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Abstract. Decompositional parameters such as treewidth are commonly used
to obtain fixed-parameter algorithms for NP-hard graph problems. For problems
that are W[1]-hard parameterized by treewidth, a natural alternative would be to
use a suitable analogue of treewidth that is based on edge cuts instead of vertex
separators. While tree-cut width has been coined as such an analogue of treewidth
for edge cuts, its algorithmic applications have often led to disappointing results:
out of twelve problems where one would hope for fixed-parameter tractability
parameterized by an edge-cut based analogue to treewidth, eight were shown to be
W[1]-hard parameterized by tree-cut width.
As our main contribution, we develop an edge-cut based analogue to treewidth
called edge-cut width. Edge-cut width is, intuitively, based on measuring the
density of cycles passing through a spanning tree of the graph. Its benefits include
not only a comparatively simple definition, but mainly that it has interesting
algorithmic properties: it can be computed by a fixed-parameter algorithm, and
it yields fixed-parameter algorithms for all the aforementioned problems where
tree-cut width failed to do so.

1 Introduction

While the majority of computational problems on graphs are intractable, in most cases it is
possible to exploit the structure of the input graphs to circumvent this intractability. This
basic fact has led to the extensive study of a broad hierarchy of decompositional graph
parameters (see, e.g., Figure 1 in [3]), where for individual problems of interest the aim is
to pinpoint which parameters can be used to develop fixed-parameter algorithms for the
problem. Treewidth [31] is by far the most prominent parameter in the hierarchy, and it is
known that many problems of interest are fixed-parameter tractable when parameterized
by treewidth; some of these problem can even be solved efficiently on more general
parameters such as rank-width [13, 30] or other decompositional parameters above
treewidth in the hierarchy [4]. However, in this article we will primarily be interested
in problems that lie on the other side of this spectrum: those which remain intractable
when parameterized by treewidth.

Aside from non-decompositional parameters1 such as the vertex cover number [10,
12] or feedback edge number [1, 18, 21], the most commonly applied parameters for
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1 We view a parameter as decompositional if it is tied to a well-defined graph decomposition; all
decompositional parameters are closed under the disjoint union operation of graphs.
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problems which are not fixed-parameter tractable with respect to treewidth are tied to the
existence of small vertex separators. One example of such a parameter is treedepth [29],
which has by now found numerous applications in diverse areas of computer science [17,
23, 28]. An alternative approach is to use a decompositional parameter that is inherently
tied to edge-cuts—in particular, tree-cut width [27, 33].

Tree-cut width was discovered by Wollan, who described it as a variation of tree
decompositions based on edge cuts instead of vertex separators [33]. But while it is true
that “tree-cut decompositions share many of the natural properties of tree decomposi-
tions” [27], from the perspective of algorithmic design tree-cut width seems to behave
differently than an edge-cut based alternative to treewidth. To illustrate this, we note that
tree-cut width is a parameter that lies between treewidth and treewidth plus maximum de-
gree (which may be seen as a “heavy-handed” parameterization that enforces small edge
cuts) in the parameter hierarchy [14, 24]. There are numerous problems which are W[1]-
hard (and sometimes even NP-hard) w.r.t. treewidth but fixed-parameter tractable w.r.t.
the latter parameterization, and the aim would be to have an edge-cut based parameter
that can lift this fixed-parameter tractability towards graphs of unbounded degree.

Unfortunately, out of twelve problems with these properties where a tree-cut width
parameterization has been pursued so far, only four are fixed-parameter tractable [14,15]
while eight turn out to be W[1]-hard [5, 14, 16, 18, 22]. The most appalling example of
the latter case is the well-established EDGE DISJOINT PATHS (EDP) problem: VERTEX
DISJOINT PATHS is a classical example of a problem that is FPT parameterized by
treewidth, and one should by all means expect a similar outcome for EDP parameterized
by the analogue of treewidth based on edge cuts [18, 19]. But if EDP is W[1]-hard
parameterized by tree-cut width, what is the algorithmic analogue of treewidth for edge
cuts? Here, we attempt to answer to this question through the notion of edge-cut width.

Contribution. Edge-cut width is an edge-cut based decompositional parameter which
has a surprisingly streamlined definition: instead of specialized decompositions such as
those employed by treewidth, clique-width or tree-cut width, the “decompositions” for
edge-cut width are merely spanning trees (or, in case of disconnected graphs, maximum
spanning forests). To define edge-cut width of a spanning tree T , we observe that for
each edge in G−T there is a unique path in T connecting its endpoints, and the edge-cut
width of T is merely the maximum number of such paths that pass through any particular
vertex in T ; as usual, the edge-cut width of G is then the minimum width of a spanning
tree (i.e., decomposition).

After introducing edge-cut width, establishing some basic properties of the parameter
and providing an in-depth comparison to tree-cut width, we show that the parameter has
surprisingly useful algorithmic properties. As our first task, we focus on the problem of
computing edge-cut width along with a suitable decomposition. This is crucial, since
we will generally need to compute an edge-cut width decomposition before we can use
the parameter to solve problems of interest. As our first algorithmic result, we leverage
the connection of edge-cut width to spanning trees of the graph to obtain an explicit
fixed-parameter algorithm for computing edge-cut width decompositions. This compares
favorably to tree-cut width, for which only an explicit 2-approximation fixed-parameter
algorithm [24] and a non-constructive fixed-parameter algorithm [20] are known.



Finally, we turn to the algorithmic applications of edge-cut width. Recall that among
the twelve problems where a parameterization by tree-cut width had been pursued, eight
were shown to be W[1]-hard parameterized by tree-cut width: LIST COLORING [14],
PRECOLORING EXTENSION [14], BOOLEAN CONSTRAINT SATISFACTION [14], EDGE
DISJOINT PATHS [18], BAYESIAN NETWORK STRUCTURE LEARNING [16], POLY-
TREE LEARNING [16], MINIMUM CHANGEOVER COST ARBORESCENCE [22], and
MAXIMUM STABLE ROOMMATES WITH TIES AND INCOMPLETE LISTS [5]. Here, we
follow up on previous work by showing that all of these problems are fixed-parameter
tractable when parameterized by edge-cut width. We obtain our algorithms using a new
dynamic programming framework for edge-cut width, which can also be adapted for
other problems of interest.

Related Work. The origins of edge-cut width lie in the very recent work of Ganian
and Korchemna on learning polytrees and Bayesian networks [16], who discovered an
equivalent parameter when attempting to lift the fixed-parameter tractability of these
problems to a less restrictive parameter than the feedback edge number2. That same
work also showed that computing edge-cut width can be expressed in Monadic Second
Order Logic which implies fixed-parameter tractability, but obtaining an explicit fixed-
parameter algorithm for computing optimal decompositions was left as an open question.

As far as the authors are aware, there are only four problems for which it is known
that fixed-parameter tractability can be lifted from the parameterization by “maximum
degree plus treewidth” to tree-cut width. These are CAPACITATED VERTEX COVER [14],
CAPACITATED DOMINATING SET [14], IMBALANCE [14] and BOUNDED DEGREE
VERTEX DELETION [15]. Additionally, Gozupek et al. [22] showed that the MINIMUM
CHANGEOVER COST ARBORESCENCE problem is fixed-parameter tractable when
parameterized by a special, restricted version of tree-cut width where one essentially
requires the so-called torsos to be stars.

2 Preliminaries

We use standard terminology for graph theory, see for instance [7]. Given a graph G,
we let V (G) denote its vertex set and E(G) its edge set. The (open) neighborhood of a
vertex x ∈ V (G) is the set {y ∈ V (G) : xy ∈ E(G)} and is denoted by NG(x). For a
vertex subset X , the neighborhood of X is defined as

⋃
x∈X NG(x) \X and denoted by

NG(X); we drop the subscript if the graph is clear from the context. Contracting an edge
{a, b} is the operation of replacing vertices a, b by a new vertex whose neighborhood is
(N(a) ∪N(b)) \ {a, b}. For a vertex set A (or edge set B), we use G−A (G−B) to
denote the graph obtained from G by deleting all vertices in A (edges in B), and we use
G[A] to denote the subgraph induced on A, i.e., G− (V (G) \A).

A forest is a graph without cycles, and an edge set X is a feedback edge set if G−X
is a forest. We use [i] to denote the set {0, 1, . . . , i}.

Given two graph parameters α, β : G→ N, we say that α dominates β if there exists
a function p such that for each graph G, β(G) ≤ p(α(G)).

2 The authors originally used the name “local feedback edge number”.



2.1 Parameterized Complexity

A parameterized problem P is a subset ofΣ∗×N for some finite alphabetΣ. LetL ⊆ Σ∗
be a classical decision problem for a finite alphabet, and let p be a non-negative integer-
valued function defined on Σ∗. Then L parameterized by p denotes the parameterized
problem {(x, p(x))|x ∈ L} where x ∈ Σ∗. For a problem instance (x, k) ∈ Σ∗ ×N we
call x the main part and k the parameter. A parameterized problem P is fixed-parameter
tractable (FPT in short) if a given instance (x, k) can be solved in time f(k) · |x|O(1)

where f is an arbitrary computable function of k. We call algorithms running in this time
fixed-parameter algorithms.

