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Abstract. The currently available benchmarks for few-shot learning
(machine learning with few training examples) are limited in the domains
and settings they cover, primarily focusing on image classification. This
work looks to alleviate this reliance on image-based benchmarks by of-
fering the first comprehensive, public and fully reproducible audio based
alternative, covering a variety of sound domains and experimental set-
tings. We compare the few-shot classification performance of a variety of
techniques on seven unique audio datasets (spanning from environmental
sounds to human-speech). Extending this, we carry out in-depth analyses
of the joint training routine (where all datasets are used during training)
and cross-dataset/domain adaptation, establishing the possibility of a
generalised audio few-shot classification algorithm. Our experimentation
shows gradient-based meta-learning methods such as MAML and Meta-
Curvature consistently outperform both metric and baseline methods.
We also demonstrate that the joint training routine helps overall gen-
eralisation for the environmental sound databases included, as well as
being a somewhat-effective method of tackling the cross-dataset/domain
setting.

1 Introduction

To date, the majority of the breakthroughs seen in machine learning have been
in domains or settings where there was an abundance of labelled data, either
real or simulated, for example in [12]. In contrast, the capability for humans to
recognise and discriminate between types of classes/sensory inputs with few ex-
amples, e.g. in visual or acoustic settings, remains unmatched. The development
of techniques that can perform such Few-shot Learning (FSL) tasks has seen
significant interest within modern machine-learning literature, with particular
focus on applying meta-learning (learning to learn). This approach allows ma-
chine learning to be applied to new tasks where classes are rare or labelled data
is hard to produce or gather.
Most work looking at improving the generalisation performance of these types
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2 C.Heggan et al.

of algorithms is focused around the image domain with other data modalities
and problem settings largely underrepresented. This potentially biases meta-
learning algorithmic development towards images, therefore loosing potential
performance on other types of data or task. Compounding this, the most com-
monly evaluated on datasets, e.g.Mini-ImageNet [16], as well as current bench-
marks suffer from lack of real-world challenges.
Acoustic classification and event detection have seen a significant number of
works in conventional fully supervised machine learning [6,11], with many pub-
lic datasets having a standardised evaluation protocol that is adhered to by the
community and allows for standardisation and fair comparison. This has how-
ever not extended to the few-shot equivalent, where the majority of the works
that do exist make little attempt at preserving reproducibility, typically with
respect to dataset management and lack of public source code [2,13]. This ab-
sence of standardisation poses significant issues when looking to compare novel
and existing methods alike.
In this work, we look to alleviate this gap as well as tackle of some of the pre-
vious issues outlined by contributing the following: 1) Experimental evaluation
of some of the most popular few-shot classifiers on a variety of audio datasets,
spanning multiple sub-settings from environmental sounds to speech. 2) A fully
reproducible few-shot audio classification benchmark with at least one published
evaluation split per dataset along with custom data loading allowing for quick
plug and play testing in future works. 3) A generalised prescription for dealing
with variable length audio datasets in a few-shot setting. 4) Finally, in-depth
analyses and evaluation of the joint training and cross-dataset/domain settings.
We include all of our code in this GitHub repository.

2 Few-Shot Classification

2.1 Formulation

The general setting of few-shot learning involves training, validating and testing
a model on disjoint sets of classes (e.g. classes of human non-speech sounds such
as sneezing and coughing), Ctrain /∈ Cval /∈ Ctest. These sets of classes can be
thought of as analogous to the training, validation and test data splits found
in traditional machine learning, where splits have non-overlapping samples. In
few-shot learning, splits are defined with the addition of non-overlapping classes.
The goal of a few-shot classifier is to generalise to a set of N novel classes, given
only a few-labelled examples from each class. These episodes (also referred to as
tasks throughout) contain both a support set S which is used for training and a
query set Q which is evaluated on.
Meta-Learning can either be trained with episodic training, where individual
few-shot tasks are drawn from Ctrain, or non-episodic training, where a sim-
pler classifier is trained on all classes contained in Ctrain in order to learn an
embedding in the second to last network layer.

