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Abstract. We show that some natural problems that are XNLP-
hard (hence W[t]-hard for all t) when parameterized by pathwidth or
treewidth, become FPT when parameterized by stable gonality, a novel
graph parameter based on optimal maps from graphs to trees. The
problems we consider are classical flow and orientation problems, such
as Undirected Flow with Lower Bounds, Minimum Maximum

Outdegree, and capacitated optimization problems such as Capaci-

tated (Red-Blue) Dominating Set. Our hardness claims beat exist-
ing results. The FPT algorithms use a new parameter “treebreadth”,
associated to a weighted tree partition, as well as DP and ILP.

Keywords: Parameterized complexity · Graph algorithms · Network
flow · Graph orientation · Capacitated dominating set · Tree
partitions · Stable gonality

1 Introduction

The Parameterization Paradigm. Problems on finite (multi-)graphs that are NP-
hard may become polynomial by restricting a specific graph parameter k. If there
exists an algorithm that solves the problem in time bounded by a computable
function of the parameter k times a power of the input size, we say that the
problem becomes fixed parameter tractable (FPT) for the parameter k [15, 1.1].
Despite the fact that computing the parameter itself can often be shown to be
NP-hard or NP-complete, the FPT-paradigm, originating in the work of Downey
and Fellows [18], has shown to be very fruitful in both theory and practice.

One successful approach is to consider graph parameters that measure how
far a given graph is from being acyclic; e.g. how the graph may be decomposed
into “small” pieces, such that the interrelation of the pieces is described by a
tree-like structure. A prime example of such a parameter is the treewidth tw(G)
of a graph G ([15, Ch. 7]).

Other parameters have been considered (see, e.g., [21,27], [15, 7.9]), but for
some famous graph orientation and graph flow problems, as well as capacitated
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version of classical problems, many of these parameters did not succumb to the
FPT paradigm. As shown by Ganian et al. [22], the parameter “tree-cut width”
of Wolan [32] is successful in dealing with several such problems. We propose a
new parameter, based on mapping the graph to a tree, rather than decomposing
the graph, that gives FPT-algorithms for a larger collection of graphs.

A Novel Parameter: Stable Gonality. The new multigraph parameter, based
on “tree-likeness”, is the so-called stable gonality sgon(G) of a multigraph G,
introduced in [13, §3], and originating in algebraic geometry, where a similar
construction has been used since the 19th century. One replaces tree decomposi-
tions of a graph G by graph morphisms from G to trees, and the “width” of the
decomposition by the “degree” of the morphism, where lower degree maps corre-
spond to less complex graphs. For example, connected graphs of stable gonality
1 are trees [7, Example 2.13], those of stable gonality 2 are so-called hyperellip-
tic graphs, i.e., graphs that admit, after refinement, a graph automorphism of
order two such that the quotient graph is a tree (decidable in quasilinear time [7,
Thm. 6.1]). The formal definition, given in Sect. 2.2, requires taking care of two
technicalities, related to harmonicity of the map and refinement of the graph.

It has been shown that tw(G) ≤ sgon(G) [16, §6], that sgon(G) is computable,
and NP-complete [24,26]. One attractive point of stable gonality as parameter
for weighted problems stems from the fact that it is sensitive to multigraph
properties, whereas the treewidth is not. Given an undirected weighted graph
G = (V,E,w) where w : E → Z>0 denotes the edge weights, we have an asso-
ciated (unweighted) multigraph G̃, with the same vertex set, but where each
simple edge e = uv in G is replaced by w(e) parallel edges between the ver-
tices u and v. The stable gonality of the weighted graph G is then by definition
sgon(G) := sgon(G̃).

Three Sample Problems. We now introduce three problems that are exemplary
for our work. We later discuss a few additional variants of these problems.
Throughout, we assume that all integers are given in unary.

A typical orientation problem is the following.

Minimum Maximum Outdegree (cf. Szeider [31])
Given: Undirected weighted graph G = (V,E,w) with a weight function

w : E → Z>0 ; integer r
Question: Is there an orientation of G such that for each v ∈ V , the total

weight of all edges directed out of v is at most r?

