
Token sliding on graphs of girth five?

Valentin Bartier1??, Nicolas Bousquet1? ? ?, Jihad Hanna2,
Amer E. Mouawad2,3†, and Sebastian Siebertz3

1 CNRS, LIRIS, Université de Lyon, Université Claude Bernard Lyon 1, France
2 American University of Beirut, Lebanon

3 University of Bremen, Germany

Abstract. In the Token Sliding problem we are given a graph G
and two independent sets Is and It in G of size k ≥ 1. The goal is to
decide whether there exists a sequence 〈I1, I2, . . . , I`〉 of independent sets
such that for all i ∈ {1, . . . , `} the set Ii is an independent set of size k,
I1 = Is, I` = It and Ii4Ii+1 = {u, v} ∈ E(G). Intuitively, we view each
independent set as a collection of tokens placed on the vertices of the graph.
Then, the problem asks whether there exists a sequence of independent
sets that transforms Is into It where at each step we are allowed to slide
one token from a vertex to a neighboring vertex. In this paper, we focus
on the parameterized complexity of Token Sliding parameterized by k.
As shown by Bartier et al. [2], the problem is W[1]-hard on graphs of girth
four or less, and the authors posed the question of whether there exists a
constant p ≥ 5 such that the problem becomes fixed-parameter tractable
on graphs of girth at least p. We answer their question positively and
prove that the problem is indeed fixed-parameter tractable on graphs of
girth five or more, which establishes a full classification of the tractability
of Token Sliding parameterized by the number of tokens based on the
girth of the input graph.

1 Introduction

Many algorithmic questions present themselves in the following form: Given the
description of a system state and the description of a state we would prefer the
system to be in, is it possible to transform the system from its current state
into the more desired one without “breaking” certain properties of the system
in the process? Such questions, with some generalizations and specializations,
have received a substantial amount of attention under the so-called combinatorial
reconfiguration framework [9, 27,29].

? This work is supported by PHC Cedre project 2022 “PLR”. A Preliminary version of
the work appeared in the 48th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG 2022).

?? Supported by ANR project GrR (ANR-18-CE40-0032).
? ? ? Supported by ANR project GrR (ANR-18-CE40-0032).

† Research supported by the Alexander von Humboldt Foundation and partially
supported by URB project “A theory of change through the lens of reconfiguration”.

ar
X

iv
:2

20
5.

01
00

9v
1

 [
cs

.C
C

]
 2

 M
ay

 2
02

2

2 N. Bousquet, J. Hanna, A.E. Mouawad, and S. Siebertz

Historically, the study of reconfiguration questions predates the field of com-
puter science, as many classic one-player games can be formulated as reachability
questions [19, 21], e.g., the 15-puzzle and Rubik’s cube. More recently, reconfigu-
ration problems have emerged from computational problems in different areas
such as graph theory [10,16,17], constraint satisfaction [14,25], computational
geometry [24], and even quantum complexity theory [13]. We refer the reader to
the surveys by van den Heuvel [27] and Nishimura [26] for extensive background
on combinatorial reconfiguration.

Independent set reconfiguration. In this work, we focus on the reconfiguration of
independent sets. Given a simple undirected graph G, a set of vertices S ⊆ V (G)
is an independent set if the vertices of this set are pairwise non-adjacent. Finding
an independent set of size k, i.e., the Independent Set problem, is known
to be NP-hard, but also W[1]-hard4 parameterized by solution size k and not
approximable within O(n1−ε), for any ε > 0, unless P = NP [30]. Moreover,
Independent Set remains W[1]-hard on graphs excluding C4 (the cycle on four
vertices) as an induced subgraph [7].

We view an independent set as a collection of tokens placed on the vertices
of a graph such that no two tokens are placed on adjacent vertices. This gives
rise to two natural adjacency relations between independent sets (or token
configurations), also called reconfiguration steps. These reconfiguration steps, in
turn, give rise to two combinatorial reconfiguration problems.

In the Token Sliding problem, introduced by Hearn and Demaine [15],
two independent sets are adjacent if one can be obtained from the other by
removing a token from a vertex u and immediately placing it on another vertex v
with the requirement that {u, v} must be an edge of the graph. The token is
then said to slide from vertex u to vertex v along the edge {u, v}. Generally
speaking, in the Token Sliding problem, we are given a graph G and two
independent sets Is and It of G. The goal is to decide whether there exists a
sequence of slides (a reconfiguration sequence) that transforms Is to It. The
problem has been extensively studied under the combinatorial reconfiguration
framework [6,8,11,12,18,20,23]. It is known that the problem is PSPACE-complete,
even on restricted graph classes such as graphs of bounded bandwidth (and hence
pathwidth) [28], planar graphs [15], split graphs [4], and bipartite graphs [22].
However, Token Sliding can be decided in polynomial time on trees [11], interval
graphs [6], bipartite permutation and bipartite distance-hereditary graphs [12],
and line graphs [16].

In the Token Jumping problem, introduced by Kamiński et al. [20], we drop
the restriction that the token should move along an edge of G and instead we
allow it to move to any vertex of G provided it does not break the independence
of the set of tokens. That is, a single reconfiguration step consists of first removing
a token on some vertex u and then immediately adding it back on any other
vertex v, as long as no two tokens become adjacent. The token is said to jump
from vertex u to vertex v. Token Jumping is also PSPACE-complete on graphs

4 Informally, this means that it is unlikely to be fixed-parameter tractable.

Token sliding on graphs of girth five 3

of bounded bandwidth [28] and planar graphs [15]. Lokshtanov and Mouawad [22]
showed that, unlike Token Sliding, which is PSPACE-complete on bipartite
graphs, the Token Jumping problem becomes NP-complete on bipartite graphs.
On the positive side, it is “easy” to show that Token Jumping can be decided
in polynomial-time on trees (and even on split/chordal graphs) since we can
simply jump tokens to leaves (resp. vertices that only appear in the bag of a leaf
in the clique tree) to transform one independent set into another.