Parameterized complexity classes are defined with respect to fpt-reducibility. A
parameterized problem P is fpt-reducible toQ if in time f(k)·|x|O(1), one can transform
an instance (x, k) of P into an instance (x′, k′) of Q such that (x, k) ∈ P if and only if
(x′, k′) ∈ Q, and k′ ≤ g(k), where f and g are computable functions depending only
on k. Owing to the definition, if P fpt-reduces to Q and Q is fixed-parameter tractable
then P is fixed-parameter tractable as well. Central to parameterized complexity is the
following hierarchy of complexity classes, defined by the closure of canonical problems
under fpt-reductions:

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆ XP.

All inclusions are believed to be strict. In particular, FPT 6= W[1] under the Exponential
Time Hypothesis.

The class W[1] is the analog of NP in parameterized complexity. A major goal in
parameterized complexity is to distinguish between parameterized problems which are
in FPT and those which are W[1]-hard, i.e., those to which every problem in W[1] is
fpt-reducible. There are many problems shown to be complete for W[1], or equivalently
W[1]-complete, including the MULTI-COLORED CLIQUE (MCC) problem [8]. We
refer the reader to the respective monographs [6, 8] for an in-depth introduction to
parameterized complexity.

2.2 Treewidth

Treewidth [31] is a fundamental graph parameter that has found a multitude of algorithmic
applications throughout computer science.

Definition 1. A tree decomposition of a graph G is a pair (T, {βt}t∈V (T )), where T
is a tree, and each node t ∈ V (T ) is associated with a bag βt ⊆ V (G), satisfying the
following conditions:

1. Every vertex of G appears in some bag of T .
2. Every edge of G is contained as a subset in some bag of T .
3. For every vertex v ∈ V (G), the set of nodes t ∈ V (T ) such that v ∈ βt holds is

connected in T .

The width of a tree decomposition is defined as maxt |βt| − 1, and the treewidth tw(G)
of G is defined as the minimum width of any of its tree decompositions.



For our algorithms, it will be useful to make some additional assumptions on the tree
decomposition.

Definition 2. A tree decomposition (T, {βt}t∈V (T )) is called nice if is satisfies the
following:

1. T has a distinguished root r ∈ V (T ) with βr = ∅.
2. Every node of T has at most two children.
3. For every node t of T with two children s, u it holds that βt = βs = βu. These

nodes are called join-nodes.
4. For every node t of T with exactly one child s, there is a vertex v ∈ V (G) such that

either βt− βu = {v}, in which case we call t an introduce-node, or βu− βt = {v},
in which case we call t a forget-node. We call v the vertex introduced (resp. forgotten)
at t.

5. Every node that has no children is called a leaf-node of T and βt = ∅ must hold.

It is known that every tree decomposition can be converted into a nice one of the same
width in linear time.

2.3 Tree-cut Width

The notion of tree-cut decompositions was introduced by Wollan [33], see also [27]. A
family of subsets X1, . . . , Xk of X is a near-partition of X if they are pairwise disjoint
and

⋃k
i=1Xi = X , allowing the possibility of Xi = ∅.

Definition 3. A tree-cut decomposition of G is a pair (T,X ) which consists of a rooted
tree T and a near-partition X = {Xt ⊆ V (G) : t ∈ V (T )} of V (G). A set in the
family X is called a bag of the tree-cut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge incident
to t on the path to r. Let Tu and Tt be the two connected components in T − e(t) which
contain u and t, respectively. Note that (

⋃
q∈Tu

Xq,
⋃

q∈Tt
Xq) is a near-partition of

V (G), and we use Et to denote the set of edges with one endpoint in each part. We
define the adhesion of t (adh(t)) as |Et|; we explicitly set adh(r) = 0 and E(r) = ∅.

The torso of a tree-cut decomposition (T,X ) at a node t, written as Ht, is the graph
obtained from G as follows. If T consists of a single node t, then the torso of (T,X )
at t is G. Otherwise, let T1, . . . , T` be the connected components of T − t. For each
i = 1, . . . , `, the vertex set Zi ⊆ V (G) is defined as the set

⋃
b∈V (Ti)

Xb. The torso Ht

at t is obtained from G by consolidating each vertex set Zi into a single vertex zi (this is
also called shrinking in the literature). Here, the operation of consolidating a vertex set Z
into z is to substitute Z by z in G, and for each edge e between Z and v ∈ V (G) \ Z,
adding an edge zv in the new graph. We note that this may create parallel edges.

The operation of suppressing (also called dissolving in the literature) a vertex v of
degree at most 2 consists of deleting v, and when the degree is two, adding an edge
between the neighbors of v. Given a connected graph G and X ⊆ V (G), let the 3-center
of (G,X) be the unique graph obtained from G by exhaustively suppressing vertices in
V (G)\X of degree at most two. Finally, for a node t of T , we denote by H̃t the 3-center
of (Ht, Xt), where Ht is the torso of (T,X ) at t. Let the torso-size tor(t) denote |H̃t|.



Definition 4. The width of a tree-cut decomposition (T,X ) of G is maxt∈V (T ){adh(t),
tor(t)}. The tree-cut width of G, or tcw(G) in short, is the minimum width of (T,X )
over all tree-cut decompositions (T,X ) of G.

Without loss of generality, we shall assume thatXr = ∅. We conclude this subsection
with some notation related to tree-cut decompositions. Given a tree node t, let Tt be the
subtree of T rooted at t. Let Yt =

⋃
b∈V (Tt)

Xb, and let Gt denote the induced subgraph
G[Yt]. A node t 6= r in a rooted tree-cut decomposition is thin if adh(t) ≤ 2 and bold
otherwise.

A tree-cut decomposition (T,X ) is nice if it satisfies the following condition for
every thin node t ∈ V (T ): N(Yt) ∩ (

⋃
b is a sibling of t Yb) = ∅. The intuition behind nice

tree-cut decompositions is that we restrict the neighborhood of thin nodes in a way which
facilitates dynamic programming. Every tree-cut decomposition can be transformed into
a nice tree-cut decomposition of the same width in cubic time [14].

For a node t, we let Bt = {b is a child of t||N(Yb)| ≤ 2 ∧ N(Yb) ⊆ Xt} denote
the set of thin children of t whose neighborhood is a subset of Xt, and we let At =
{a is a child of t|a 6∈ Bt} be the set of all other children of t. Then |At| ≤ 2k + 1 for
every node t in a nice tree-cut decomposition [14].

We refer to previous work [14, 24, 27, 33] for a more detailed comparison of tree-cut
width to other parameters. Here, we mention only that tree-cut width is dominated by
treewidth and dominates treewidth plus maximum degree, which we denote degtw(G).

Lemma 1 ([14, 27, 33]). For every graph G, tw(G) ≤ 2 tcw(G)2 + 3 tcw(G) and
tcw(G) ≤ 4 degtw(G)2.

3 Edge-Cut Width

Let us begin by considering a maximal spanning forest T of a graph G, and recall that
E(G)− T forms a minimum feedback edge set in G; the size of this set is commonly
called the feedback edge number [1, 18, 21], and it does not depend on the choice of T .
We will define our parameter as the maximum number of edges from the feedback edge
set that form cycles containing some particular vertex v ∈ V (G).

Formally, for a graph G and a maximal spanning forest T of G, let the local feedback
edge set at v ∈ V be EG,T

loc (v) = {uw ∈ E(G) \ E(T ) | the unique path between u
and w in T contains v}; we remark that this unique path forms a so-called fundamental
cycle with the edge uw. The edge-cut width of (G,T ) (denoted ecw(G,T )) is then equal
to 1 + maxv∈V |EG,T

loc (v)|, and the edge-cut width of G is the smallest edge-cut width
among all possible maximal spanning forests of G.

Notice that the definition increments the edge-cut width of T by 1. This “cosmetic”
change may seem arbitrary, but it matches the situation for treewidth (where the width
is the bag size minus one) and allows trees to have a width of 1. Moreover, defining
edge-cut width in this way provides a more concise description of the running times for
our algorithms, where the records will usually depend on a set that is one larger than
|EG,T

loc (v)|. We note that the predecessor to edge-cut width, called the local feedback
edge number [16], was defined without this cosmetic change and hence is equal to
edge-cut width minus one.



While it is obvious that ecw(G) is upper-bounded by (and hence dominates) the
feedback edge number of G (fen(G)), we observe that graphs of constant ecw(G) can
have unbounded feedback edge number—see Figure 1. We also note that Ganian and
Korchemna established that edge-cut width is dominated by tree-cut width.

Fig. 1. Example of a graph G with a spanning tree T (marked in red) such that ecw(G) =
ecw(G,T ) = 3. The feedback edge number of G, i.e., its edge deletion distance to acyclicity,
is exactly the number of black edges and can be made arbitrarily large in this fashion while
preserving ecw(G) = 3.

Proposition 1 ([16]). For every graph G, tcw(G) ≤ ecw(G) ≤ fen(G) + 1.