A flow network (see, e.g., [1]) is a directed graph D = (N,A), given with
two nodes s (source) and t (target) in N , and a capacity c(e) ∈ Z>0 for each
arc e ∈ A. Given a function f : A → Z≥0 and a node v, we call

∑
wv∈A f(wv)

the flow to v and
∑

vw∈A f(vw) the flow out of v. We say f is an s-t-flow if for
each arc a ∈ A, the flow over the arc is nonnegative and at most its capacity
(i.e., 0 ≤ f(a) ≤ c(a)), and for each node v ∈ N\{s, t}, the flow conservation
law holds: the flow to v equals the flow out of v. The value val(f) of a flow is
the flow out of s minus the flow to s.
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Undirected Flow with Lower Bounds ([23, Problem ND37])1

Given: Undirected graph G = (V,E), for each edge e ∈ E a capacity
c(e) ∈ Z>0 and a lower bound �(e) ∈ Z≥0, vertices s (source) and t
(target), a value R ∈ Z>0

Question: Is there an orientation of G such that the resulting directed
graph D allows an s-t-flow f that meets capacities and lower bounds
(i.e., �(a) ≤ f(a) ≤ c(a) for all arcs a in D), with value R?

Capacitated versions of classical graph problems impose a limitation on the
available “resources”, placing them closer to real-world situations. The following
is a well-studied such graph problem, that can be viewed as an abstract form of
facility location questions.

Capacitated Dominating Set

Given: Undirected graph G = (V,E), for each vertex v ∈ V a positive
integer capacity c(v) ∈ Z>0, integer k

Question: Are there a set D ⊂ V of size |D| ≤ k and a function f : V \D →
D such that vf(v) ∈ E for all v ∈ V \D and |f−1(v)| ≤ c(v) for all
v ∈ D?

Main Results: Hard Problems for Treewidth but Easy for Stable Gonality. To
specify the (parameterized) hardness of problems, we use the parameterized
complexity class XNLP from Elberfeld et al. [20]: problems that can be solved
non-deterministically in time O(f(k)nc) (c ≥ 0) and space O(f(k) log(n)) where
n is the input size, k the parameter, and f is a computable function. We note
that, in terms of the more familiar W-hierarchy of Downey and Fellows [15, 13.3],
XNLP-hardness implies W[t]-hardness for all t [11, Lemma 2.2].

Theorem 1. Minimum Maximum Outdegree (MMO), Undirected Flow

with Lower Bounds (UFLB) and Capacitated Dominating Set (CDS)

are XNLP-complete for pathwidth, and XNLP-hard for treewidth (given a path
or tree decomposition realising the path- or treewidth), but are FPT for stable
gonality (given a refinement and graph morphism from the associated multigraph
to a tree realising the stable gonality).

Our proof that UFLB is XNLP-hard for pathwidth is by reduction from
Accepting Non-deterministic Checking Counter Machine from [11].
XNLP-completeness of CDS for pathwidth was shown in [10, Thm. 8]. Hardness
for the other problems follows by easy transformations from UFLB. Membership
in XNLP follows each time by observing that a known dynamic programming
algorithm can be transformed to a non-deterministic algorithm with bounded
space. Details are given in the full paper [8]. The condition that a path decom-
position realising the pathwidth is given as part of the input may be removed
when an FPT algorithm is known that finds such decompositions and uses log-
arithmic space (see [11,19,20]).
1 In [23] it is required that val(f) ≥ R rather than val(f) = R, but the problems are

of the same complexity, cf. [28].
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Itai [28, Thm. 4.1] showed that UFLB is strongly NP-complete. Dominating

set is W [2]-complete for the size of the dominating set [15, Thm. 13.28], and
FPT for treewidth [15, Thm. 7.7]. CDS was shown to be W[1]-hard for treewidth
(more precisely, for treedepth plus the size of the dominating set) by Dom et
al. [17]. Szeider [31] showed that CDS is W[1]-hard for treewidth, which was
improved to W[1]-hardness for vertex cover by Gima et al. [25].

For proving FPT under stable gonality, we revive an older idea of Seese on
tree-partite graphs and their widths [30]; in contrast to the tree decompositions
used in defining treewidth, we partition the original graph vertices into disjoint
sets (‘bags’) labelled by vertices of a tree, such that adjacent vertices are in the
same bag or in bags labelled by adjacent vertices in the tree. Seese introduced tree
partition width to be the maximal size of a bag in such a partition. We consider
weighted graphs and define a new parameter, breadth, given as the maximum of
the bag size and the sum of the weights of edges between adjacent bags. The
treebreadth of a graph G is the minimum breadth of a tree partition of G. This
allows us to divide the proof in two parts: (a) show that, given a graph morphism
from the associated multigraph to a tree, one can compute in polynomial time
a tree partition of the weighted graph of breadth upper bounded by the stable
gonality of the associated multigraph; (b) provide an FPT-algorithm, given a
tree partition of bounded breadth. By reductions, the two algorithms we specify
are the following, for the indicated parameters.