In this paper we focus on the parameterized complexity of the Token Sliding
problem on graphs where cycles with prescribed lengths are forbidden. Given
an NP-hard problem, parameterized complexity permits to refine the notion
of hardness; does the hardness come from the whole instance or from a small
parameter? A problem Π is FPT (fixed-parameter tractable) parameterized by k
if one can solve it in time f(k) · poly(n), for some computable function f . In
other words, the combinatorial explosion can be restricted to the parameter k.
In the rest of the paper, our parameter k will be the size of the independent
set (i.e. the number of tokens). Token Sliding is known to be W[1]-hard
parameterized by k on general [23] and bipartite [2] graphs. It remains W[1]-hard
on {C4, . . . , Cp}-free graphs for any p ∈ N [2] and becomes FPT parameterized
by k on bipartite C4-free graphs. The Token Jumping problem is W[1]-Hard
on general graphs [18] and is FPT when parameterized by k on graphs of girth
five or more [2]. For graphs of girth four, it was shown that Token Jumping
being FPT would imply that Gap-ETH, an unproven computational hardness
hypothesis, is false [1]. Both Token Jumping and Token Sliding were recently
shown to be XL-complete [5].

Our result. The complexity of the Token Jumping problem parameterized by k
is settled with regard to the girth of the graph, i.e., the problem is unlikely to be
FPT for graphs of girth four or less and FPT for graphs of girth five or more. For
Token Sliding, it was only known that the problem is W[1]-hard for graphs
of girth four or less and the authors in [2] posed the question of whether there
exists a constant p such that the problem becomes fixed-parameter tractable on
graphs of girth at least p. We answer their question positively and prove that the
problem is indeed FPT for graphs of girth five or more, which establishes a full
classification of the tractability of Token Sliding parameterized by the number
of tokens based on the girth of the input graph.

Our methods. Our result extends and builds on the recent galactic reconfiguration
framework introduced by Bartier et al. [3] to show that Token Sliding is FPT
on graphs of bounded degree, chordal graphs of bounded clique number, and
planar graphs. Let us briefly describe the intuition behind the framework and
how we adapt it for our use case. One of the main reasons why the Token
Sliding problem is believed to be “harder” than the Token Jumping problem
is due to what the authors in [3] call the bottleneck effect. Indeed, if we consider
Token Sliding on trees, there might be a lot of empty leaves/subtrees in the
tree but there might be a bottleneck in the graph that prevents any other tokens
from reaching these vertices. For instance, if we consider a star with one long

4 N. Bousquet, J. Hanna, A.E. Mouawad, and S. Siebertz

subdivided branch, then one cannot move any tokens from the leaves of the star
to the long branch while there are at least two tokens on leaves. That being
said, if the long branch of the star is “long enough” with respect to k then it
should be possible to reduce parts of it; as some part would be irrelevant. In
fact, this observation can be generalized to many other cases. For instance, when
we have a large grid minor, then whenever a token slides into the structure it
should then be able to slide freely within the structure (while avoiding conflicts
with any other tokens in that structure). However, proving that a structure can
be reduced in the context of reconfiguration is usually a daunting task due to
the many moving parts. To overcome this problem, the authors in [3] introduce
a new type of vertices called black holes, which can simulate the behavior of a
large grid minor by being able to absorb as many tokens as they see fit; and then
project them back as needed.

Since we need to maintain the girth property5, we do not use the notion of
black holes and instead show that when restricted to graphs of girth five or more
we can efficiently find structures that behave like large grid minors (from the
discussion above) and replace them with subgraphs of size bounded by a function
of k that can absorb/project tokens in a similar fashion (and do not decrease the
girth of the graph). We note that our strategy for reducing such structures is not
limited to graphs of high girth and could in principle apply to any graph.

At a high level, our FPT algorithm can then be summarized as follows. We let
(G, k, Is, It) denote an instance of the problem, where G has girth five or more.
In a first stage, we show that we can always find a reconfiguration sequence from
Is to I ′s and from It to I ′t such that each vertex v ∈ I ′s ∪ I ′t has degree bounded
by some function of k. This immediately implies that we can bound the size of
L1 ∪ L2, where L1 = I ′s ∪ I ′t and L2 = NG(I ′s ∪ I ′t). In a second stage, we show
that every connected component C of L3 = V (G) \ (L1 ∪ L2) can be classified
as either a degree-safe component, a diameter-safe component, a bad component,
or a bounded component. The remainder of the proof consists in showing that
degree-safe and diameter-safe components behave like large grid minors and can
be replaced by bounded-size gadgets. We then show that bounded components
and bad components will eventually have bounded size and we then conclude the
algorithm by showing how to bound the total number of components in L3.

Finally, we note that many interesting questions remain open. In particular, it
remains open whether Token Sliding admits a (polynomial) kernel on graphs
of girth five or more and whether the problem remains tractable if we forbid
cycles of length p mod q, for every pair of integers p and q, or if we exclude odd
cycles.

2 Preliminaries

We denote the set of natural numbers by N. For n ∈ N we let [n] = {1, 2, . . . , n}.

5 This is not the only reason we opted to not use black holes; introducing black holes
in our algorithm complicates parts of the analysis.

Token sliding on graphs of girth five 5

Graphs. We assume that each graph G is finite, simple, and undirected. We
let V (G) and E(G) denote the vertex set and edge set of G, respectively. The
open neighborhood of a vertex v is denoted by NG(v) = {u | {u, v} ∈ E(G)} and
the closed neighborhood by NG[v] = NG(v)∪ {v}. For a set of vertices Q ⊆ V (G),
we define NG(Q) = {v 6∈ Q | {u, v} ∈ E(G), u ∈ Q} and NG[Q] = NG(Q) ∪ Q.
The subgraph of G induced by Q is denoted by G[Q], where G[Q] has vertex
set Q and edge set {{u, v} ∈ E(G) | u, v ∈ Q}. We let G−Q = G[V (G) \Q].