https://github.com/CHeggan/MetaAudio-A-Few-Shot-Audio-Classification-Benchmark
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2.2 Meta-Learners & Other Approaches

Due to the number of meta-learning algorithms created and distributed in recent
literature, discussed more in Section 3, we restrict our experimentation to a hand-
selected and representative few. Specifically these are; Prototypical Networks
[14], Model-Agnostic Meta-Learning [4], Meta-Curvature [10], SimpleShot [17]
& Meta-Baseline [1]. This selection covers both metric and gradient-based meta-
learning, as well as extensions to simpler baseline methods. We leave the specific
details of the algorithms to the original papers and instead offer a very high level
overview.

Prototypical Networks Part of the metric learning family of meta-learners,
Prototypical Networks (ProtoNets) work by calculating class prototypes of the
embedded support set, followed by the use of a distance function whose minimum
can be used for classifying queries.

MAML & Meta-Curvature These gradient-based approaches [4,10] aim to
learn a transferable initialisation for any model such that it can quickly adapt
to a new task τ with only a few steps of gradient descent. At training time,
the meta-objective is defined as query set performance after a few steps of gra-
dient descent on the K support samples from the model’s initial parameters.
Meta-curvature expands on MAML by also learning a transform of the inner
optimisation gradients such that the gradients themselves achieve better gener-
alisation on new tasks. In this work, we experiment and report results with first
order variants of these algorithms, as in initial experimentation comparing both
variants we observed negligible or negative effects to performance.

SimpleShot & Meta-Baseline SimpleShot [17] and Meta-Baseline [1] are
present in this work as baseline approaches, methods that aim at lowering com-
putational cost and still achieving strong performance. Both methods train in a
conventional way, outputting legits directly from a linear layer of size |Ctrain|,
and validate/test using nearest centroid classification. To distinguish themselves,
SimpleShot applies additional data transforms at test time, while Meta-Baseline
performs episodic fine-tuning, similar to what is seen in ProtoNets but with
cosine distance and logits scaling.

3 Related Work

Few-Shot Classification We consider only a small subset of available meta-
learners in this work meaning many fall out of scope, this includes both exten-
sions to learners used here and others that are more unique. MAML and Meta-
Curvature most closely relate to other gradient-based meta-learning (GBML)
schemes, designed around the idea of fast adaptation to new learning tasks us-
ing additional gradient descent steps. These include works such as Meta-SGD
[8]. The included prototypical networks [14] relates mostly to other metric learn-
ers, which generally aim to learn a strong feature embedding space such that
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support and queries can be compared. Included in this family are works such
as Matching Networks [16]. All of these algorithms have been evaluated in the
image domain to some degree and so are all relevant in that their performance
in other domains, audio included, is largely unknown.

Few-Shot Acoustics Currently only a handful of studies exist that look
at either few-shot audio classification or event detection. Of these, two are set
in event detection [13,2] (classification of part of audio clip in time) with the
other two focused on classification [3,18] (classification of entire audio clip),
the focus of this work. Comparing these works, we see a variety of approaches
taken toward dataset processing, split formulation and reproducibility. These
variations, most importantly the dataset and its associated split used, make
comparisons and ranking of the works impossible. Of these, one is distinct in
that it provides both a fully reproducible code base and the dataset class-wise
splits used for its experiments. The work’s main contribution looks at fitting
common metric based learners with an attention similarity module, attached to
its purely convolutional backbone. This work is currently state-of-the-art for both
the ESC-50 [11] dataset and its proprietary noise injected variant ‘noiseESC-50’.
As discussed more in Section 4, we use this work as a basis for some of the
experiments carried out.

Benchmarks Most relevant to this work are other few-shot and meta-learning
benchmarks. Included in this are works such as Meta-Dataset [15] (an aggrega-
tion of 10 few-shot image based datasets) and MetaCC [7] (a modifiable set of
channel coding tasks). Of the benchmarks currently available for few-shot clas-
sifier evaluation, none deal with acoustic classification. This is the primary area
that this work aims to fill. Meta-Dataset is of particular relevance to this work as
we aim to mimic both the depth and reproducibility achieved by the benchmark.
Specifically, both the within and cross dataset evaluations as well as the public
leaderboard are components which we find to be useful.