Theorem 2. MMO is FPT for treebreadth (given a tree partition realising the
treebreadth), and CDS is FPT for tree partition width (given a tree partition
with bounded width).

The technique to obtain Theorem 2 is similar to one used by Ganian et al. [22]
who obtained FPT algorithms for a number of problems with tree-cut width as
parameter, including CDS. Our results show that the technique from [22] can
be extended to a wider class of graphs: with an upper bound on the weight of
all edges, tree partition width and treebreadth are bounded by a polynomial in
the tree-cut width, while stable tree partition width and tree partition width
are polynomially related; see the discussion in [9, §5]. The second half of Theo-
rem 1 is obtained from Theorem 2 by transforming the data required for sgon
(a refinement with to a harmonic morphism to a tree) into a tree partition. We
also prove that MMO and UFLB are W[1]-hard for vertex cover number by
reduction from Bin Packing [29]. In Sect. 3, we list some related problems for
which algorithmic and hardness results hold as well. Due to space considerations,
several details and all hardness proofs are omitted and can be found in the full
version [8].

2 Preliminaries

2.1 Conventions and Notations

We will consider multigraphs G = (V,E) that consist of a finite set V of vertices,
as well as a finite multiset E of unoriented (unweighted) edges, i.e., a set of pairs
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of (possibly equal) vertices, with finite multiplicity on each such pair. We denote
such an edge between vertices u, v ∈ V as uv. For v ∈ V , Ev denotes the
edges incident with v, and for two disjoint subsets X,Y ⊂ V , E(X,Y ) is the
collection of edges from any vertex in X to any vertex in Y . We also consider
weighted simple graphs, where edges have positive integer weights. We will make
repeated use of the correspondence between integer weighted simple graphs and
multigraphs given by replacing every edge with weight k by k parallel edges. All
graphs we consider are connected. (If a graph is not connected, we can solve the
problem at hand separately on each connected component.) For convenience, we
use the terminology “vertex” and “edge” for undirected graphs, and “arc” and
“node” for either directed graphs, or for trees that occur in graph morphisms
or tree partitions. We write Z for all integers, with unique subscripts indicating
ranges (so Z>0 is the positive integers and Z≥0 the non-negative integers). We
use interval notation for sets of integers, e.g., [2, 5] = {2, 3, 4, 5}.

2.2 Stable Gonality and Treebreadth

Stable Gonality. A graph homomorphism between two multigraphs G and H,
denoted φ : G → H consists of two (not necessarily surjective) maps φ : V (G) →
V (H) and φ : E(G) → E(H) such that φ(uv) = φ(u)φ(v) ∈ E(H) for all uv ∈
E(G). One would like to define the “degree” of such a graph homomorphism as
the number of pre-images of any vertex or edge, but in general, this obviously
depends on the chosen vertex or edge. However, by introducing certain weights on
the edges via an additional index function, we get a large collection of “indexed”
maps for which the degree can be defined as the sum of the indices of the
pre-image of a given edge, as long as the indices satisfy a certain condition of
“harmonicity” above every vertex in the target. We make this precise.

Definition 1. A finite morphism φ between two loopless multigraphs G and H
consists of a graph homomorphism φ : G → H (denoted by the same letter),
and an index function r : E(G) → Z>0 (hidden from notation). The index of
v ∈ V (G) in the direction of e ∈ E(H), where e is incident to φ(v), is defined
by

me(v) :=
∑

e′∈Ev,
φ(e′)=e

r(e′).

We call φ harmonic if this index is independent of e ∈ E(H) for any given vertex
v ∈ V (G). We call this simply the index of v, and denote it by m(v). The degree
of a finite harmonic morphism φ is

deg(φ) =
∑

e′∈E(G),
φ(e′)=e

r(e′) =
∑

v′∈V (G),
φ(v′)=v

m(v′).

where e ∈ E(H) is any edge and v ∈ V (H) is any vertex. Since φ is harmonic,
this number does not depend on the choice of e or v, and both expressions are
indeed equal.
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Fig. 1. Two examples of a finite harmonic morphisms of degree 2. The edges without
label have index 1. The small grey vertices represent refinements of the graph. (Color
figure online)

The second ingredient in defining stable gonality is the notion refinement.