A walk of length ` from v0 to v` in G is a vertex sequence v0, . . . , v`, such
that for all i ∈ {0, . . . , ` − 1}, {vi, vi+1} ∈ E(G). It is a path if all vertices
are distinct. It is a cycle if ` ≥ 3, v0 = v`, and v0, . . . , v`−1 is a path. A path
from vertex u to vertex v is also called a uv-path. For a pair of vertices u
and v in V (G), by distG(u, v) we denote the distance or length of a shortest
uv-path in G (measured in number of edges and set to ∞ if u and v belong to
different connected components). The eccentricity of a vertex v ∈ V (G), ecc(v),
is equal to maxu∈V (G)(distG(u, v)). The diameter of G, diam(G), is equal to
maxv∈V (G)(ecc(v)). The girth of G, girth(G), is the length of a shortest cycle
contained in G. If the graph does not contain any cycles (that is, it is a forest),
its girth is defined to be infinity.

Reconfiguration. In the Token Sliding problem we are given a graph G = (V,E)
and two independent sets Is and It of G, each of size k ≥ 1. The goal is to
determine whether there exists a sequence 〈I0, I1, . . . , I`〉 of independent sets
of size k such that Is = I0, I` = It, and Ii∆Ii+1 = {u, v} ∈ E(G) for all
i ∈ {0, . . . , `− 1}. In other words, if we view each independent set as a collection
of tokens placed on a subset of the vertices of G, then the problem asks for
a sequence of independent sets which transforms Is to It by individual token
slides along edges of G which maintain the independence of the sets. Note that
Token Sliding can be expressed in terms of a reconfiguration graph R(G, k).
R(G, k) contains a node for each independent set of G of size exactly k. We
add an edge between two nodes whenever the independent set corresponding
to one node can be obtained from the other by a single reconfiguration step.
That is, a single token slide corresponds to an edge in R(G, k). The Token
Sliding problem asks whether Is, It ∈ V (R(G, k)) belong to the same connected
component of R(G, k).

3 Reducing the graph

Let (G, k, Is, It) be an instance of Token Sliding, where G has girth five or
more. The aim of this section is to bound the size of the graph by a function of k.
We start with a very simple reduction rule that allows us to get rid of most twin
vertices in the graph. Two vertices u, v ∈ V (G) are said to be twins if u and v
have the same set of neighbours, that is, if N(u) = N(v).

Lemma 1. Assume u, v ∈ V (G) \ (Is ∪ It) and N(u) = N(v). Then (G, k, Is, It)
is a yes-instance if and only if (G− {v}, k, Is, It) is a yes-instance.

6 N. Bousquet, J. Hanna, A.E. Mouawad, and S. Siebertz

Proof. Since u, v ∈ V (G) \ (Is ∪ It) and G − {v} is an induced subgraph of G,
it follows that if there exists a reconfiguration sequence S = 〈I0, I1, . . . , I`−1, I`〉
from Is to It in G− {v}, then the same sequence remains valid in G.

Now assume that there exists a sequence S = 〈I0, I1, . . . , I`−1, I`〉 from Is
to It in G. Since u, v ∈ V (G) \ (Is ∪ It), in Is there are no tokens on u and v and
the same holds for It. Hence, if there exists Ii, 1 ≤ i ≤ ` − 1 such that v ∈ Ii,
then u 6∈ Ii. The reason is that a token can be moved to u only via N(u). By
assumption N(u) = N(v) and N(v) is blocked by the token on v. This implies
that we can always choose to slide the token to u instead of v, as needed. ut

Note that in a graph of girth at least five twins can have degree at most one.
Given Lemma 1, we assume in what follows that twins have been reduced. In

other words, we let (G, k, Is, It) be an instance of Token Sliding where G has
girth five or more and twins not in Is ∪ It have been removed. We now partition
our graph into three sets L1 = Is ∪ It, L2 = NG(L1), and L3 = V (G) \ (L1 ∪L2).

Lemma 2. If u ∈ L2 ∪ L3, then u has at most |L1| ≤ 2k neighbors in L1 ∪ L2,
i.e., |NL1∪L2

(u)| ≤ 2k.

Proof. Assume u1 is a vertex in L2 and u2 ∈ NL2
(u1) is a neighbor of u1 in L2.

If u1 and u2 have a common neighbor u3 ∈ L1, then this would imply the
existence of a triangle in G, a contradiction.

Now assume u1 ∈ L3 and assume u2, u3 ∈ NL2
(v1) are two neighbors of u1

in L2. If u2 and u3 have a common neighbor u4 ∈ L1 this would imply the
existence of a C4 in G, a contradiction.

Hence, for any vertex u ∈ L2 ∪ L3 we have NL1
(v) ∩ NL1

(w) = ∅ for all
v, w ∈ NL2

[u]. Since each vertex in L2 has at least one neighbor in L1 by
definition, each vertex u ∈ L2 ∪ L3 can have at most one neighbor in L2 for each
of its non-neighbor in L1, for a total of |L1| ≤ 2k neighbors in L1 ∪ L2. ut

3.1 Safe, bounded, and bad components

Given G and the partition L1 = Is∪ It, L2 = NG(L1), and L3 = V (G)\ (L1∪L2)
we now classify components of G[L3] into four different types.

Definition 1. Let C be a maximal connected component in G[L3].

– We call C a diameter-safe component whenever diam(G[V (C)]) > k3.

– We call C a degree-safe component whenever G[V (C)] has a vertex u with
at least k2 + 1 neighbors X in C and at least k2 vertices of X have degree
two in G[V (C)].

– We call C a bounded component whenever diam(G[V (C)]) ≤ k3 and no
vertex of C has degree more than k2 in G[V (C)].

– We call C a bad component otherwise.

Note that every component of G[L3] = G − (L1 ∪ L2) is safe (degree- or
diameter-safe), bad, or bounded.

Token sliding on graphs of girth five 7

Lemma 3. A bounded component C in G[L3] contains at most k2k
3

vertices,

i.e., |V (C)| ≤ k2k3 .