Proof. Let us begin with the second inequality. Consider an arbitrary spanning tree T
ofG. Then for every v ∈ V (G),ET

loc(v) is a subset of a feedback edge set corresponding
to the spanning tree T , so |ET

loc(v)| ≤ fen(G) and the claim follows.
To establish the first inequality, we will use the notation and definition of tree-cut

width from previous work [15, Subsection 2.4]. Let T be the spanning tree of G with
ecw(G,T ) = ecw(G). We construct a tree-cut decomposition (T,X ) where each bag
contains precisely one vertex, notably by setting Xt = {t} for each t ∈ V (T ). Fix any
node t in T other than root, let u be the parent of t in T . All the edges in G \ ut with
one endpoint in the rooted subtree Tt and another outside of Tt belong to ET

loc(t), so
adhT (t) = | cut(t)| ≤ |ET

loc(t)| ≤ ecw(G)− 1.

Let Ht be the torso of (T,X ) in t, then V (Ht) = {t, z1...zl} where zi correspond
to connected components of T \ t, i ∈ [l]. In H̃(t), only zi with degree at least 3
are preserved. But all such zi are the endpoints of at least two edges in |ET

loc(t)|, so
tor(t) = |V (H̃t)| ≤ 1 + |ET

loc(t)| ≤ ecw(G). Thus tcw(G) ≤ ecw(G).

As for the converse, we already have conditional evidence that edge-cut width cannot
dominate tree-cut width: BAYESIAN NETWORK STRUCTURE LEARNING is W[1]-hard
w.r.t. the latter, but fixed-parameter tractable w.r.t. the former [16]. We conclude our com-
parisons with a construction that not only establishes this relationship unconditionally,
but—more surprisingly—implies that edge-cut width is incomparable to degtw.

Lemma 2. For each m ∈ N, there exists a graph Gm of degree at most 3, tree-cut width
at most 2, and edge-cut width at least m+ 1.

Proof. We start from two regular binary trees Y and Y ′ of depth m, i.e., rooted binary
trees where every node except leaves has precisely two children and the path from any
leaf to the root contains m edges. We glue Y and Y ′ together by identifying each leaf
of Y with a unique leaf of Y ′ (see the left part of Figure 2 for an illustration). It remains
to show that the resulting graph, which we denote Gm, has the desired properties.



Fig. 2. Left: Graph G4, where the roots of Y and Y ′ are a3 and a′3, the path π is green and B2 is
violet. Right: Fragment of the tree-cut decomposition (Y ∗, χ) of G4.

Consider arbitrary spanning tree T ofGm. There exists a unique path π ⊆ T between
the roots r and r′ of Y and Y ′. Observe that Gm − π is a disjoint union of m graphs
Gl, l ∈ [m− 1]. We add to every such Gl two edges which connect it with π and denote
the resulting graph by Bl. Then every Bl contains at least one edge that contributes to
the local feedback edge set of q ∈ V (π), where q is a leaf in Y and Y ′. Indeed, fix
any l ∈ [m− 1] and denote by al and a′l the vertices of Bl intersecting π in Y and Y ′

correspondingly. As T is a tree, T − q is a union of two trees: one containing al and
another containing a′l. Hence every vertex ob Bl is connected to precisely one of al
and a′l in T − q. In particular, there exists an edge el of Bl such that one endpoint of el
is connected to al and another is connected to a′l in T − q. Then el belongs to the local
feedback edge set of every vertex of π that lies between al and a′l, in particular, to the
local feedback edge set of q. As Bl and Bl′ don’t share edges for any l 6= l′, this results
in |EGm,T

loc (q)| ≥ m. Since the inequality holds for any choice of T , we may conclude
that ecw(Gm) ≥ m+ 1.

To compute the tree-cut width ofGm has, consider its tree-cut decomposition (Y ∗, χ)
where Y ∗ is a regular binary tree of depth m and χ is defined as follows. Let h :
V (Y ∗) → V (Y ) and h′ : V (Y ∗) → V (Y ′) be bijections such that (1) if y is a leaf
of Y ∗ then h(y) and h′(y) are identified leaves of Y and Y ′, and (2) if y1 is a parent
of y2 in Y ∗ then h(y1) is a parent of h(y2) in Y and h′(y1) is a parent of h′(y2) in Y ′.
Further, for every node y of Y ∗ we define its bag to beXy = {h(y), h′(y)} (see the right
part of Figure 2 for the illustration). Observe that the adhesion of every node as well as
size of each bag is at most 2, and all the children are thin, therefore, tcw(Gm) = 2. ut

Since it is known that treewidth dominates tree-cut width (see Lemma 1), Lemma 2
implies that edge-cut width does not dominate degtw. Conversely, it is easy to build
graphs with unbounded degtw and bounded edge-cut width (e.g., consider the class of
stars). Hence, we obtain that edge-cut width is incomparable to degtw. An illustration
of the parameter hierarchy including edge-cut width is provided in Figure 3.

Next, we note that even though Lemma 1 and Proposition 1 together imply that
tw(G) ≤ 2 ecw(G)2 + 3 ecw(G), one can in fact show that the gap is linear. This will
also allow us to provide a better running time bound in Section 4.

Lemma 3. For every graph G, tw(G) ≤ ecw(G).



Fig. 3. Position of edge-cut width in the hierarchy of
graph parameters. Here an arrow from parameter β to
parameter α represents the fact that α dominates β, i.e.,
there exists a function p such that for each graph G,
α(G) ≤ p(β(G)). We use fen to denote the feedback
edge number.

Proof. Let T be the spanning tree of G such that ecw(G) = ecw(G,T ). We arbitrarily
pick a root r in T and construct the tree decomposition (T, {βv}v∈V (T )) of G as follows.
At first, for every v ∈ V (G), we add to βv the vertex v and the parent of v in T (if it
exists). Obviously, after this step each vertex v of G appears in some bag and every edge
of T is contained as a subset in some bag. Moreover, v appears only in βv and in the
bags of children of v in T , which results in a connected subtree of T .

To complete the construction, we process feedback edges one by one. For every
e ∈ E(G) \ E(T ), we arbitrarily choose an endpoint u of e = uw and add u to each
bag βv such that u ∈ EG,T

loc (v). Note that any such step does not violate the connectivity
condition. Indeed, we add u to the bags of all vertices which lie on the path between
the endpoints of e in T . In particular, the path hits u whose bag βu initially contained
u. Finally, both endpoints of e appear in βw. In the resulting decomposition, for each
v ∈ V (G) it holds that |βv| ≤ 2 + EG,T

loc (v) ≤ 1 + ecw(G). Hence the width of
(T, {βv}v∈V (T )) is at most ecw(G). ut

Last but not least, we show that—also somewhat surprisingly— edge-cut width is
not closed under edge or vertex deletion.

For the edge-deletion case, we refer readers to Figure 4 which illustrates a graph
G along with a spanning tree witnessing that ecw(G) ≤ 4. On the other hand, any
spanning tree T of G− ac must contain both edges abi and bic for some i ∈ {1, 2, 3}.
We will assume that those edges are ab1 and b1c, since the other cases are symmetrical.
Then T contains precisely one edge of each pair (ab2, b2c) and (ab3, b3c). The other,
“missing” edge from each pair contributes to the local feedback edge set of b1. Together
with two missing edges of 3-cycles that intersect b1, this results in |EG−ac,T

loc (b1)| ≥ 4
and, since similar situation happens for any choice of a spanning tree, we conclude that
ecw(G− ac) ≥ 5. The vertex deletion case can be argued analogously using the graph
obtained from G by subdividing the edge ac.

Corollary 1. There exist graphs G and H such that ecw(G − e) > ecw(G) and
ecw(H − v) > ecw(H) for some e ∈ E(G) and v ∈ V (H).

4 Computing Edge-Cut Width

Before we proceed to the algorithmic applications of edge-cut width, we first consider
the question of computing the parameter along with an optimal “decomposition” (i.e.,
spanning tree). Here, we provide an explicit fixed-parameter algorithm for this task.

By Lemma 3, the treewidth of G can be linearly bounded by ecw(G). The algorithm
uses this to perform dynamic programming on a tree decomposition (T, {βt}t∈V (T ))



Fig. 4. Left: Graph G− ac of ecw(G− ac) ≥ 5. Right: Green tree witnessing that ecw(G) ≤ 4.

of G. For a node t ∈ V (T ), we let Yt be the union of all bags βs such that s is either t
itself or a descendant of t in T , and let Gt be the subgraph G[Yt] of G induced by Yt.

Lemma 4. Given an n-vertex graph G of treewidth k and a bound w, it is possible to
decide whether G has edge-cut width at most w in time kO(wk2) · n. If the answer is
positive, we can also output a spanning tree of G of edge-cut width at most w.

Using the relation between treewidth and edge-cut width above, we immediately obtain:

Theorem 1. Given a graph G, the edge-cut width ecw(G) can be computed time
ecw(G)ecw(G)3 · n.

Proof (of Lemma 4). Without loss of generality, we assume that G is connected. Us-
ing state-of-the-art approximation algorithms [2, 25], we first compute a “nice” tree
decomposition (T, {βt}t∈V (T )) with root r ∈ V (T ) of width k = O(tw(G)) in time
2O(k) · n.

On a high level, the algorithm relies on the fact that if G has edge-cut width at
most w, then at each bag βt the number of unique paths contributing to the edge-cut
width of vertices in βt is upper-bounded by |βt|w ≤ kw. Otherwise, at least one of the
vertices in βt would lie on more than w cycles. We can use this to branch on how these
at most kw edges are routed through the bag.