Definition 2. Let G be a multigraph. A refinement of G is a graph obtained
using the following two operations iteratively finitely often: (a) add a leaf (i.e.,
a vertex of degree one), (b) subdivide an edge.

Definition 3. Let G be a multigraph. The stable gonality of G is the minimum
degree of a finite harmonic morphism from a refinement of G to a tree.

Two examples are found in Fig. 1. The left-hand side illustrates the need
for an index function (the middle edge needs label 2), and the right hand side
shows the effect of subdivision. Stable gonality is well-defined, as each graph
G = (V,E) has a refinement that maps to K1,|E|: refine each edge once, map
each original vertex to the center, and each refinement vertex to a unique leaf.

Tree Partitions and Their Breadth. The existence of a harmonic morphism
to a tree imposes a special structure on the graph that we can exploit in designing
algorithms. To capture this structure, we define the “breadth” of tree partitions
of weighted graphs. The notion resembles that of “tree-partite graphs” from [30].

Definition 4. A tree partition T of a weighted graph G = (V,E,w) is a pair

T = ({Xi | i ∈ I}, T = (I, F ))

where each Xi is a (possibly empty) subset of the vertex set V and T = (I, F ) is
a tree, such that {Xi | i ∈ I} forms a partition of V (i.e., for each v ∈ V , there
is exactly one i ∈ I with v ∈ Xi); and adjacent vertices are in the same set Xi

or in sets corresponding to adjacent nodes (i.e., for each uv ∈ E, there exists an
i ∈ I such that {u, v} ⊆ Xi or there exists ij ∈ F with {u, v} ⊆ Xi ∪ Xj). The
breadth of a tree partition T of G is defined as

b(T ) := max
{

max
i∈I

|Xi|, max
jk∈F

w(Xj ,Xk)
}

,

with w(Xj ,Xk) =
∑

e∈E(Xj ,Xk)

w(e) the total weight of the edges connecting ver-

tices in Xj to vertices in Xk. The treebreadth tb(G) of a weighted graph G is
the minimum breadth of a tree partition of G.
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Fig. 2. Schematic representation of a tree partition of a graph of breadth ≤ k

We refer to Fig. 2 for a schematic view of a tree partition with weights and
bounded breadth. If we have a tree partition of a weighted graph G using a tree
T , for convenience we will call the vertices of T nodes and the edges of T arcs.
We call the sets Xi bags. Observe that in a tree partition of breadth k, if the
total weight of edges between two vertices u and v is more than k, then u and v
will be in the same bag.

Remark 1. In Seese’s work [30], the structure/weights of edges between bags
does not contribute to the total width; Seese’s tree-partition-width tpw(G) of
a simple graph G, defined as the minimum over all tree partitions of G of the
maximum bag size in the tree partition, is thus a lower bound for the treebreadth
tb(G) (in particular, for sgon, see below). For any G, tpw(G) is lower bounded
in terms of tw(G), but also upper bounded in terms of tw(G) and the maximal
degree in G, cf. [33].

From Morphisms to Tree Partitions. The existence of a finite harmonic
morphism φ of some degree k from a multigraph to a tree implies the existence
of a tree partition of breadth k for the associated weighted simple graph. The
basic idea is to use the pre-images of vertices in T as partitioning sets.

Theorem 3. Suppose G is a weighted simple graph, and φ : H → T is a finite
harmonic morphism of degree deg(φ) = k, where H is a loopless refinement of
the multigraph corresponding to G and T is a tree. Then one can construct in
time O(k · |V (T )|) a tree partition T = (X,T ′) for a subdivision of G such that
b(T ) ≤ k, and |V (T ′)| ≤ 2|V (G)|.

For the proof, construct a tree partition T = (X,T ) as follows. For every
node t ∈ V (T ), define Xt = φ−1(t) ∩ V (G). For every edge uv ∈ E(G), do the
following. Let i ∈ V (T ) be such that u ∈ Xi and let j ∈ V (T ) be such that
v ∈ Xj . Let i, t1, t2, . . . , tl, j be the path between i and j in T . Subdivide the
edge uv into a path u, s1, s2, . . . , sl, v and add the vertex sr to the set Xtr

for
each r. To get a bound on the size of T , remove all vertices t from T for which
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Xt = ∅, and, for every degree 2 vertex t of T ′ for which Xt does not contain a
vertex of V (G), contract t with one of its neighbours, and contract all vertices
in Xt with a neighbour as well.