4 MetaAudio Setup

4.1 Setting & Data

As MetaAudio aims to be a diverse and reproducible benchmark, it covers a va-
riety of experimental settings, algorithms and datasets. Throughout, we mainly
consider 5-way 1-shot classification, with some additional analysis of the impact
of k-shots and N-ways at test time.
We experiment with 7 total datasets, 5 of which we call our primary datasets
which we split up for use in training and evaluation, and 2 held-out sets we use
exclusively for testing. Of these 7, 3 are fixed length, and 4 are variable length.
Additional details about the datasets, including size and specific setting, can
be found in Table 1. Due to the massively variable sample size of the original
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dataset and the issues that it presents with reproducibility, we primarily exper-
iment with a pruned version of BirdClef 2020, where samples longer than 180s
are removed along with classes with fewer than 50 samples.

Splits & Labels For every experiment setup, we apply a 7/1/2 train-validation-
testing split ratio over all the classes belonging to an individual dataset. These
ratios are chosen to be in line with the majority of machine learning and few-
shot works. Any conventional sample based train/val/test splits are ignored,
and the class splits are applied to all available data. Outside [3], from which
we can obtain a reproducible split of ESC-50, we have no works with prior
dataset splits to follow, and so we define our own. Most simply we assign ran-
dom splits based on the available classes for a given set. However, we also define
within-dataset domain-stratification and shift splits for sets that have additional
internal structure and/or accompanying meta-data. Extensive experimentation
with these more specific splits is not carried out in this work, instead favouring
other experiments, however are included in our repository.
Labels for the datasets vary quite significantly with some having time precise,
or strong, labels like BirdClef2020 with others having only whole clip-level, or
weak, labels. In interest of consistency, for this work we drop the available strong
labels for the datasets that have them and operate exclusively with weak labels.
The tradeoff of this approach is that for datasets that have access to strong
labels, we expect additional label noise to be present during training, possibly
hurting final generalisation performance.

General Processing Pre-processing is kept minimal, with only the con-
version of raw audio samples into spectrograms and some normalisation factor
applied during loading. During this pipeline, we consider a fixed sample rate and
spectrogram parameters over all datasets and contained samples. For normali-
sation, three techniques were considered; per sample, channel wise and global.
Following initial experimentation, global, which uses average statistics across all
examples, was used in all experiments due to performance and simplicity.

Table 1. High level details of all datasets considered in MetaAudio

Name Setting No Classes No Samples Format Sample Length

ESC-50 Environmental 50 2,000 Fixed 5s

NSynth Instrumentation 1006 305,978 Fixed 4s

FDSKaggle18 Mixed 41 11,073 Variable 0.3s - 30s

VoxCeleb1 Voice 1251 153,516 Variable 3s - 180s

BirdCLEF 2020 Bird Song 960 72,305 Variable 3s - 30m

BirdCLEF 2020 (Pruned) Bird Song 715 63,364 Variable 3s - 180s

Watkins Marine Mammal Sound Database Marine Mammals 32 1698 Variable 0.1 - 150s

SpeechCommandsV2 Spoken Word 35 105,829 Fixed 1s

https://github.com/CHeggan/MetaAudio-A-Few-Shot-Audio-Classification-Benchmark
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4.2 Sampling Strategies