At each vertex t ∈ T of the tree decomposition, we store records that consist of:
– an acyclic subset F of edges of G[βt],
– a partition C of βt, and
– two multisets future,past of sequences of vertex-pairs (u, v) from βt, with the

following property:
• Every vertex of βt appears on at most w distinct u-v paths, where (u, v) is a

pair of vertices in a sequence in future or past.
• vi and ui+1 are not connected by an edge in βt.

The semantics of these records are as follows: For every spanning tree of width
at most w, the record describes the intersection of the solution with G[βt], and the
intersection of every fundamental cycle of this solution with G[βt]. We encode the path
that a cycle takes through G[βt] via a sequence of vertex pairs that indicate where the
path leaves and enters G[βt] from the outside (it may be that these are the same vertex).
More precisely, past contains those cycles that correspond to an edge that has already



appeared in Gt, whereas future corresponds to those cycles that correspond to an
edge not in Gt. In particular, this allows to reconstruct on how many cycles a vertex
of βt lies. The partition C says which vertices of βt are connected via the solution in Gt.

To be more precise, let t ∈ T and let S be an acyclic subset of edges of G that has
width at most w on Gt (that is, each vertex of S lies on at most w fundamental cycles
of S in Gt). We call such S partial solutions at t. Then, we let the t-projection of S be
defined as (F, C,future,past), where

– F = S ∩G[βt].
– C is a partition of F according to the connected components of S in Gt.
– Let Ce be a fundamental cycle of S in G corresponding to the edge e ∈ G − S.

Then, there is a sequence Pe = ((u1, v1), . . . , (ut, vt)) in either future or past
of vertex pairs such that the intersection of Ce with S traverses F along the unique
ui-vi paths in the order they appear in Pe (note that ui = vi is possible, in which
case the path contains just the vertex ui).

– For each fundamental cycle Ce of S in G, if e ∈ Gt, then Pe ∈ past, otherwise,
Pe ∈ future.

Note that Pe can (and often will) be the empty sequence Pe = ∅. Moreover, we assume
that the correspondence between future ∪ past and the edges in G− S is bijective,
in the sense that if two edges e, e′ produce the same sequence Pe = Pe′ , then Pe and Pe′

occur as two separate copies in future ∪ past.
The encoding length of a single record is O(wk2 log k), dominated by the at most

kw sequences Pe of k pairs of vertices each, with indices having O(log k) bits. Overall,
the number of records is hence bounded by 2O(wk2 log k).

For each t ∈ T , we store a set of recordsR(t) that has the property thatR(t) contains
the set of all t-projections of spanning trees of width at most w (that is, projections
of solutions of the original instance). In addition, we require for every record in R(t)
that there is a partial solution S of Gt of width at most w that agrees with F, C and
past of the record. In this case, we call R(t) valid. Supposing correctness of this
procedure, G is a YES-instance if and only if (Fr, Cr,pastr,futurer) ∈ R(r), with
Fr = Cr = futurer = ∅, pastr = {∅m−n}, and a NO-instance otherwise.

We computeR(t) bottom-up along the nice tree-decomposition depending on the
type of the node t as follows:

At a leaf-node, per convention, βt = ∅, and since Gt is the empty graph, any span-
ning tree S has width at most w on Gt. This implies that any t-projection (F, C,past,
future) of such S satisfies F = C = past = ∅,future = {∅n−m}. It therefore
suffices to setR(t) = {(∅, ∅, ∅, {∅n−m})}, and this is valid.

At an introduce-node, let the vertex introduced at t be v ∈ G, and let s be the
unique child of t in T . By definition, βt = βs ∪{v}. We assume by inductive hypothesis
thatR(s) is valid. Consider now any solution S of width at most w on Gt. This solution
will be of width at most w also on Gs. Hence, since R(s) is assumed valid, there is a
record (Fs, Cs,pasts,futures) corresponding to the s-projection of S.

We first branch over the way that the edges incident with v in G[βt] extend Fs. Call
this new set of edges Ev . During this process, we discard any choice of Ev that connects
vertices within the same connected component as indicated by Cs.

Furthermore, we discard any choice that implies cycles in the solution via future:
If there is an entry in futures that contains two consecutive pairs (u, u′), (w,w′) such



that u′ and w are now in the same component of C (that is, were connected by adding v
to Gs), and one of u′ or w is not a neighbor of v, then this would imply two u′-w paths:
u′ and w, but not any of the vertices on the paths u′-v and v-w lie on the fundamental
cycle corresponding to the entry in futures containing (u, u′), (w,w′), yielding two
paths: One through the cycle, the other through v via Ev. Therefore, this choice of Ev

can be discarded.

Then, for every edge (v, u) incident with v that was not chosen into Ev , there must
be a sequence of pairs P in futures such that the last vertex in the last pair of the
sequence P is u, otherwise we may discard Ev (since the corresponding fundamental
cycle wasn’t reflected in futures.) We branch over all ways of choosing P1, . . . , Pd

for each edge e1, . . . , ed incident to v that is not in Ev . For each i = 1, . . . , d, if P = Pi

just consists of the single pair (u, u), we add the single pair (v, v) to P , and move P
to past (since the feedback edge (v, u) is now part of Gt). Otherwise, if the first pair
(w,w′) in P is distinct from (u, u), we add the pair (v, w′) to P , remove (w,w′) from
P , and add P to past.

We now update past and future as follows: If there is a consecutive pair
(u, u′), (w,w′) in an element of pasts or futures such that u′ and w are neighbors
of v, replace the subsequence (u, u′), (w,w′) by (u,w′): any other choice of connecting
u′ and w through a path than directly via v would imply a cycle. In any case, add the
resulting sequence to past or future, respectively.

We then branch over the choices of extending fundamental cycles along v: For each
pair in a sequence in past or future that contains a neighbor u of v connected via
Ev , branch over whether or not to route this fundamental cycle via v by replacing (u,w)
by (v, w) or (w, u) by (w, v), respectively.

If during any of the choices forEv, P1, . . . , Pd and the extensions of the fundamental
cycles via v, the solution would have to route more than w cycles over any vertex of
βt (as can be checked by tracing out all the pairs in the sequences now contained in
future and past), discard the choice. If there is no way to choose the above without
exceeding the width bound, discard the entire choice of record and consider the next
record inR(s).

If this is not the case, then, for a choice of Ev (i.e., how to extend Fs), P1, . . . , Pd

(i.e., how to route the new edges in Gt in past) and a choice of extending the existing
cycles in pasts and futures to in– or exclude v, we branch over how many additional
fundamental cycles v outside of Gt will be part of, and add as many copies of the
sequence consisting just of (v, v) to future, simultaneously decreasing the multiplicity
of ∅ in futures by as many, and adding the result to future.

Finally, add (Fs ∪ Ev, C,past,future) to R(t), and consider the next entry
of R(s). Since any partial solution of width at most w on Gt will have to extend its
s-projection in one of the above ways, this generates all possible t-projections (and
possibly some additional records with the same F, C,past). In particular, the generated
setR(t) is valid. This completes the description of the introduce step.

The running time of this step is dominated by branching over the sequencesP1, . . . , Pd.
Since d ≤ k and there are at most kw sequences in total, we have (kw)k = 2O(wk log k)

choices at most, for each of the 2O(wk2 log k) records in R(s), and processing each



choice only adds a lower-order term in the running time. Therefore, this step takes time
2O(wk2 log k).

At a forget-node, let the vertex forgotten at t be v ∈ G, and let s be the unique child
of t in T . By definition, βt = βs − {v}. We assume by inductive hypothesis thatR(s)
is valid, and let (Fs, Cs,pasts,futures) ∈ R(s).

If {v} ∈ C (that is, v is a single component in the intersection of any solution that
projects to the current record with βt), then discard the choice for the record and consider
the next element of R(s). In this case, the component that contains v in any partial
solution conforming with the record could never be completed to form a connected
subgraph.

If (v, v) appears as part of a sequence in futures or pasts, remove (v, v) from
the sequence. If, on the other hand, (v, u) is part of any sequence in pasts or futures

for some u 6= v, replace (v, u) by (v′, u), where v′ is the next vertex on the unique v-u
path in Fs (and u = v′ is possible). In both cases, add the resulting sequence (which is
possibly equal to the empty sequence) to future or past, respectively. If the empty
sequence would be added to future, discard the current record (since there is no way
of closing this fundamental cycle in the future that can involve v).

We remove all edges involving v from Fs to obtain F and update Cs by removing
v from all sets it appears in, thereby obtaining C. We add (F, C,past,future) to
R(t). Since Gt = Gs, the set of solutions that contribute to the set of t-projections and
s-projections doesn’t change; we hence only have to update the s-projections to become
t-projections, as we did, in order to obtain a valid setR(t).