Example 1. For the multigraphs in Fig. 1, the constructed tree partitions have
breadth two, equal to the stable gonality: for (a), each vertex forms an individual
bag, and bags are connected by edges of weight 2; for (b), there is one bag
containing both non-subdivision vertices, and no edges.

Thus, to prove that a graph problem is FPT for sgon (given a morphism of
a refinement of the corresponding multigraph to a tree of the correct degree),
it suffices to prove that it is FPT for the breadth of a given tree-partition of a
subdivision of the weighted graph.

3 Related Problems and Reductions

We consider variations of the problems MMO and UFLB.

– Circulating Orientation (CO): given an undirected weighted graph
(V,E,w), is there an orientation such that for all vertices, the total weight of
outgoing edges equals that of incoming edges?

– Outdegree Restricted Orientation (ORO): given an interval for each
vertex, is there an orientation such that for every vertex, the total weight of
outgoing edges belongs to the given interval?

– Target Outdegree Orientation (TOO): given an integer mv for each
vertex v, is there an orientation such that for every vertex v, the total weight
of outgoing edges equals mv?

– Chosen Maximum Outdegree (CMO): given an integer mv for each ver-
tex v, is there an orientation such that for every vertex v, the total weight of
outgoing edges is at most mv?

– All or Nothing Flow (AoNF): Given a directed graph with a positive
capacity for each arc, two nodes s, t and a value R, is there a flow with value
R whose value on each arc is either zero or the given capacity? (Cf. [2].)

We claim that these problems can be transformed into one another according
to the diagrams in Fig. 3 preserving parameterized complexity for the indicated
parameters. All complexity statements are then reduced to the following claims:
(a) ORO is FPT for treebreadth; (b) AoNF is XNLP-complete for pathwidth;
(c) TOO is W[1]-hard for vertex cover number.

The proof of (a) is outlined in Sect. 4.1; a full proof of (a) and the hardness
proofs in (b) and (c) are given in the full version [8].

4 Algorithms for ORO and CDS for Graphs with Bounded
Treebreadth

4.1 Outdegree Restricted Orientations

We give the main ideas for an algorithm for ORO, when we are given a tree
partition of a subdivision of G of bounded breadth. Subdivisions can be handled
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Fig. 3. Transformation between different problems with respect to parameter (a) sgon
and treebreadth, for which ORO is FPT, (b) pathwidth, for which AoNF is XNLP-
complete, and (c) vertex cover number, for which TOO is W[1]-hard. AonF with vertex
cover number has a separate W [1]-hardness proof (see [8], based on [2].)

by replacing each subdivision of an edge e by a vertex xe with Dxe
= [w(e), w(e)].

This gives an equivalent instance with a corresponding tree partition of the same
breadth.

We can now assume that we have a tree partition T of G, i.e., adjacent
vertices are in the same or neighbouring bags. Let k be the breadth of T .

We add a new root node r to T , and set Xr = ∅. For each node i, we let Vi

be the union of all bags j with j = i or j is a descendant of i. For an arc a = ii′

in T with i the parent of i′, we let Ea be the set of all edges with either both
endpoints in Vi′ , or with one endpoint in Xi and one endpoint in Xi′ .

A partial solution for the arc a = ii′ (with again i the parent of i′) is an ori-
entation of all edges in Ea such that for all vertices v ∈ Vi′ , its total outdegree in
this orientation is in Dv. Vertices in Xi can have oriented incident edges (namely
to neighbours in Xi′) and incident edges that are not yet oriented (namely to
neighbours in other bags than Xi′). The fingerprint of a partial solution is the
function δ : Xi → [0, k], that maps each vertex in Xi to its total outdegree in
this partial solution, i.e., for v ∈ Xi, the sum of the weights of the edges vw with
w ∈ Xi′ and vw is oriented from v to w. These sums are bounded by the breadth,
and thus, the total number of possible fingerprints for an arc is bounded by a
function of k.

The algorithm to solve ORO uses dynamic programming: for each arc in T ,
we compute the table Aa of all fingerprints of partial solutions for that arc. This
is done bottom-up in the tree.

