10.1137/20M1313301.

[5] Anne Berry, Jean R.S. Blair, Pinar Heggernes, and Barry W. Peyton. Maximum
cardinality search for computing minimal triangulations of graphs. Algorithmica,
39(4):287–298, 2004. doi:10.1007/s00453-004-1084-3.

[6] Anna Bretscher, Derek Corneil, Michel Habib, and Christophe Paul. A simple
linear time LexBFS cograph recognition algorithm. SIAM Journal on Discrete
Mathematics, 22(4):1277–1296, 2008. doi:10.1137/060664690.

[7] Yixin Cao, Zhifeng Wang, Guozhen Rong, and Jianxin Wang. Graph Searches
and Their End Vertices. In Pinyan Lu and Guochuan Zhang, editors, 30th
International Symposium on Algorithms and Computation (ISAAC 2019), vol-
ume 149 of Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–
1:18, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ISAAC.2019.1.

[8] Pierre Charbit, Michel Habib, and Antoine Mamcarz. Influence of the tie-break
rule on the end-vertex problem. Discrete Mathematics and Theoretical Computer
Science, 16(2):57, 2014. doi:10.46298/dmtcs.2081.

[9] Frank Pok Man Chu. A simple linear time certifying LBFS-based algorithm for
recognizing trivially perfect graphs and their complements. Information Processing
Letters, 107(1):7–12, 2008. doi:10.1016/j.ipl.2007.12.009.

[10] Derek G. Corneil, Jérémie Dusart, Michel Habib, Antoine Mamcarz, and Fabien
De Montgolfier. A tie-break model for graph search. Discrete Applied Mathematics,
199:89–100, 2016. doi:10.1016/j.dam.2015.06.011.

20

https://doi.org/10.48550/arXiv.1811.09249
https://doi.org/10.23638/DMTCS-21-1-13
https://doi.org/10.1016/j.entcs.2019.08.010
https://doi.org/10.1137/20M1313301
https://doi.org/10.1007/s00453-004-1084-3
https://doi.org/10.1137/060664690
https://doi.org/10.4230/LIPIcs.ISAAC.2019.1
https://doi.org/10.46298/dmtcs.2081
https://doi.org/10.1016/j.ipl.2007.12.009
https://doi.org/10.1016/j.dam.2015.06.011

[11] Derek G. Corneil, Ekkehard Köhler, and Jean-Marc Lanlignel. On end-vertices of
lexicographic breadth first searches. Discrete Applied Mathematics, 158(5):434–443,
2010. doi:10.1016/j.dam.2009.10.001.

[12] Derek G. Corneil and Richard M. Krueger. A unified view of graph
searching. SIAM Journal on Discrete Mathematics, 22(4):1259–1276, 2008.
doi:10.1137/050623498.

[13] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. The LBFS structure and
recognition of interval graphs. SIAM Journal on Discrete Mathematics, 23(4):1905–
1953, 2009. doi:10.1137/S0895480100373455.

[14] Jérémie Dusart and Michel Habib. A new LBFS-based algorithm for cocom-
parability graph recognition. Discrete Applied Mathematics, 216:149–161, 2017.
doi:10.1016/j.dam.2015.07.016.

[15] Jan Gorzny and Jing Huang. End-vertices of LBFS of (AT-free) bigraphs. Discrete
Applied Mathematics, 225:87–94, 2017. doi:10.1016/j.dam.2017.02.027.

[16] Torben Hagerup. Biconnected graph assembly and recognition of DFS trees. Techni-
cal Report A 85/03, Universität des Saarlandes, 1985. doi:10.22028/D291-26437.

[17] Torben Hagerup and Manfred Nowak. Recognition of spanning trees defined by
graph searches. Technical Report A 85/08, Universität des Saarlandes, 1985.

[18] John Hopcroft and Robert E. Tarjan. Efficient planarity testing. Journal of the
ACM, 21(4):549–568, 1974. doi:10.1145/321850.321852.

[19] Richard Krueger, Geneviève Simonet, and Anne Berry. A general label search to
investigate classical graph search algorithms. Discrete Applied Mathematics, 159(2-
3):128–142, 2011. doi:10.1016/j.dam.2010.02.011.

[20] P. Sreenivasa Kumar and C. E. Veni Madhavan. Minimal vertex separa-
tors of chordal graphs. Discrete Applied Mathematics, 89(1):155–168, 1998.
doi:10.1016/S0166-218X(98)00123-1.

[21] Donald J. Rose, R. Endre Tarjan, and George S. Lueker. Algorithmic aspects of
vertex elimination on graphs. SIAM Journal on Computing, 5(2):266–283, 1976.
doi:10.1137/0205021.

[22] Robert E. Tarjan and Mihalis Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively re-
duce acyclic hypergraphs. SIAM Journal on Computing, 13(3):566–579, 1984.
doi:10.1137/0213035.

21

https://doi.org/10.1016/j.dam.2009.10.001
https://doi.org/10.1137/050623498
https://doi.org/10.1137/S0895480100373455
https://doi.org/10.1016/j.dam.2015.07.016
https://doi.org/10.1016/j.dam.2017.02.027
https://doi.org/10.22028/D291-26437
https://doi.org/10.1145/321850.321852
https://doi.org/10.1016/j.dam.2010.02.011
https://doi.org/10.1016/S0166-218X(98)00123-1
https://doi.org/10.1137/0205021
https://doi.org/10.1137/0213035

	1 Introduction
	2 Preliminaries
	3 The Partial Search Order Problem
	4 One-Before-All Orderings
	5 Partial LBFS Orders of Chordal Bipartite Graphs
	6 Partial LBFS and MCS Orders of Split Graphs
	7 Further Research