Proof. Let T be a spanning tree of C and let u ∈ V (C) denote the root of T .
Each vertex in T has at most k2 children given the degree bound of C and the
height of the tree is at most k3 given the diameter bound of C. Hence the total
number of vertices in C is at most k2k

3

. ut

We now describe a crucial property of degree-safe and diameter-safe compo-
nents, which we call the absorption-projection property. We note that this notion
is similar to the notion of black holes introduced in [3]. The key (informal) insight
is that for a safe component C we can show the following:

1. If there exists a reconfiguration sequence S = 〈I0, I1, . . . , I`−1, I`〉 from Is
to It, then we may assume that Ii ∩NG(V (C)) ≤ 1, for 0 ≤ i ≤ `.

2. A safe component can absorb all k tokens, i.e, a safe component contains an
independent set of size at least k and whenever a token reaches NG(V (C))
then we can (but do not have to) absorb it into C (regardless of how many
tokens are already in C). Moreover, a safe component can then project the
tokens back into its neighborhood as needed.

Let us start by proving the absorption-projection property for degree-safe
components. An s-star is a vertex with s pairwise non-adjacent neighbors, which
are called the leaves of the s-star. A subdivided s-star is an s-star where each edge
is subdivided (replaced by a new vertex of degree two adjacent to the endpoints
of the edge) any number of times. We say that each leaf of a subdivided star
belongs to a branch of the star.

Lemma 4. Let C be a degree-safe component in G[L3]. Then C contains an
induced subdivided k-star where all k branches have length more than one.

Proof. Since C is a degree-safe component, it must contain a vertex u with at
least k2 neighbors in C and each one of these neighbors must have another
neighbor in C. Note that all of these vertices must be distinct, as otherwise we
could find a cycle of length three or four.

Let us call the distance-one and distance-two neighbors of u in C the first
level and second level. That is, we let N1(u) = NC(u) \ {u} and N2(u) =
NC(N1(u)) \ (N1(u) ∪ {u}).

Note that the first level, N1(u), is an independent set, since otherwise that
would imply the existence of a triangle. Also, vertices in the second level, N2(u),
cannot be connected to more than one vertex of the first level, since that would
imply the existence of a C4.

As for the second level, it contains at least k2 vertices and we can have edges
between those vertices. We claim that G2 = G[N2(u)] contains an independent
set of size k. Assume first that G2 contains a vertex v of degree k. Then, since G2

is triangle free, the k neighbors of v form the required independent set. Otherwise,
all vertices of G2 have degree at most k − 1. We iteratively add one vertex v to

8 N. Bousquet, J. Hanna, A.E. Mouawad, and S. Siebertz

the independent set and remove N [v] from G2. This can be repeated for k times
leading to the required independent set. Therefore, we get an induced subdivided
star with at least k branches of length at least two and there is no edge between
the different branches. ut

L1 = Is ∪ It

L2 = N(L1)

C

A

B

B

Fig. 1. An illustration of a degree-safe component C.

Lemma 5. Let C be a degree-safe component in G[L3] and let A be an induced
subdivided k-star contained in C where all branches have length exactly two. Let
B = NG(A). If (G, k, Is, It) is a yes-instance, then there exists a reconfiguration
sequence from Is to It in G where we have at most one token on a vertex of B
at all times.

Proof. First, note that the existence of A follows from Lemma 4 and that
it is indeed the case that Is ∩ B = It ∩ B = ∅. Let r denote the root of
the induced subdivided k-star and let N1 and N2 denote the first and second
levels of subdivided the star, respectively. Let us explain how we can adapt a
transformation S from Is to It into a transformation containing at most one
token on a vertex of B at all times and such that, at any step, the number of
tokens in A ∪ B in both transformations is the same and the positions of the
tokens in V (G) \ (A ∪B) are the same.

Assume that, in the transformation S, a token is about to reach a vertex
b ∈ B, that is, we consider the step right before a token is about to slide into B.
We first move all tokens residing in A, if any, to the second level of their branches,
i.e, to N2. This is possible as A is an induced subdivided star and there are no
other tokens on B. Note that we can assume that there is no token on r (and
hence every token is on a branch and “the branch” of a token is well defined)
since we can otherwise slide this token to one of the empty branches while B is
still empty of tokens. Then we proceed as follows:

Token sliding on graphs of girth five 9

– If b is a neighbor of the root r of the subdivided star, then b is not a neighbor
of any vertex at the second level of A, since otherwise this would create a
cycle of length four. Hence, we can slide the token into b and then r and then
some empty branch of A (which is possible since we have k branches in A).

– Otherwise, if b has no neighbors in the first level N1 of A, we choose a branch
that has a neighbor a of b in N2 (which exists since b is not adjacent to r nor
N1). Then, if the branch of a already contains a token, we can safely slide
the token into another branch by going to the first level, then the root r,
then to another empty branch of A. Now we slide all tokens in A to the first
level of their branch and finally we slide the initial token to b and then to a.

– Finally, if b has neighbors in the first level of A, note that it cannot have
more than one neighbor in N1 since that would imply the existence of a cycle
of length four. Let a denote the unique neighbor of b in N1. If the branch
of a has a token on it, then we safely slide it into another empty branch. Now
we slide all tokens in A to the first level of their branch and finally we slide
the initial token to b and then to a.

Note that all of above slides are reversible and we can therefore use a similar
strategy to project tokens from A to B. If, in S, a token is about to leave the
vertex b ∈ B, then we can similarly move a token from A to b and then perform
the same move. Finally, if a reconfiguration step in S consists of moving tokens
in A ∪ B to A ∪ B, we ignore that step. And, if it consists of moving a token
from V (G) \ (A ∪B) to V (G) \ (A ∪B) we perform the same step.

It follows from the previous procedure that whenever (G, k, Is, It) is a yes-
instance we can find a reconfiguration sequence from Is to It in G where we have
at most one token in B at all times, as claimed (see Figure 1). ut

Corollary 1. Let C be a degree-safe component. If (G, k, Is, It) is a yes-instance,
then there exists a reconfiguration sequence from Is to It in G where we have at
most one token in N(C) ⊆ L2 at all times.