The running time of this step is dominated by the running time at the introduce-nodes.
At a join-node, let s and s′ be the two children of t in T . We consider all pairs

of records in R(s) and R(s′). If Fs 6= Fs′ or futures 6= futures′ , we discard the
current choice. Consider the transitive closures of the reachability relations on βt as
induced by Cs and Cs′ , respectively. If their union (as multigraphs) produces a cycle
(which could be two parallel edges (u, v) and (u, v) for some u, v ∈ βt = βs = βs′),
any solution that s-projected and s′-projected to Cs and Cs′ , respectively, would be cyclic
on Gt. Hence, we may discard this choice of records.

If none of the above happens, we set past = pasts ∪ pasts′ as multisets, and
check if this results in any of the vertices of βt coming to lie on more than w fundamental
cycles. If this is the case, we discard the current choice of records. If not, let C be finest
common coarsening of the partitions Cs and Cs′ (that is, the result of merging any
two components that share a vertex, and exhausting this process). We let F = Fs(=
Fs′),future = futures(= futureS′), and setR(t) = (F, C,past,future).

By a similar token as in the previous cases, this produces all possible t-projections
of solutions of Gs and Gs′ that are also solutions for Gt of width at most w, and hence a
valid setR(t).

Since we have to consider pairs of records that differ in past, and past dominates
the size of the records, the running time at the join-nodes dominates the running time at
the introduce-nodes, and is bounded by 2O(wk2 log k).

Overall, the running time of the algorithm is bounded by 2O(wk2 log k) ·n. By keeping
one representative of a partial solution of Gt per record at each node t that t-projects to
the current record, we can successively build a solution of width at most w. ut



5 Algorithmic Applications of Edge-Cut Width

Here we obtain algorithms for the following five NP-hard problems (where a sixth
problem mentioned in the introduction, PRECOLORING EXTENSION, is a special case
of LIST COLORING, and the fixed-parameter tractability of BAYESIAN NETWORK
STRUCTURE LEARNING and POLYTREE LEARNING follows from previous work [16]).
In all of these, we will parameterize either by the edge-cut width of the input graph or of
a suitable graph representation of the input. Recall that all problems are known to be
W[1]-hard when parameterized by tree-cut width [5, 14, 18, 22], and here we will show
they are all fixed-parameter tractable w.r.t. edge-cut width.

As a unified starting point for all algorithms, we will apply Theorem 1 to compute a
minimum-width spanning tree T of the input graph (or the graph representation of the
input) G; the running time of Theorem 1 is also an upper-bound for the running time
of all algorithms except for MAXSRTI, which has a quadratic dependence on the input
size. Let r be an arbitrarily chosen root in T . For each node v ∈ V (T ), we will use Tv
to denote the subtree of T rooted at v. Without loss of generality, in all our problems we
will assume that G is connected.

The central notion used in our dynamic programming framework is that of a bound-
ary, which fills a similar role as the bags in tree decompositions. Intuitively, the boundary
contains all the edges which leave Tv (including the vertices incident to these edges).

Definition 5. For each v ∈ V (T ), the boundary ∂(v) of Tv is the edge-induced sub-
graph of G induced by those edges which have precisely one endpoint in Tv .

Observe that for each v ∈ V (T ), |E(∂(v))| ≤ ecw(G) and |V (∂(v))| ≤ 2 ecw(G).
It will also sometimes be useful to speak of the graph induced by the vertices that are
“below” v in T , and so we set Yv = {w | w is a descendant of v in T} and Gv = G[Yv];
we note that v ∈ Yv. Observe that ∂(v) acts as a separator between vertices outside
of Yv ∪ V (∂(v)) and vertices in Yv \ V (∂(v))

5.1 Edge Disjoint Paths

We start with the classical EDGE DISJOINT PATHS problem, which has been extensively
studied in the literature. While its natural counterpart, the VERTEX DISJOINT PATHS
problem, is fixed-parameter tractable when parameterized by treewidth, EDGE DISJOINT
PATHS is W[1]-hard not only when parameterized by tree-cut width [18] but also by the
vertex cover number [11].

EDGE DISJOINT PATHS (EDP)

Input: A graph G and a set P of terminal pairs, i.e., a set of subsets of V (G)
of size two.

Question: Is there a set of pairwise edge disjoint paths connecting every set of
terminal pairs in P ?

A vertex which occurs in a terminal pair is called a terminal and a set of pairwise
edge disjoint paths connecting every set of terminal pairs in P is called a solution.



Theorem 2. EDP is fixed-parameter tractable when parameterized by the edge-cut
width of the input graph.

Proof. We start by defining the syntax of the records we will use in our dynamic program.
For v ∈ V (G), let a record be a tuple of the form (S,D,R), where:

– S = {(t0, e0), . . . , (ti, ei)} where for each j ∈ [i], tj ∈ Yv is a terminal whose
counterpart is not in Gv, ej ∈ E(∂(v)), and where each terminal without a partner
in Yv appears in exactly one pair,

– D,R are sets of unordered pairs of elements from E(∂(v)), and
– each edge of E(∂(v)) may only appear in at most one tuple over all of these sets.

We refer to the edges in S,D,R as single, donated and received edges, respectively, in
accordance with how they will be used in the algorithm. Let R(v) be a set of records
for v. From the syntax, it follows that |R(v)| ≤ 2O(k log k) for each v ∈ V (G).

Let Pv ⊆ (Yv ∪ V (∂(v)))2 be a set that can be obtained from P by the following
three operations:

– for some {a, b} ∈ P where a ∈ Yv , b 6∈ Yv , replacing b by some c ∈ V (∂(v)), and
– for some a′, b′ ∈ V (∂(v)) \ Yv , adding {a′, b′} to Pv , and
– for each {a, b} ∈ P where a, b 6∈ Yv , remove {a, b}.

To define a partial solution we need the following graph Hv:
– First, we add Gv ∪ ∂(v) to Hv , where Gv ∪ ∂(v) is the (non-disjoint) union of these

two graphs.
– Next, we create for each edge e ∈ E(∂(v)) a pendant vertex ve adjacent to the

endpoint of e that is outside of Yv . Let V∂ denote the set of these new vertices.
– Finally, we add edges to E(Hv) such that V∂ is a clique.

Let a partial solution at v be a solution to the instance (Hv, Pv) for some Pv defined as
above. Obviously, since at the root r we have that ∂(r) is empty, Pr = P and Hr = G.
Notice that a partial solution at the root is a solution.

Consider then the setW containing all partial solutions at v. The v-projection of a
partial solution W ∈ W at v is a record (SW , DW , RW ) where:

– (t, e) ∈ SW if and only if t is a terminal in Yv whose counterpart t′ is not in Yv
and e is the first edge in E(∂(v)) encountered by the t-t′ path in W ,

– {ei, ej} ∈ DW if and only if there is a pathQ ∈W withQ = ei, ei+1, . . . , ej−1, ej
such that the edges in Q \ {ei, ej} are contained in E(Gv)3, and

– {ei, ej} ∈ RW if and only if there is some s-t path Q ∈W such that s, t in Yv, ei
is the first edge in E(∂(v)) that occurs in Q, and ej is the last edge in E(∂(v)) that
occurs in Q.
We say thatR(v) is valid if and only if it contains all v-projections of partial solutions

inW , and in addition, for every record inR(v), there is a partial solution such that its
v-projection yields this record.

Observe that ifR(r) = ∅, then (G,P ) is a NO-instance, while ifR(r) = {(∅, ∅, ∅)},
then R(r) is a YES-instance. To complete the proof, it now suffices to dynamically
compute a set of valid records in a leaf-to-root fashion along T . We note that if at any
stage we obtain that a vertex v has no records (i.e.,R(v) = ∅), we immediately reject.

3 Note that by the syntax, it follows that ei and ej are both contained in ∂(v)



If v is a leaf, we branch over all possible valid records by settingR = ∅ and lettingD
vary over all subsets of {{e1, e2} | e1, e2 ∈ E(∂(v))}. In the case that v is a terminal,
we additionally let S vary over all subsets of {(v, e) | e ∈ E(∂(v))}. We discard choices
of S and D where the same edge appears more than once over both sets.

The setR(v) is trivially valid.
If v is an internal node, we proceed in the following way: First, we bound the num-

ber of children of v by our parameter k. Then we branch over all possible combinations
of records for the remaining children of v to obtainR(v).

We reduce the size of the subtree in the following way: Let u be a child of v with
E(∂(u)) = {{u, v}}, i.e., Tu has no edge that increases the size of the edge-cut width
of v.

– If there is no terminal pair with precisely one vertex in Tu, then delete Tu along
with all terminal pairs with both endpoints in Tu.

– If there is a single terminal pair {s, t} with precisely one vertex, say t, in Tu, then
replace t with v and delete Tu along with all terminal pairs with both endpoints in
Tu. (We remark that v can be contained in multiple terminal pairs at the same time.)

– Otherwise, we correctly identify that this is a NO-instance.
Since Gu is connected to the remaining graph by a single edge it can connect only

one terminal in Yu with a terminal in V \ Yu. After this step there are at most 2(k − 1)
children left because at most 2(k − 1) subtrees rooted at a child of v can contribute to
the edge-cut width of v.

Let u1, . . . , u` with ` ≤ 2(k − 1) denote the remaining children of v. First, we
compute a setR(v), in the same way we would computeR(v) if v was a leaf. Our goal
is to computeR(v) using the local setR(v) and the partial resultsR(u1), . . . ,R(u`).