Throughout MetaAudio, we utilise a variety of sampling strategies for experi-
mentation. The basis of these is our fixed length approach. The steps used for
this can be summarised into: 1) Sample a set of N-way classes CN from the
necessary split of dataset D and 2) For each class CN , sample both support and
query examples, for support the number will be k-shot.
We extend this fixed length strategy in order to build a method for dealing
with variable length sets. Due to how varied sample length is within some of
the considered datasets, we opt for fixed length representation to avoid the need
for specific neural architectures which can naturally deal with variable length or
incredibly powerful hardware. Specifically, we choose to split our variable length
samples up into L length sub-clips. This along with the later conversion of the
sub-clips to individual spectrograms is done entirely offline, a decision made to
avoid bottlenecking during training.
Combining a variety of datasets in a joint training and/or evaluation routine has
already seen some focus in the image space [15]. We mimic this and expand upon
it for the considered acoustic datasets and task. Sampling tasks from the avail-
able datasets in this setting can be done in a few distinct ways, none of which are
an immediately better choice with respect to downstream generalisation capa-
bility. We consider this to be an additional area of investigation. Specifically, we
propose two variants of sampling, one which allows task construction between
datasets, meaning that the N classes sampled could belong to different sets, and
one which does not. We refer to these techniques as ‘Free Dataset Sampling’ and
‘Within Dataset Sampling’ respectively.
During these sampling strategies, we largely ignore the class sample imbalance
seen in the majority of the dataset we experiment with, we do this for a few
reasons. The first of these is that recent works, such as [9], suggest it is less
detrimental than in conventional learning. The second is that, these imbalances
allow algorithms to differentiate themselves with respect to how they handle the
more difficult setting. One area in which we do experiment with alleviating the
effect of this imbalance is in the re-weighting of the loss functions used in the
conventional learning parts of the Meta-baseline and SimpleShot algorithms. To
create this dataset custom loss for these scenarios, we employ inverse-frequency
class weighting, where the class-wise contribution to the loss function is the
inverse of the number of samples present in that class.

5 Experiments

5.1 Details

Experimental results presented are collected similarly to adjacent few-shot works,
where reported classification accuracies along with their 95% confidence inter-
vals are the conclusion of just one end-to-end training and evaluation procedure,
where 10,000 tasks drawn from the test set have been considered. For all exper-
iments we use Adam, with no early stopping and a fixed learning rate. Tuning
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of algorithms was kept to a minimum however was still performed. Due to this
minimal approach, we expect it to be fairly trivial to obtain a specific result
marginally better than those presented, however it is important to note that
this does not undermine the comparison and experimental settings investigated
in this work.
Motivated by the increasing performance gap between the commonly used CNNs
and other neural architectures currently present in conventional acoustic learn-
ing, as seen in works like [6,5], we briefly investigated the role of the base learner
in the few-shot acoustic setting. Due to space restriction, we don’t include the
explicit setup or results here, however we note that our best performing model
using MAML and ProtoNets on ESC-50 was a lightweight hybrid CRNN. Due
to this and it’s relatively low computational cost compared to more heavily
parametrised models, we opt to the model throughout.
In the majority of the results presented for variable length datasets, the value
of L is set to 5 seconds. We chose this value based on external experiments (not
included due to space limitations) where, for Kaggle18, L = 5s performed best
on average when compared against 1 and 10-seconds. Setting a universal value of
L also allows us to more comfortably facilitate joint training and cross-dataset
evaluation without the need for massive padding.

5.2 Baseline Splits

The main contribution of this work looks at benchmarking fixed splits of datasets
within a variety of few-shot learning algorithms. From Table 2 a), we can
identify a few interesting behaviours. However, first we note that the ESC-50
ProtoNet using the CRNN backbone performs at least as well as the CNN in
the same algorithm used in [3] with the same split.
Out of the two fixed length sets, ESC-50 appears to be the harder problem, with
classification accuracies much lower than in NSynth. This is somewhat expected
given the problem setting of NSynth where the discriminations are being made
between classes and samples that are both cleaner in origin and more related to
one another, compared to the more varied and noisy classes belonging to ESC-
50. This idea is backed up by a few observations, firstly that our metric learning
algorithms (specifically ProtoNets which has no test-time adaptation and as-
sumes similar tasks between training and testing) perform significantly better
than MAML which has adaptation capabilities. How separated the performances
of MAML and Meta-Curvature are also support this idea, as the main difference
between the two is Meta-Curvature’s ability to learn local gradient curvatures,
which performs best under the assumption of more similar tasks. The variable
length datasets appear to represent harder settings in general, with significant
drops off in average performance. Specifically, we see very low classification accu-
racy for Kaggle18, a behaviour likely due to larger amounts of label noise. Over
all datasets, we see that the GBML methods performs very well, with Meta-
Curvature taking SOTA in 4 out of 5 cases, and MAML in the 5th. We propose
that this is due to the aforementioned adaption mechanism, making it particu-
larly useful for settings which have classes of higher intra and inter-variance. In
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Table 2. Headline and main benchmark 5-way 1-shot classification results. Table a)
contains the baseline results, where models are trained for each dataset individually and
then evaluated with that datasets test split. Tables b) and c) contain results from the
joint training scenario, where we train meta-learners over all datasets simultaneously
and then evaluate on individual test splits.B) and c) differ in that in b) we only allow
tasks to be samples using classes from one of the datasets, whereas in c) we allow
cross-dataset task creation.