Proof. Assume a token slides to a vertex c ∈ N(C) (for the first time). If c ∈ B,
then the result follows from Lemma 5. Otherwise, we can follow a path P
contained in C that leads to the root of the induced k-subdivided star (such a
path exists since c ∈ N(C) and C is connected) and right before we reach B we
then again can apply Lemma 5. Note that, regardless of whether c is in B or not,
once the token reaches N(C) we can assume that it is immediately absorbed by
the degree-safe component (and later projected as needed). This implies that we
can always find a path P to slide along such that N [P] contains no tokens. ut

We now turn our attention to diameter-safe components and show that they
have a similar absorption-projection behavior as degree-safe components. Given
a component C we say that a path A in C is a diameter path if A is a longest
shortest path in C.

Lemma 6. Let C be a diameter-safe component, let A be a diameter path of
C, and let B = NG(V (A)). If (G, k, Is, It) is a yes-instance, then there exists a

10 N. Bousquet, J. Hanna, A.E. Mouawad, and S. Siebertz

L1 = Is ∪ It

L2 = N(L1)B

A

B

B

C

Fig. 2. An illustration of a diameter-safe component C.

reconfiguration sequence from Is to It in G where we have at most one token on
vertices of B at all times.

Proof. As in the proof of Lemma 5, the goal will consist in proving that we can
adapt a transformation S from Is to It into a transformation containing at most
one token on a vertex of B at all times and such that, at any step, the number
of tokens in A ∪B in both transformations is the same and the positions of the
tokens in V (G) \ (A ∪ B) are the same. As in the proof of Lemma 5, all the
tokens in A ∪ B will be absorbed into A (and later projected back as needed)
and it suffices to explain how we can move the tokens on A when a new token
wants to enter in B or leave into B.

We know that two non-consecutive vertices in A cannot be adjacent by
minimality of the path. Now assume a token t is about to reach a vertex b ∈ B.
Note that neighbors of b in A are pairwise at distance at least three in A, since
otherwise that would create a cycle of length less than five. We call the intervals
between consecutive neighbor of b gap intervals (with respect to b).

If b has more than k neighbors in A, then we can put the already in A tokens
(at most k − 1 of them) in the at most k − 1 first gap intervals. Indeed, since
there is no token on B and A is an induced path, we can freely move tokens
where we want. Then we can slide the token t to b, since none of its neighbors in
A have a token on them, and then slide it to the next neighbor of b in A since it
has more than k neighbors.

Otherwise, b has at most k neighbors in A. Hence there are at most k + 1
gap intervals in A (with respect to b). The average number of vertices in the gap
intervals (assuming k ≥ 4) is

α =
diam(C)− |NA(b)|
|NA(b)|+ 1

≥ k3 − k
k + 1

≥ 2k.

Hence at least one gap interval has length at least α and therefore we can
slide all tokens currently in A (at most k − 1 of them) into this gap interval in
such a way no token is on the border of the gap interval (since the gap interval

Token sliding on graphs of girth five 11

contains an independent set of size at least k − 1 which does not contain an
endpoint of the gap interval). Now we can simply slide the token t onto b and
then onto any of the neighbors of b in A.

Combined with the fact that the above strategy can also be applied to project
a token from A to B, it then follows that whenever (G, k, Is, It) is a yes-instance
we can find a reconfiguration sequence from Is to It in G where we have at most
one token in B at all times, as claimed (see Figure 2). ut

Corollary 2. Let C be a diameter-safe component. If (G, k, Is, It) is a yes-
instance then there exists a reconfiguration sequence from Is to It where we have
at most one token in N(C) ⊆ L2 at all times.

Proof. We follow the same strategy as for the degree-safe components. When
a token reaches a vertex in N(C) (for the first time), if it belongs to B the
result follows from Lemma 6. Otherwise we can move along a path in C to the
closest vertex of the diameter path to reach B and then the result again follows
from Lemma 6. ut

Putting Corollary 1 and Corollary 2 together, we know that if (G, k, Is, It) is a
yes-instance, then there exists a reconfiguration sequence from Is to It where we
have at most one token in N(C) ⊆ L2 at all times, where C is either a degree-safe
or a diameter-safe component. We now show how to reduce a safe component C
by replacing it by another smaller subgraph that we denote by H.

L1 = Is ∪ It

L2 = N(L1)B

C1 C`p1

p3k

Fig. 3. An illustration of the replacement gadget for a safe component C.

Lemma 7. Let C be a safe component in G[L3] and let G′ be the graph obtained
from G as follows:

– Delete all vertices of C (and their incident edges).
– For each vertex v ∈ N(C) ⊆ L2 add two new vertices v′ and v′′ and add the

edges {v, v′} and {v′, v′′}.

12 N. Bousquet, J. Hanna, A.E. Mouawad, and S. Siebertz

– Add a path of length 3k consisting of new vertices p1 to p3k.
– Add an edge {p1, v′′} for every vertex v′′.

Note that this new component has size 3k + |2N(C)| (see Figure 3). We claim
that (G, k, Is, It) is a yes-instance if and only if (G′, k, Is, It) is a yes-instance.

Proof. First, we note that replacing C with this new component, H, cannot
create cycles of length less than five. This follows from the fact that all the
vertices at distance one or two from p1 have distinct neighbors.

Assume (G, k, Is, It) is a yes-instance. Then, by Corollary 1 and Corollary 2,
we know that there exists a reconfiguration sequence from Is to It in G where we
have at most one token in N(C) ⊆ L2 at all times, where C is either a degree-safe
or a diameter-safe component. Hence, we can mimic the reconfiguration sequence
from Is to It in G′ by simply projecting tokens onto the path of length 3k in
each of the safe components that we replaced.