In the following we take one record each out ofR(v),R(u1), . . . ,R(u`) and repeat
the following process for each combination of records. First, we observe that each edge
can appear in at most two records, because it can connect at most two subtrees.

In the next step, we compute a set D′, which contains the longest paths which can be
donated by Tv, for each combination of records. For this we look at the D-sets in our
records from R(v),R(u1), . . . ,R(u`). We trace out the longest paths along edges in
the D-sets of these records, which can be done in time kO(1) (we start at some edge ei
and find its partner ej in the same D-set, then we look for ej in the other D-sets, and so
on; in particular, this is not an ordinary longest-path problem).

Now, we resolve each of the pairs {ei, ej} in R for any of the currently considered
records using the paths in D′. Either there is a path in D′ connecting ei and ej , which
means the pair {ei, ej} can be ignored. Or there are two paths connecting ei resp. ej
to e′i resp. e′j ∈ E(∂(v)). Then the pair {e′i, e′j} needs to be added to R′. In case
ei ∈ E(∂(v)), let e′i = ei and similarly for ej . In either case the used paths are deleted
from D′.

Next, we consider each pair (s, ei) ∈ S for any of the currently considered records.
Let (s, t) ∈ P . If t /∈ Yv and ei ∈ E(∂(v)), then add (s, ei) to S′. In case ei /∈ E(∂(v)),
we use the donated paths in D′ to connect ei to e′i ∈ E(∂(v)) and add (s, e′i) to S′.
If (t, ej) ∈ S̄ for any of the currently considered records, we proceed as if (ei, ej) ∈ R.

Note that all steps are deterministic, as each edge can only appear in two sets and
therefore there can only be one path starting at any edge e that one could use to traverse
the graph.



Afterwards, we need to delete all pairs in D′ with ei or ej /∈ E(∂(v)). Finally, the
tuple (S′, D′, R′) is inserted as a record inR(v).

Correctness follows via induction: The records of the leaves are valid. Assuming
R(u1), . . . ,R(u`) are valid, so will be the record set at v: It contains all possible ways
in which the partial solutions of the subtrees at ui could be extended. In particular, this
includes the projections of all full solutions, and by construction, every such extension
will extend the combination of partial solutions of the subtrees to a partial solution of
the subtree at v, showing validity.

As for the running time: We go through each of the n vertices, where |Rv| ≤
2O(k log k) for v ∈ V . Moreover, each vertex has at most 2(k − 1) children, which
makes for 2O(k2 log k) combinations when branching, and the number of combinations
dominates the time each combination takes to be processed. Hence, the total running
time amounts to 2O(k2 log k) · n. ut

5.2 List Coloring

The second problem we consider is LIST COLORING [9,14]. It is known that this problem
is W[1]-hard parameterized by tree-cut width. A coloring col is a mapping from the
vertex set of a graph to a set of colors; a coloring is proper if for every pair of adjacent
vertices a, b, it holds that col(a) 6= col(b).

LIST COLORING

Input: A graph G = (V,E) and for each vertex v ∈ V a list L(v) of permitted
colors.

Question: Does G admit a proper coloring col where for each vertex v it holds
col(v) ∈ L(v)?

Theorem 3. LIST COLORING is fixed-parameter tractable when parameterized by the
edge-cut width of the input graph.

Proof. We start by defining the syntax of the records we will use in our dynamic program.
For v ∈ V (G), let a record for a vertex v consist of tuples of the form (u, c), where (1)
u ∈ V (∂(v)) ∩ Yv, (2) c ∈ L(u) ∪ {δ}, and (3) each vertex of V (∂(v)) ∩ Yv appears
exactly once in a record.

To introduce the semantics of the records, consider the setW containing all partial so-
lutions (i.e., all proper colorings) at v to the instance (Gv, (L(u))u∈Yv ). The v-projection
of a partial solution col ∈ W is a set Rcol = {(u, c) | u ∈ V (∂(v)) ∩ Yv, c ∈ L(u)})
where (u, c) ∈ Rcol if and only if col(u) = c.

LetR(v) be a set of records for v. For two records R1, R2 ∈ R(v) we say R1 � R2

if and only if for each u ∈ V (∂(v)) ∩ Yv the following holds:
– Either (u, c) ∈ R1 ∩R2 with c ∈ L(u),
– Or (u, c) ∈ R1 with c ∈ L(u) and (u, δ) ∈ R2.

We say thatR(v) is valid if for each v-projectionRcol of a partial solution col ∈ W
there is a record R ∈ R(v) which satisfies Rcol � R, and in addition, for every record
R ∈ R(v), there is a partial solution col ∈ W such that its v-projection fulfills



Rcol � R. Observe that ifR(r) = ∅, then (G, (L(v))v∈V (G)) is a NO-instance, while
ifR(r) = {∅}, then R(r) is a YES-instance.

If a record in R(v) contains a tuple (u, δ), then this means that there is always a
possible coloring for the vertex u, e.g., if |L(u)| > dG(u); the symbol δ is introduced
specifically to bound |L(v)|. Therefore, it follows that |R(v)| ≤ 2O(k log k) for each
v ∈ V (G). To complete the proof, it now suffices to dynamically compute a set of valid
records in a leaf-to-root fashion along T .

If v is a leaf, we set R(v) = {{(v, δ)}} for the case |L(v)| > dG(v). Otherwise,
we branch over all possible colorings of the vertex v, i.e.,R(v) = {{(v, c)} | c ∈ L(v)}.
Note that the amount of records is always bounded by k, as dG(v) ≤ k.

If v is an internal node, we start with reducing the size of the subtree Tv in the
following way: Let u be a child of v with E(∂(u)) = {(u, v)}.

– IfR(u) = {{(u, c)}} with c 6= δ, then remove c from L(v).
– Delete Tu.

After this step there are at most 2(k − 1) children of v left. Let u1, . . . , u` with ` ≤
2(k − 1) denote the remaining children of v. First, we compute a setR(v), in the same
way we would compute R(v) if v was a leaf. Our goal is to compute R(v) using the
local setR(v) and the partial resultsR(u1), . . . ,R(u`). Note that since dG(v) ≤ 2k−1
the number of records inR(v) is also bounded by 2k − 1.

In the next step we take one record each out ofR(v),R(u1), . . . ,R(u`) and branch
over all possible combination of records. Then we check for each combination if the
coloring of the vertices in Yu1 , . . . ,Yu`

can be combined to a proper coloring of the
vertices in Yv. For this we only need to consider the vertices in ∂(u1), . . . , ∂(u`) and
check if two neighbors share the same color. If this is not possible, then move on to the
next combination of records.

Afterwards, we need to remove all the vertices, which are not in V (∂(v)) ∩ Yv . The
remaining vertices and their colors form a record of Tv .

Since |R(v)| ≤ 2O(k log k) and the size of each record is bounded by O(k), the
running time is bounded by 2O(k2 log k) · n. ut

5.3 Boolean CSP

Next, we consider the classical constraint satisfaction problem [32]. An instance I of
BOOLEAN CSP is a tuple (X,C), where X is a finite set of variables and C is a finite
set of constraints. Each constraint in C is a pair (S,R), where the constraint scope S is a
non-empty sequence of distinct variables of X , and the constraint relation R is a relation
over {0, 1} (given as a set of tuples) whose arity matches the length of S. An assignment
is a mapping from the set X of variables to {0, 1}. An assignment σ satisfies a constraint
C = ((x1, . . . , xn), R) if (σ(x1), . . . , σ(xn)) ∈ R, and σ satisfies the BOOLEAN CSP
instance if it satisfies all its constraints. An instance I is satisfiable if it is satisfied by
some assignment.

BOOLEAN CSP
Input: A set of variables X and a set of constraints C.
Question: Is there an assignment σ : X → {0, 1} such that all constraints in C are

satisfied?



We represent this problem via the incidence graph, whose vertex set is X ∪ C and
which contains an edge between a variable and a constraint if and only if the variable
appears in the scope of the constraint.

Theorem 4. BOOLEAN CSP is fixed-parameter tractable when parameterized by the
edge-cut width of the incidence graph.

Proof. For this problem, we do not need to consider all the vertices in the boundary.
Instead, for a vertex v ∈ V , let B(v) = V (∂(v)) ∩ Yv ∩X . Hence, we will consider
only the vertices in the boundary inside of the current subtree, which correspond to
variables in the input instance. Note that |B(v)| ≤ |V (∂(v))| ≤ 2k.

We continue with defining the syntax of the records we will use in our dynamic
program. For v ∈ V (G), let a record for a vertex v be a set of functions of the form
ϕ : B(v)→ {0, 1}. LetR(v) be a set of records for v. From the syntax, it follows that
|R(v)| ≤ 2O(k) for each v ∈ V (G). To introduce the semantics of the records, consider
the setW containing all partial solutions (i.e., all assignments of the variables such that
every constraint is fulfilled) at v for the instance (Yv ∩X,Yv ∩ C).

The function ϕ is a v-projection of a solution σ ∈ W if and only if σ|B(v)
= ϕ. This

means, that the functions in a record represent the assignments of variables, which are
compatible with Yv .