a) Baseline Within Dataset Results

Dataset FO-MAML FO-Meta-Curvature ProtoNets SimpleShot CL2N Meta-Baseline

ESC-50 74.66 ± 0.42 76.17 ± 0.41 68.83 ± 0.38 68.82 ± 0.39 71.72 ± 0.38

NSynth 93.85 ± 0.24 96.47 ± 0.19 95.23 ± 0.19 90.04 ± 0.27 90.74 ± 0.25

Kaggle18 43.45 ± 0.46 43.18 ± 0.45 39.44 ± 0.44 42.03 ± 0.42 40.27 ± 0.44

VoxCeleb1 60.89 ± 0.45 63.85 ± 0.44 59.64 ± 0.44 48.50 ± 0.42 55.54 ± 0.42

BirdClef (Pruned) 56.26 ± 0.45 61.34 ± 0.46 56.11 ± 0.46 57.66 ± 0.43 57.28 ± 0.41

Avg Algorithm Rank 2.4 1.2 3.8 4.0 3.6

b) Joint Training (Within Dataset Sampling)

ESC-50 68.68 ± 0.45 72.43 ± 0.44 61.49 ± 0.41 59.31 ± 0.40 62.79 ± 0.40

NSynth 81.54 ± 0.39 82.22 ± 0.38 78.63 ± 0.36 89.66 ± 0.41 85.17 ± 0.31

Kaggle18 39.51 ± 0.44 41.22 ± 0.45 36.22 ± 0.40 37.80 ± 0.40 34.04 ± 0.40

VoxCeleb1 51.41 ± 0.43 51.37 ± 0.44 50.74 ± 0.41 40.14 ± 0.41 39.18 ±0.39T
ra

in
e
d

BirdClef (Pruned) 47.69 ± 0.45 47.39 ± 0.46 46.49 ± 0.43 35.69 ± 0.40 37.40 ± 0.40

Watkins 57.75 ± 0.47 57.76 ± 0.47 49.16 ± 0.43 52.73 ± 0.43 52.09 ± 0.43

C
ro

ss

SpeechCommands V1 25.09 ± 0.40 26.33 ± 0.41 24.31 ± 0.36 24.99 ± 0.35 24.18 ± 0.36

Avg Algorithm Rank 2.0 1.6 4.0 3.4 4.0

c) Joint Training (Free Dataset Sampling)

ESC-50 76.24 ± 0.42 75.72 ± 0.42 68.63 ± 0.39 59.04 ± 0.41 61.53 ± 0.40

NSynth 77.71 ± 0.41 83.51 ± 0.37 79.06 ± 0.36 90.02 ± 0.27 85.04 ± 0.31

Kaggle18 44.85 ± 0.45 45.46 ± 0.45 41.76 ± 0.41 38.12 ± 0.40 35.90 ± 0.38

VoxCeleb1 39.52 ± 0.42 39.83 ± 0.43 40.74 ± 0.39 42.66 ± 0.41 36.63 ± 0.38T
ra

in
e
d

BirdClef (Pruned) 46.76 ± 0.45 46.41 ± 0.46 44.70 ± 0.42 37.96 ± 0.40 32.29 ± 0.38