It is straightforward to compute the table Aa for an arc a to a leaf of T , by
enumerating all orientations of edges in Ea.

Now, suppose we have a node i′ with children j1, . . . , jq and we have already
computed the tables Ai′j1 , . . . , Ai′jq

. To compute the table Aii′ , for the arc ii′

from i′ to its parent i, we express in an Integer Linear Program (with number
of variables bounded by a function of k), the property that we can extend an
orientation of the edges between Xi and Xi′ and between pairs of vertices in Xi′

to a partial solution. Some details are given below.
Define an equivalence relation ∼ on the children of i′, with two children

equivalent if they have precisely the same set of fingerprints. As the number of
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different fingerprints is a function of k, the number of equivalence classes of ∼
is a (double exponential) function of k.

We write Γ for the set of equivalence classes of ∼, and Δ for the set of all
possible fingerprints of partial solutions for arcs from i′ to a child.

We then enumerate all orientations ρ of the edges in Xi×Xi′ and in Xi′ ×Xi′ .
Each such orientation would fix a fingerprint for ii′—what needs to be done is
checking whether there is actually a partial solution for ii′ that extends ρ.

To do this, we introduce yet another concept: the blueprint of a partial solu-
tion for ii′. The blueprint is a function that maps a pair (γ, f) of an equivalence
class γ ∈ Γ and a fingerprint f ∈ Δ to the number of children jα of i′ with the
following two properties: (1) the restriction of the partial solution to Ei′jα

has
fingerprint f , and (2) jα is in equivalence class γ.

Note that ρ and the blueprint contain all that is needed to compute the
outdegrees of vertices in Xi′ : from it, we can see, for each v ∈ Xi′ and for each
weight in [0, k], how many edges with that weight are directed from v to a vertex
in a child bag of i′.

This allows us to formulate an ILP that expresses the property that there
exists a blueprint of a partial solution that extends ρ. We have a non-negative
integer variable xγ,f for each pair γ ∈ Γ and f ∈ Δ that should give the value
of this pair in the blueprint.

The ILP has no objective function, and the following constraints:

• For each γ,
∑

f xγ,f equals the number of children in equivalence class γ.
• If f is not a fingerprint for children in equivalence class γ, then xγ,f = 0.
• For all v ∈ Xi′ , we have a condition that checks that the outdegree of v in

the orientation belongs to Dv. Let Dv = [dmin,v, dmax,v]. Let α be the total
weight of all edges in ρ that have v as endpoint and are directed out of v.
Now, add the inequalities:

dmin,v ≤ α +
∑

γ,f

f(v) · xγ,f ≤ dmax,v

We sum over all γ ∈ Γ , and f ∈ γ.

The first two conditions guarantee that we can choose for each child a fin-
gerprint, such that for each equivalence class γ and each fingerprint f we have
xγ,f children in the class γ with fingerprint f ; the first condition ensures that
we have the right amount of fingerprints per class, and the second that we do
not assign fingerprints to children that have no corresponding partial solution
in that subtree.

The third condition ensures that each vertex in Xi′ has an outdegree in its
interval: we have xγ,f children in the equivalence class γ from which we take
fingerprint f , and here v gets outdegree f(v) for the edges between v and a
vertex in such a child bag.

Note that the number of variables of the ILP is bounded by a function of k.
Thus, the ILPs can be solved by an FPT algorithm, see [15, Theorem 6.4].
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Once we have the table Aar
for the arc ar to the root, we can decide: the

instance of ORO has a solution if and only if this table Aar
is non-empty, as any

partial solution for this arc is actually an orientation that fulfils the requirements
for G. Thus, by processing the bags of T in bottom-up order, we finally obtain
the table for the root and can decide the problem.

4.2 Capacitated Dominating Set

We now also sketch some main ideas for the FPT algorithm for Capacitated

Dominating Set. The algorithm again uses dynamic programming, with an
ILP that determines the number of children with a partial solution having a
fingerprint of a certain type (compare with [22]).2

We define a partial solution for an arc ii′ with i the parent of i′ as a set S
of vertices in Vi′ together with a mapping that maps all vertices in Vi′\Xi′ and
a subset D ⊆ Xi ∪ Xi′ to a neighbour in S, such that no vertex in S has more
than its capacity number of neighbours mapped to it. At this point, vertices in
Xi′ do not need to be dominated yet, and they can be used to dominate vertices
in the parent bag Xi. All vertices in bags that are a descendant of i′ must be
dominated. The fingerprint of a partial solution is the set D: the dominated
vertices in Xi ∪ Xi′ .