Now assume that (G′, k, Is, It) is a yes-instance. By the same arguments, and
combined with the fact that a safe component C can absorb/project the same
number of tokens as its replacement component H, we can again mimic the
reconfiguration sequence of G′ in G. ut

3.2 Bounding the size of L2

Having classified the components in L3 and the edges between L2 and L3, our
next goal is to bound the size of L2, which until now could be arbitrarily large.
We know that vertices in L2 are the neighbors of vertices in L1, hence the size
of L2 will grow whenever there are vertices in L1 with arbitrarily large degrees.
Bounding L2 will therefore be done by first proving the following lemma.

Lemma 8. Assume a vertex u in L1 = Is ∪ It has degree greater than 2k2.
Moreover, assume, without loss of generality, that u ∈ Is. Then, there exists I ′s
such that Is4I ′s = {u, u′}, u′ has degree at most 2k2, and the token on u can
slide to u′.

Proof. First note that from such a vertex u ∈ Is we can always slide to a vertex
in L2. Indeed, for every v, |N(u) ∩N(v)| ≤ 1 by the assumption on the girth of
the graph. Thus, since the degree of u is larger than the number of tokens, there
exists at least one vertex in L2 that the token on u can slide to.

If we slide to a vertex v ∈ L2 of degree at most 2k2, then we are done (we
set u′ = v). Otherwise, by Lemma 2, we know that most of the neighbors of v
are in L3; since v has degree greater than 2k2 and at most 2k of its neighbors
are in L1 ∪ L2. Hence, we are guaranteed at least one neighbor w of v in some
component of L3.

If we reach a bounded component C, i.e., if w belongs to a bounded component,
then all vertices of C (including w) have at most k2 neighbors in C and have at
most 2k neighbors in L2 (by Lemma 2) and thus we can set u′ = w.

If we reach a bad component C, then we know that C has a vertex b with
at least k2 + 1 neighbors in C and at most k2 − 1 of those neighbors have other

Token sliding on graphs of girth five 13

neighbors in C. Let z denote a vertex in the neighborhood of b that does not
have other neighbors in C. By Lemma 2, z will have degree at most 2k + 1 and
we can therefore let u′ = z.

Finally, if we reach a safe component, then after our replacement such com-
ponents contain a lot of vertices of degree exactly two and we can therefore slide
to any such vertex, which completes the proof. ut

After exhaustively applying Lemma 8, each time relabeling vertices in L1,
L2 and L3 and replacing safe components as described in Lemma 7, we get an
equivalent instance where the maximum degree in L1 is at most 2k2 and hence
we get a bound on the size of L2. We conclude this section with the following
lemma.

Lemma 9. Let (G, k, Is, It) be an instance of Token Sliding, where G has
girth at least five. Then we can compute an equivalent instance (G′, k, I ′s, I

′
t),

where G′ has girth at least five, |L1 ∪ L2| ≤ 2k + 4k3 = O(k3), and each safe
component of G is replaced in G′ by a component with at most 3k + 8k3 = O(k3)
vertices.

3.3 Bounding the size of L3

We have proved that the number of vertices in L1 and L2 is bounded by a function
of k, namely |L1 ∪ L2| = O(k3). We have also shown that every safe or bounded
component in L3 has a bounded number of vertices, namely safe components
have O(k3) vertices and bounded components have at most k2k

3

vertices. We
still need to show that L3 is bounded. We start by showing that bad components
become bounded after bounding L2:

Lemma 10. Let (G, k, Is, It) be an instance where G has girth at least five,
|L1 ∪ L2| ≤ 2k + 4k3 = O(k3), and each safe component has at most 3k + 8k3 =

O(k3) vertices. Then, every bad component in that instance has at most kO(k3)

vertices.

Proof. Let C be a bad component, hence diam(C) ≤ k3 since C is not diameter-
safe. Let v ∈ V (C) be a vertex in C whose degree is d > k2. Since C is not
a degree-safe component v can have at most k2 − 1 neighbors in C that have
other neighbors in C. Hence, at least d− (k2 − 1) = d− k2 + 1 neighbors of v
will have only v as a neighbor in C and all their other neighbors must be in L2.
Since, by Lemma 1, we can assume that L3 contains no twin vertices, d − k2
of the neighbors of v in C must have at least one neighbor in L2. But we know
that L2 has size O(k3) and if two neighbors of v had a common neighbor in L2,
this would imply the existence of a cycle of length four. Therefore, d must be at
most O(k3). Having bounded the degree and diameter of bad components, we
can now apply the same argument as in the proof of Lemma 3. ut

Since bounded and bad components now have the same asymptotic number
of vertices, in what follows we refer to both of them as bounded components.

14 N. Bousquet, J. Hanna, A.E. Mouawad, and S. Siebertz

What remains to show is that the number of safe and bounded components is
also bounded by a function of k and hence L3 and the whole graph will have size
bounded by a function of k.

Definition 2. Let C1 and C2 be two components in G[L3] and B1 and B2 be
their respective neighborhoods in L2. We say C1 and C2 are equivalent whenever
B1 = B2 = B and G[V (C1)∪B] is isomorphic to G[V (C2)∪B] by an isomorphism
that fixes B point-wise. We let β(G) denote the number of equivalence classes of
bounded components and we let σ(G) denote the number of equivalence classes of
safe components.

We are now ready to prove a crucial result for bounding L3.

Lemma 11. Let S1 and S2 be equivalent safe components and let B1, . . ., Bk+1

be equivalent bounded components. Then, (G, k, Is, It), (G− V (S2), k, Is, It) and
(G− V (Bk+1), k, Is, It) are equivalent instances.

Proof. Removing vertices from the graph preserves no-instances. As for yes-
instances, we will prove equivalence for safe and bounded components separately.

Assume a token reaches the neighborhood of S1 and S2 (they have the same
neighborhood). Whether the token slides to either of them is irrelevant because
both can hold all the tokens together and have the same behavior regarding
entering from L2 and leaving to L2. Hence, from Corollary 1 and Corollary 2, we
can always choose to slide to S1 and never to S2 and therefore removing S2 will
preserve yes-instances.