Watkins 60.27 ± 0.47 58.19 ± 0.47 48.56 ± 0.42 54.34 ± 0.43 53.23 ± 0.43

C
ro

ss

SpeechCommands V1 27.29 ± 0.42 26.56 ± 0.42 24.30 ± 0.35 24.74 ± 0.35 23.88 ± 0.35

Avg Algorithm Rank 2.1 2.1 3.4 3.0 4.3

comparison, our metric and baseline algorithms underperform, suggesting that
they likely trade off performance for speed (specifically at inference time), ex-
cept in cases of simple and similar tasks. Out of these, Meta-Baseline performs
most competitively, possibly suggesting that combining some traditional learning
followed by episodic learning is a more favourable approach.

5.3 Joint Training & Cross Dataset

Our investigation with joint training is two-fold. We first consider the joint train-
ing to individual testing regime, i.e. training using all datasets and then using
the model to test on each dataset’s test split separately. As well as this, we also
look to evaluate the cross-dataset performance, by applying the trained models
directly on some held-out datasets. Chosen datasets for held-out testing are de-
tailed earlier in Table 1. For the Watkins Mammal Sound Database, we process
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with a L value of 5 seconds, chosen as it closely resembles the expected value of
the dataset’s sample length distribution. Results for these sampling techniques
can be found in Table 2 b) and Table 2 c) respectively.
First, we consider the joint training regime as a whole (so including both sam-
pling regimes) and contrast against the more holistically trained and evaluated
within dataset experiments. For both ESC-50 and Kaggle18 we obtain new SOTA
results with MAML and Meta-Curvature respectively, both from the free dataset
sampling routine. For all other datasets for which we have baseline results (Table
2 a)), we see a degradation of performance. This difference varies in magnitude
between datasets and sampling routines. One possible explanation of this be-
haviour (with the possible exception of NSynth) is that these sets are more
domain specific than the likes of ESC-50, meaning that the features needed to
successful discriminate between their classes are likely not easily learned by a
joint training routine. Some evidence supporting this is that for VoxCeleb and
BirdClef, 3/4 of the best results over both sampling routines are in gradient-
based methods, which have some opportunity to adapt at test time. Moving to
the other fold of our joint training interest, we query how the sampling routines
directly compare to one another, as well as how they perform on the held-out
cross-dataset tasks. For our main datasets, we observe 3/5 of the top results
were obtained using the free sampling method, with the 2 outliers belonging to
VoxCeleb and BirdClef - further evidence that their tasks require significantly
different model parametrisation, as the within dataset task sampling would allow
more opportunity to learn these more specialised features. For the cross-dataset
tasks, we also see the strongest performance coming from the free sampling
routine, where it outperforms it’s within dataset counterpart by ∼2% in both
held-out sets. As for the absolute performances obtained on the held-out sets,
we see that our joint training transfers somewhat-effectively, with the model in
one case attaining a respectable 50-60% and another obtaining accuracies just
above random.

5.4 External Data & Pretraining

A full training and evaluation pipeline for a specific dataset can be incredibly
expensive and arguably deviates from the goal of an inclusive training policy for
meta-learning. In this vein, we both frame and experiment with the pretraining
to simple classifier setting. We primarily aim for this area of the benchmark to
be more varied than the other scenarios covered, where the use of any relevant
and fair external data is permitted.
For our experiments, results presented in Table 3, we employ a pretraining step
with a proprietary subset of AudioSet (trained model included in code repo)
followed with a variety of simple classifiers for testing.
Except for the cases of ESC-50 and Kaggle18, we see very low transfer per-
formance using AudioSet pretraining with no fine-tuning, with performance on
NSynth halving compared to its lowest scoring individually trained and evalu-
ated counterpart. This result likely follows due to the classes contained within
our subset leaning more toward environmental sounds than musical instruments,
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Table 3. 5-way 1-shot performance on our main datasets using a pretrained AudioSet
model and a variety of simple linear classifying methods. We compare these to the
results for SimpleShot using dataset specific training and evaluation.