We say thatR(v) is valid if it contains all v-projections of partial solutions inW , and
in addition, for every record inR(v), there is a partial solution such that its v-projection
yields this record. Observe that if R(r) = ∅, then (X, C) is a NO-instance, while if
R(r) = {∅}, then R(r) is a YES-instance. To complete the proof, it now suffices to
dynamically compute a set of valid records in a leaf-to-root fashion along T .

If v is a leaf and v ∈ X , we can remove v in case dG(v) = 1. Otherwise, we set
B(v) = {v} and all assignments are valid, i.e.,R(v) = {ϕ : {v} → {0, 1}}.

If v is a leaf and v ∈ C, then B(v) = ∅, which meansR(v) = {∅}.
If v is an internal node, we start with bounding the number of children of v. We

have to distinguish, if v corresponds to a variable or a constraint. Let u be a child of v.
– For v ∈ X andB(u) = ∅, check whetherR(u) allows both values for the variable v.

If not we fix the value as seen in the previous case. Afterwards delete u.
– For v ∈ C and B(u) = {u}, use R(u) to check all viable assignments to the root

and then remove the unsatisfiable ones from the constraint v. Afterwards delete u.
– If after this we obtain an empty constraint or a conflict with the variable assignment

occurs, we know that this is a NO-instance.
After this step there are at most 2(k − 1) children left. Let u1, . . . , u` with ` ≤ 2(k − 1)
denote the remaining children of v. To obtain R(v), we can brute force all viable
combinations ofR(u1), . . . ,R(u`).

Since the number of records and the size of each record is bounded by k, this
algorithm runs in time 2O(k2) · n. ut

5.4 Maximum Stable Roommates with Ties and Incomplete Lists

Our fourth problem originates from the area of computational social choice [5]. In this
problem we are given a set of agents V , where each agent v ∈ V has a preference



Pv = (Pv,�v). The agents Pv ⊆ V \ {v} are called acceptable (for v) and �v is a
linear order on Pv with ties. Let u,w ∈ Pv . If u ≺v w then we say that v strongly prefers
u to w; on the other hand, if u ≺v w does not hold then we say that v weakly prefers w
to u.

We represent this problem via the undirected acceptability graph G, which contains
a vertex for each agent in V and an edge between two agents if and only if both appear
in the preference lists of the other.

A set M ⊆ E(G) is called a matching if no two edges in M share an endpoint. If
the edge {v, w} is contained in M , then we say v is matched to w and denote this as
M(v) = w and vice versa. In case a vertex v is not incident to any edge in M , then
v is unmatched resp. M(v) = ⊥ (where we assume ⊥ to be less preferable than all
acceptable neighbors of v). An edge {v, w} ∈ E(G) \M is blocking for M (we also
say v, w form a blocking pair) if w ≺v M(v) and v ≺w M(w). A matching is stable if
it does not admit a blocking pair.

MAXIMUM STABLE ROOMMATES WITH TIES AND INCOMPLETE LISTS (MAXS-
RTI)

Input: A set of agents V , a preference profile P = (Pv)v∈V , and an integer π.
Question: Is there a stable matching of (V, P ) of cardinality at least π?

Theorem 5. MAXSRTI is fixed-parameter tractable when parameterized by the edge-
cut width of the acceptability graph.

Proof. We once again start by defining the syntax of the records. For v ∈ V (G), let
a signature at v be a mapping E(∂(v)) → {matched,unsafe,safe}. Clearly, the
number of signatures at v is upper-bounded by 3k, where k = ecw(G).

To make it easier to describe the semantics of the records, let us first define the graph
Hv as the non-disjoint union of Gv and ∂(v); we recall that ∂(v) contains both vertices
in Gv and vertices adjacent to these, and that E(∂(v)) forms an edge-cut separating Gv
from the rest of G.

We are now ready to define the semantics of the records. A matching M in Hv is
called a partial solution if there is no blocking edge for M in E(Hv); in other words,
we explicitly forbid the edges in the boundary from forming blocking pairs in partial
solutions. Each partial solution M corresponds to a signature sig at v defined as
follows:

– for each e ∈M ∩ E(∂(v)), sig(e) = matched,
– for each e = ab ∈ E(∂(v)) \M such that a ∈ Yv and there exists ac ∈ M such

that c ≺a b , sig(e) = safe, and
– sig(e) = unsafe otherwise.

Intuitively, the signature of M captures the following information about M : which
edges in the boundary are matched, and for those which are not matched it stores whether
they are “safe” (meaning that the endpoint in Yv will never form a blocking pair with
that edge), or “unsafe” (meaning that the endpoint in Yv could later form a blocking pair
with that edge, depending on the preferences and matching of the endpoint outside of
Yv).



We define Record(v) to be a mapping from the set of all signatures at v to N ∪
{−∞}, where (1) if there is no partial solution corresponding to a signature τ , then
Record(v)(τ) 7→ −∞, and otherwise (2) Record(v) maps τ to the size of the largest
partial solution in Hv whose signature is τ . To avoid any confusion, we remark that
when applying addition to the images of Record(v), we let −∞ + x = −∞ for each
x ∈ N ∪ {−∞}.

If we can compute Record(r) for the root r of a spanning tree T witnessing that
ecw(G,T ) ≤ k, then by definition each partial solution is also a stable matching in the
instance. Hence, it suffices to check whether Record(r)(∅) ≥ π; if this is the case then
we output “Yes”, and otherwise we can safely output “No”. At this point, it suffices to
compute Record(v) for each v ∈ V (G) in leaf-to-root fashion along T .

If v is a leaf, we first add the mapping (E(∂(v)) 7→ unsafe) 7→ 0 to Record(v),
which corresponds to the empty partial solution. Then, for each vw ∈ E(∂(v)) we
construct a signature τw which assigns vw to matched, and for each neighbor u of
v other than w either assigns vu to safe (if v weakly prefers w to u) or assigns vu
to unsafe (if v strongly prefers u to w). For each τw constructed in this way, we set
Record(v)(τw) = 1.

If v is an internal node, we begin by branching over all edges incident to v, and for
each such edge vw we proceed by restricting our attention to all partial solutions which
contain vw. We also have a separate branch to deal with all partial solutions where v
remains unmatched; we will begin by dealing with this (slightly simpler) case.

Subcase: v remains unmatched. For each child u of v such that E(∂(u)) =
{(u, v)}, we observe that only partial solutions at u with the signature uv 7→ safe
can be extended to a partial solution at v; indeed, uv 7→ matched would violate our
assumption that v remains unmatched, while uv 7→ unsafe would, by definition,
lead to a blocking pair. For brevity, let us set simple-size to be the sum of all
Record(u)(uv 7→ unsafe) over all vertices u with a single-edge boundary.

As in the previous algorithms, we observe that at this point only at most 2k children
of v remain to be processed, say x0, . . . , x`. We proceed by simultaneously branching
over all of the at most 3k signatures for each of these children, resulting in a total
branching factor of 3k

2

; each branch can be represented as a tuple (sigx0
, . . . ,sigx`

).
We now discard all tuples that are not well-formed, where a tuple is well-formed if the
following conditions hold:

– it contains no signature that maps an edge incident to v to either unsafe or
matched (as before, these edges may only be mapped to safe);

– for each edge ab such that a ∈ Yxi
and b ∈ Yxj

, i, j ∈ [`], the signatures of xi and
xj must either (a) both map that edge to matched, or (b) both map that edge to
safe, or (c) map that edge to safe once and unsafe once (signatures must be
consistent).
For all remaining tuples, we set branching-size to

∑
i∈[`] Record(xi)(sigxi

).
We also identify a unique signature sig∗ corresponding to the current branch as follows:
each edge in ∂(v) incident to v is mapped to unsafe, and each edge e in ∂(v) not
incident to v must have an endpoint in Yxi

for some xi and is mapped to sigxi
(e).

At this point, we update Record(v)(sig∗) as follows: if the value of Record(v)(sig∗)
computed so far is greater than simple-size + branching-size then we do



nothing, and otherwise we set that value to simple-size+branching-size. We
now proceed to the next branch, i.e., choice of neighbor of v.

Subcase: v is matched to w. We will in principle follow the same steps as in the
previous subcase, but with a few extra complications. Let us begin by distinguishing
whether (1) w itself is a child of v such that E(∂(u)) = {(u, v)}, (2) w is in Yxi

for
some child xi of v not satisfying this property (including the case where w = xi), or
(3) w 6∈ Yv. In the first case, we set the child w aside and initiate simple-size =
Record(w)(wv 7→ matched). In the second case, we will later (in the appropriate
branching step) discard all signatures of xi which do not map wv to matched. In the
third case, we will take this into account when constructing sig∗.

Next, for each child u of v such that E(∂(u)) = {(u, v)} (other than w, in case (1)),
we distinguish whether v weakly prefers w to u, or not. For each u where this holds,
we observe that any partial solution at u that does not use v can be safely extended to
a partial solution at v—hence, we increase simple-size by max(Record(u)(vu 7→
unsafe),Record(u)(vu 7→ safe)). On the other hand, for each u where v strongly
prefers u to w we observe that a partial solution at u can only be extended to one at v if
it matches u in a way which prevents the creation of a blocking pair with v. Hence, in
this case, we increase simple-size by Record(u)(vu 7→ safe).