Assume a token reaches the neighborhood of all Bi’s (they have the same
neighborhood). The components not being empty implies that each one can hold
at least one token if it can, and hence we can always choose to slide the tokens to
one of the first k components since it will be enough to hold all tokens. Therefore
removing Bk+1 will preserve yes-instances. ut

After exhaustively removing equivalent components as described in Lemma 11
we obtain the following corollary.

Corollary 3. There are at most kβ(G) bounded components and σ(G) safe
components.

This leads to the final lemma.

Lemma 12. We have β(G) = 2k
O(k3)

, σ(G) = 2O(k6), |L3| ≤ kO(k3)2k
O(k3)

+

k32O(k6) = 2k
O(k3)

, and |V (G)| = |L1|+ |L2|+ |L3| = 2k
O(k3)

.

Proof. Since L2 and safe components have O(k3) size (from Lemma 9) then safe
components along with their neighbors in L2 have size O(k3). Hence there are

2O(k6) equivalence classes of safe components.
Since bounded components have size kO(k3) (from Lemma 3) the bounded

components along with their neighbors in L2 have size kO(k3) and hence there

are 2k
O(k3)

equivalence classes of bounded components.

Finally, using the fact that there are 2(n
2) graphs with n vertices combined

with Corollary 3, we get the desired bound on L3, which implies the desired
bound on the size of V (G). ut

Token sliding on graphs of girth five 15

4 The algorithm

4.1 Outline

Now that we have bounded the size of G by f(k) = 2k
O(k3)

we describe below the
complete algorithm for solving an instance (G, k, Is, It) of the Token Sliding
problem, where G has girth five or more.

1. Bound the graph size;
(a) Remove twin vertices as described in Lemma 1;
(b) Repeat the following while L1 has a vertex of degree greater than 2k2 or

there exists an unbounded safe component in L3:
– Find safe components as described in Definition 1;
– Replace safe components as described in Lemma 7;
– Find a vertex u ∈ L1 with degree greater than 2k2;
– Slide the token to a vertex of degree at most 2k2 (Lemma 8);

(c) Test all pairs of L3 components for equivalence (Definition 2);
(d) Partition the components into equivalence classes;

– For classes containing a safe component, keep one component and
remove the others from the graph (Lemma 11);

– For each other class, keep k components and remove the others from
the graph. If there are already less than k components then do nothing
(Lemma 11);

2. Build the graph R(G, k);
– R(G, k) will have a node for each independent set of G of size k;
– Two nodes I, J ∈ R(G, k) will be connected by an edge if the corre-

sponding independent sets are adjacent with respect to the token slide
definition, namely I∆J = {u, v} ∈ E(G);

3. Run a breadth-first search (BFS) traversal on R(G, k) with source Is and
destination It. Return true if the two are in the same component and false
otherwise;

4.2 Analysis

Complexity of step (1). Step (a), removing twin vertices, can be naively imple-
mented to run in O(n3)-time. Going to step (b), finding degree-safe components
will take O(n)-time by simply checking the degrees of all vertices in a component.
As for diameter-safe components, we can find them in O(n2)-time by finding
for each vertex u in a component C the vertex v furthest away from u in C
using a BFS. Replacing a component can be done in O(n)-time. Finding u ∈ L1

such that the degree of u is greater than 2k2 and replacing it via slides can be
done in O(k)-time. This procedure will be repeated at most 2k times and hence
step (b) requires O(k2 +kn2)-time. Going to step (c), we can test isomorphism of
components using any exponential-time algorithm. Since the size of the individual
components is now bounded by kO(k3) and the algorithm will run on all pairs of

components, step (c) will require 2k
O(k3)

-time in the worst case. Finally, step (d)
consists only of removing components and can be done in O(n). Therefore step (1)

will take O(kn3 + 2k
O(k3)

)-time.

16 N. Bousquet, J. Hanna, A.E. Mouawad, and S. Siebertz

Complexity of step (2). Building the graph R(G, k) will take O(|V (R(G, k))|+
k2|V (R(G, k))|2) = O(k2

(
f(k)
k

)2
)-time since we can check naively for each pair of

nodes if they are connected via one slide.

Complexity of step (3). The breadth-first search traversal will takeO(|V (R(G, k))|+
|E(R(G, k))|) = O(

(
f(k)
k

)2
)-time.

Putting it all together. Therefore, the total running time of the algorithm is

O(kn3) + 2k
O(k3)

+O(k2
(
f(k)

k

)2

)

and hence we get the desired result.

Theorem 1. Token Sliding is fixed-parameter tractable when parameterized
by k on graphs of girth five or more.

References

1. Akanksha Agrawal, Ravi Kiran Allumalla, and Varun Teja Dhanekula. Refuting FPT
algorithms for some parameterized problems under Gap-ETH. In Petr A. Golovach
and Meirav Zehavi, editors, 16th International Symposium on Parameterized and
Exact Computation, IPEC 2021, volume 214 of LIPIcs, pages 2:1–2:12. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

2. Valentin Bartier, Nicolas Bousquet, Clément Dallard, Kyle Lomer, and Amer E.
Mouawad. On girth and the parameterized complexity of token sliding and token
jumping. Algorithmica, 83(9):2914–2951, 2021.

3. Valentin Bartier, Nicolas Bousquet, and Amer E. Mouawad. Galactic token sliding.
CoRR, abs/2204.05549, 2022.

4. Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, and
Florian Sikora. Token sliding on split graphs. Theory Comput. Syst., 65(4):662–686,
2021.