In a dynamic programming algorithm, we compute for each arc ii′ and for
each fingerprint D ⊆ Xi ∪ Xi′ the minimum size of a set S that gives a partial
solution with this fingerprint. Let Bii′(D) ∈ Z>0 ∪ {∞} be the minimum such
size for a fingerprint D. Using the classical theory of matchings in graphs and
inspiration from [12], we find the following.

Lemma 1. If the instance of CDS has a solution, then Bii′(∅) ∈ Z>0. If there
is a partial solution with fingerprint D ⊆ Xi ∪ Xi′ , then Bii′(∅) ≤ Bii′(D) ≤
Bii′(∅) + 2k.

In the step where we attempt to compute the table Bii′ given such tables
for the children of i′, we add up all values Bi′jα

(∅) and create tables B′
i′jα

by
setting

B′
i′jα

(D) = Bi′jα
(D) − Bi′jα

(∅)

Now, B′
i′jα

is a function that maps subsets of Xi ∪ Xi′ to values in [0, 2k],
and thus, the number of possible such functions is bounded by a function of k.
This is, however, not sufficient to build an equivalence relation on the children
of i′, as the non-dominated vertices in such children still must be dominated
by vertices in Xi. Instead, we look to extensions of partial solutions, where
we also dominate vertices in Xi′ by vertices in Xi, and prescribe how much
capacity each vertex in Xi uses to dominate vertices in Xi′ . This gives a number
of equivalence classes that is bounded by a function of k. Once we built an

2 In the full version [8], we in fact give a detailed, slightly different, algorithm for
Capacitated Red-Blue Dominating Set and then deduce the result for Capac-

itated Dominating Set.
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equivalence relation on the children, the algorithm proceeds in a similar fashion
as for ORO: an ILP is constructed that expresses for each class in the equivalence
relation and fingerprint of a partial solution how many children in that class have
that fingerprint. The ILP has an objective function which gives the size of the
partial solution built (which is a sum of B′-values).

5 Conclusion

We showed that various classical instances of flow, orientation and capacitated
graph problems are XNLP-hard when parameterized by treewidth (and even
pathwidth), but FPT for a novel graph parameter, stable gonality. Follow-
ing Goethe’s motto “Das Schwierige leicht behandelt zu sehen, gibt uns das
Anschauen des Unmöglichen”, we venture into stating some open problems.

Is stable gonality fixed parameter tractable? Can multigraphs of fixed stable
gonality be recognized efficiently (this holds for treewidth; for sgon = 2 this can
be done in quasilinear time [7])? Given the stable gonality of a graph, can a
refinement and morphism of that degree to a tree be constructed in reasonable
time (the analogous problem for treewidth can be done in linear time)? Can
we find a tree partition of a subdivision with bounded treebreadth? The same
question can be asked in the approximate sense.

Find a multigraph version of Courcelle’s theorem (that provides a logical
characterisation of problems that are FPT for treewidth, see [14]), using stable
gonality instead of treewidth: give a logical description of the class of multigraph
problems that are FPT for stable gonality.

Stable gonality and (stable) treebreadth seem useful parameters for more
edge-weighted or multigraph problems that are hard for treewidth. Find other
problems that become FPT for such a parameter. Here, our proof technique of
combining tree partitions with ILP with a bounded number of variables becomes
relevant.

Conversely, find problems that are hard for treewidth and remain hard for
stable gonality or (stable) treebreadth. We believe candidates to consider are in
the realm of problems concerning “many” neighbours of given vertices (where
our use of ILP seems to break down), such as Defensive Aliance and Secure

Set, proven to be W[1]-hard for treewidth (but FPT for solution size) [5,6]. For
such problems, it is also interesting to upgrade known W[1]-hardness to XNLP.

Other flavours of graph gonality (untied to stable gonality) exist, based on
the theory of divisors on graphs (cf. [3,4].) Investigate whether such ‘divisorial’
gonality is a useful parameter for hard graph problems.

Acknowledgements. We thank Carla Groenland and Hugo Jacob for various dis-
cussions, and in particular for suggestions related to the capacitated dominating set
problems, and the relations between tree cut-width, tree partition width, and stable
tree-partition width.
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