In the second step, we once again proceed by simultaneously branching over all
of the at most 3k signatures for the remaining children x0, . . . , x` of v. As before, this
results in a total branching factor of 3k

2

, and each branch can be represented as a tuple
(sigx0

, . . . ,sigx`
). We now discard all tuples that aren’t well-formed, where a tuple

is well-formed if the following conditions hold:
– for each edge ab such that a ∈ Yxi

and b ∈ Yxj
, i, j ∈ [`], the signatures of xi and

xj must either (a) both map that edge to matched, or (b) both map that edge to
safe, or (c) map that edge to safe once and unsafe once (signatures must be
consistent);

– in case (2), the edge vw is mapped to matched in the appropriate signature;
– the tuple contains no signature that maps any edge incident to v (other than vw) to
matched;

– for no edge vz where z ∈ Yxi for some i ∈ [`] such that v strongly prefers z to w,
the signature of xi maps vz to unsafe (as this would create a blocking pair).
For all remaining tuples, we set branching-size to

∑
i∈[`] Record(xi)(sigxi

)

in cases (1) and (2); in case (3), we set it to
∑

i∈[`] Record(xi)(sigxi
) + 1. We

also identify a unique signature sig∗ corresponding to the current branch as fol-
lows: each edge vc ∈ E(∂(v)) is mapped to unsafe if v strongly prefers c to w,
and safe otherwise (with the exception of c = w in case (3), where vw must be
mapped to matched). Furthermore, each edge e in ∂(v) not incident to v must have
an endpoint in Yxi

for some xi and is mapped to sigxi
(e). At this point, we up-

date Record(v)(sig∗) as follows: if the value of Record(v)(sig∗) computed so far is
greater than simple-size+branching-size then we do nothing, and otherwise
we set that value to simple-size + branching-size. We then proceed to the
next branch, i.e., choice of neighbor of v.

The correctness of the algorithm can be shown by induction; it is not difficult to
verify that the computation of the records is correct at the leaves, and for non-leaves



one uses the assumption that the records of the children are correct. The crucial point
is that every partial solution at a child that corresponds to a certain signature can be
extended to a partial solution at the parent if the verified conditions hold, which justifies
the correctness of adding up the appropriate values for the children. The running time is
upper-bounded by 3k

2 · n2. ut

5.5 Minimum Changeover Cost Arborescence

The final problem we consider can be found in [22]. An arborescence is a directed tree
with root r, which contains a directed path from each vertex to r.

Given an arborescence T with root r and an edge e ∈ E(T ) we denote with succ(e)
the edge incident to e on the path from v to the root r. For an edge e incident to the root
we define succ(e) = e.

A function cost : X2 → N is called a changeover cost function if it satisfies the
following:

1. cost(x1, x2) = cost(x2, x1) for each x1, x2 ∈ X , and
2. cost(x, x) = 0 for each x ∈ X .

The total changeover costs of an arborescence T are now defined as∑
e∈E(T )

cost(e, succ(e)).

MINIMUM CHANGEOVER COST ARBORESCENCE (MINCCA)

Input: A directed graph G = (V,E), a root r ∈ V (G), an edge coloring
col : E(G)→ X , and a changeover cost function cost : X2 → N.

Question: What is an arborescence of G minimizing the total changeover costs?

The edge-cut width of a directed graph G is the edge-cut width of G where we omit
the arc directions.

Theorem 6. MINCCA is fixed-parameter tractable when parameterized by the edge-cut
width of the input graph.

Proof. We start by defining the syntax of the records we will use in our dynamic program.
For v ∈ V (G), let a record for a vertex v be a tuple of the form (Outgoing,Donate),
where:

– Outgoing = {(v0, e0), . . . , (vi, ei)} where for each j ∈ [i], vj ∈ V (∂(v)) ∩ Yv,
ej ∈ E(∂(v)), and

– Donate = {(v0, c0, e0), . . . , (vi, ci, ei)} where for each j ∈ [i], vj ∈ V (∂(v)) ∩
Yv , cj ∈ X , and ej ∈ E(∂(v)).

Moreover, let f : R(v)→ N be a function.
LetR(v) be the set of records for v.
To introduce the semantics of the records, we need the following notion: A partial

solution at v is a forest of Gv∪∂(v), where for each vertex u ∈ Yv there is a directed path
from u to exactly one vertex in (V (∂(v)) \ Yv) ∪ {r}. Consider the setW containing
all partial solutions at v. The v-projection of a partial solution S ∈ W is a tuple
(OutgoingS ,DonateS) where:



– (u, e) ∈ OutgoingS if and only if there is a u-u′ path in S with u′ ∈ V (∂(v))\Yv
and e is the first edge on this path which is contained in E(∂(v)), and

– (u1, c, e) ∈ DonateS if and only if there exists a path u0, u1, u2, . . . , ui−1, ui in S
with u0, ui ∈ V (∂(v)) \ Yv and e = (ui−1, ui) and c = col(u1, u2).

For a record R ∈ R(v) the value f(R) denotes the minimum cost of this record, i.e.,

f(R) = min
S∈W,

R=(OutgoingS ,DonateS)

∑
e∈E(S)

cost(e, succ(e)).

We say that R(v) is valid if it contains all v-projections of solutions inW , and in
addition, for every record inR(v), there is a partial solution such that its v-projection
yields this record. Observe that ifR(r) = ∅, then (G, r,col,cost) is a NO-instance,
while ifR(r) = {(∅, ∅, ∅)}, then R(r) is a YES-instance.

From the syntax and semantics, it follows that |R(v)| ≤ 2O(k log k) for each v ∈
V (G).

To complete the proof, it now suffices to dynamically compute a set of valid records
in a leaf-to-root fashion along T .

If v is a leaf, we create the following two records for each edge e ∈ E(∂(v))
outgoing from v:

– {{(v, e)}, ∅},
– {{(v, e)}, {(v, e,col(e))}}.

It follows that f(R) = 0 for each R ∈ R(v).
If v is an internal node, we start with bounding the number of children of v in

order to bound the number of records, which need to be computed. Let Vdel denote
the set of children of v which do not increase the edge-cut width of v, i.e., for each
u ∈ Vdel it holds E(∂(v)) = {(u, v)}. We define the minimum changeover cost of Vdel

as costdel =
∑

u∈Vdel
minR∈R(v) f(R). Then, we can delete Tu for each u ∈ Vdel.

After this step there are at most 2(k−1) children left. Let u1, . . . , u` with ` ≤ 2(k−1)
denote the remaining children of v. First, we compute a local setR(v), in the same way
we would compute the set of records in the leaf case. Note that the number of edges
incident to v is bounded by 2k − 1. Hence, |R(v)| ≤ 4k − 2. Our goal is to compute
R(v) using the local setR(v) and the partial resultsR(u1), . . . ,R(u`).

In the following we take one record each out ofR(v),R(u1), . . . ,R(u`) and repeat
the following process for each combination of records. We proceed similarly as in the
proof of EDP (Theorem 2). First, we combine the donated paths by computing a set
Donate′, which contains the longest paths which can be donated by Tv. For this we
look at the Donate-sets in our records fromR(v),R(u1), . . . ,R(u`). We trace out the
longest paths along edges for each vertex u in a tuple (u, c, e) in the Donate-sets of
these records, which can be done in time kO(1).

Next, we consider each pair (u, e) ∈ Outgoing for any of the currently considered
records. If e ∈ E(∂(v)), then add (u, e) to Outgoing′. In case e /∈ E(∂(v)), we use
the donated paths in Donate′ to connect e to e′ ∈ E(∂(v)), where the sink of e′ is in
V (∂(v)) \ Yv , and add (u, e′) to Outgoing′.

Afterwards, we need to delete all pairs in Donate′ with u /∈ V (∂(v) ∩ Yv) or
e /∈ E(∂(v)). Finally, the tuple (Outgoing′,Donate′) is inserted as a record inR(v).



Note that all steps are deterministic, as for each vertex there is exactly one outgoing
edge.

Let R1, . . . , R` be the records used to compute R ∈ R(v). The integer costconn

denotes the sum of the changeover cost for connecting an outgoing tuple with a longest
donate path. Now, we can determine the minimum cost of R ∈ R(v) by computing
f(R) = min{f(R), costconn + costdel +

∑`
j=1 f(Rj)}, where we initiate f(R) =∞.

Since the number of records and the size of each record is bounded by k, the running
time of this algorithm is 2O(k2 log k) · n. ut

6 Conclusion

The parameter developed in this paper, edge-cut width, is aimed at mitigating the
algorithmic shortcomings of tree-cut width and filling the role of an “easy-to-use” edge-
based alternative to treewidth. We show that edge-cut width essentially has all the desired
properties one would wish for as far as algorithmic applications are concerned: it is easy
to compute, uses a natural structure as its decomposition, and yields fixed-parameter
tractability for all problems that one would hope an edge-based alternative to treewidth
could solve.

Last but not least, we note that a preprint exploring a different parameter that is
aimed at providing an edge-based alternative to treewidth appeared shortly after the
results presented in our paper were obtained [26]. While it is already clear that the two
parameters are not equivalent, it would be interesting to explore the relationship between
them in future work.
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