5. Hans L. Bodlaender, Carla Groenland, and Céline M. F. Swennenhuis. Parameter-
ized complexities of dominating and independent set reconfiguration. In Petr A.
Golovach and Meirav Zehavi, editors, 16th International Symposium on Parameter-
ized and Exact Computation, IPEC 2021, September 8-10, 2021, Lisbon, Portugal,
volume 214 of LIPIcs, pages 9:1–9:16. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

6. Marthe Bonamy and Nicolas Bousquet. Token sliding on chordal graphs. In
Hans L. Bodlaender and Gerhard J. Woeginger, editors, Graph-Theoretic Concepts
in Computer Science - 43rd International Workshop, WG 2017, Eindhoven, The
Netherlands, June 21-23, 2017, Revised Selected Papers, volume 10520 of Lecture
Notes in Computer Science, pages 127–139. Springer, 2017.

7. Édouard Bonnet, Nicolas Bousquet, Pierre Charbit, Stéphan Thomassé, and Rémi
Watrigant. Parameterized complexity of independent set in H-free graphs. In
Christophe Paul and Michal Pilipczuk, editors, 13th International Symposium on
Parameterized and Exact Computation, IPEC 2018, August 20-24, 2018, Helsinki,
Finland, volume 115 of LIPIcs, pages 17:1–17:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

Token sliding on graphs of girth five 17

8. Paul S. Bonsma, Marcin Kaminski, and Marcin Wrochna. Reconfiguring independent
sets in claw-free graphs. In R. Ravi and Inge Li Gørtz, editors, Algorithm Theory -
SWAT 2014 - 14th Scandinavian Symposium and Workshops, Copenhagen, Denmark,
July 2-4, 2014. Proceedings, volume 8503 of Lecture Notes in Computer Science,
pages 86–97. Springer, 2014.

9. Richard C. Brewster, Sean McGuinness, Benjamin Moore, and Jonathan A. Noel.
A dichotomy theorem for circular colouring reconfiguration. Theor. Comput. Sci.,
639:1–13, 2016.

10. Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Connectedness of the
graph of vertex-colourings. Discret. Math., 308(5-6):913–919, 2008.

11. Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro
Ito, Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Polynomial-
time algorithm for sliding tokens on trees. In Hee-Kap Ahn and Chan-Su Shin,
editors, Algorithms and Computation - 25th International Symposium, ISAAC 2014,
Jeonju, Korea, December 15-17, 2014, Proceedings, volume 8889 of Lecture Notes
in Computer Science, pages 389–400. Springer, 2014.

12. Eli Fox-Epstein, Duc A. Hoang, Yota Otachi, and Ryuhei Uehara. Sliding token
on bipartite permutation graphs. In Khaled M. Elbassioni and Kazuhisa Makino,
editors, Algorithms and Computation - 26th International Symposium, ISAAC 2015,
Nagoya, Japan, December 9-11, 2015, Proceedings, volume 9472 of Lecture Notes in
Computer Science, pages 237–247. Springer, 2015.

13. Sevag Gharibian and Jamie Sikora. Ground State Connectivity of Local Hamiltoni-
ans. ACM Trans. Comput. Theory, 10(2):8:1–8:28, 2018.

14. Parikshit Gopalan, Phokion G. Kolaitis, Elitza N. Maneva, and Christos H. Papadim-
itriou. The Connectivity of Boolean Satisfiability: Computational and Structural
Dichotomies. SIAM J. Comput., 38(6):2330–2355, 2009.

15. Robert A. Hearn and Erik D. Demaine. PSPACE-completeness of sliding-block
puzzles and other problems through the nondeterministic constraint logic model of
computation. Theor. Comput. Sci., 343(1-2):72–96, 2005.

16. Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou,
Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration
problems. Theor. Comput. Sci., 412(12-14):1054–1065, 2011.

17. Takehiro Ito, Marcin Kaminski, and Erik D. Demaine. Reconfiguration of list
edge-colorings in a graph. Discret. Appl. Math., 160(15):2199–2207, 2012.

18. Takehiro Ito, Marcin Kaminski, Hirotaka Ono, Akira Suzuki, Ryuhei Uehara, and
Katsuhisa Yamanaka. On the parameterized complexity for token jumping on graphs.
In T. V. Gopal, Manindra Agrawal, Angsheng Li, and S. Barry Cooper, editors,
Theory and Applications of Models of Computation - 11th Annual Conference,
TAMC 2014, Chennai, India, April 11-13, 2014. Proceedings, volume 8402 of
Lecture Notes in Computer Science, pages 341–351. Springer, 2014.

19. Wm. Woolsey Johnson and William E. Story. Notes on the “15” puzzle. American
Journal of Mathematics, 2(4):397–404, 1879.

20. Marcin Kaminski, Paul Medvedev, and Martin Milanic. Complexity of independent
set reconfigurability problems. Theor. Comput. Sci., 439:9–15, 2012.

21. Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of NP-complete
puzzles. J. Int. Comput. Games Assoc., 31(1):13–34, 2008.

22. Daniel Lokshtanov and Amer E. Mouawad. The complexity of independent set
reconfiguration on bipartite graphs. ACM Trans. Algorithms, 15(1):7:1–7:19, 2019.

23. Daniel Lokshtanov, Amer E. Mouawad, Fahad Panolan, M. S. Ramanujan, and
Saket Saurabh. Reconfiguration on sparse graphs. J. Comput. Syst. Sci., 95:122–131,
2018.

18 N. Bousquet, J. Hanna, A.E. Mouawad, and S. Siebertz

24. Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a
point set is NP-complete. Comput. Geom., 49:17–23, 2015.

25. Amer E. Mouawad, Naomi Nishimura, Vinayak Pathak, and Venkatesh Raman.
Shortest Reconfiguration Paths in the Solution Space of Boolean Formulas. SIAM
J. Discret. Math., 31(3):2185–2200, 2017.

26. Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.
27. Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie

Gerke, and Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409
of London Mathematical Society Lecture Note Series, pages 127–160. Cambridge
University Press, 2013.

28. Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. J.
Comput. Syst. Sci., 93:1–10, 2018.

29. Marcin Wrochna. Homomorphism reconfiguration via homotopy. SIAM J. Discret.
Math., 34(1):328–350, 2020.

30. David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory of Computing, 3(1):103–128, 2007.

	Token sliding on graphs of girth five