Dataset SimpleShot (UN) SimpleShot (CL2N) SVM SimpleShot (CL2N) from Table 2 a)

ESC-50 72.00 ± 0.37 72.19 ± 0.37 71.98 ± 0.35 68.82 ± 0.39
NSynth 45.65 ± 0.43 44.47 ± 0.43 45.27 ± 0.43 90.04 ± 0.27

Kaggle18 36.53 ± 0.40 38.60 ± 0.41 37.43 ± 0.40 42.03 ± 0.42
VoxCeleb1 26.26 ± 0.36 26.58 ± 0.36 25.79 ± 0.35 48.50 ± 0.42

BirdClef (Pruned) 31.28 ± 0.38 32.31 ± 0.39 31.22 ± 0.38 57.66 ± 0.43

Avg Rank 2.8 2.2 3.4 1.6

speech or bird song. We also see a clear benefit here of using the centred and L2-
normalised feature extractions for SimpleShot, corroborating the claims made in
the initial work [17].

5.5 N-Way k-Shot Analysis

Although we only trained and evaluated on the task of 5-way 1-shot, we are
interested in the effect of larger shots and wider ways on algorithm performance.
To bridge this gap, we experiment with these components at test time, using our
already trained 5-way 1-shot models. We consider all of our primary datasets and
algorithms, covering values of N from 5-30, and k from 1-30. Varying N-ways and
k-shots are treated separately and not stacked. This, for example, means that the
15-way 15-shot setting is never considered, but all of 5-way 1, 5, 10, ..., 30-shot
are. We do this in order to avoid the compounding computational complexity
of the problem. For algorithms which have a fixed size head output (i.e. GBML
methods) we exclude the varying N-ways and focus on the k-Shot analysis. The
only other exception to note is that both ESC-50 and Kaggle18 have only 10 and
7 classes belonging to their test sets respectively, and so analysis further than
10/5-way is impossible. We include a sample of these result plots in Figure 1.
Varying the numbers of shots used, we observe a clear trend of GBML methods

5-Way, k-Shots, N-Way, 1-Shot, 

Fig. 1. N-Way k-shot analysis plot for the VoxCeleb1 dataset.K-shots (left) and N-ways
(right).

outperforming baseline and metric learning approaches. This appears especially
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true for large k-shots, where the rise in performance also occurs faster. For both
fixed length sets, we see some additional distinction between gradient based
methods and the others, where methods without adaptation not only stagnate
heavily after 5-shot, but also start to decrease in performance. Up to 30-shot, we
do not observe this same behaviour in variable length sets, however it is possible
that this is simply due to the complexity of the problems relative to the fixed
length sets, and that by increasing k-shot further we would see similar trends.
Of the three non-gradient-based methods, which algorithm performs best over
the variety of k-shots appears to be dataset specific, with each outperforming
in at least one dataset. Although we are more limited in varying the number
of ways we test over, we still observe some interesting trends. All of our tested
algorithms show a non-linear decay in performance, with results at 30-way still
reaching ∼20-25% for our VoxCeleb and BirdClef sets (approx 7× random). For
speed of drop-off, we see a similar story as we saw in increasing k-shot, with all
algorithms showing best performance in at least one set.

6 Conclusion

In this work, we presented MetaAudio, a new large-scale and diverse few-shot
acoustic classification benchmark. We experimented with a variety of algorithms
and datasets, covering a variety of sound domains and experimental settings. For
both our baseline fixed and variable length settings, we showed that algorithms
with adaptation capability performed better than those without. This behaviour
extended throughout most of our experimentation, only countered occasionally
for our simplest dataset NSynth. Although not SOTA, we did observe generally
strong performance from our baseline methods, with them remaining compet-
itive over most experiments. This lower performance did however come at the
benefit of being significantly faster at inference time. When performing joint
training, we showed that on average the free dataset sampling outperformed the
within sampling routine.Although this was the case on average, there were some
interesting nuances of when each of the routines performed well. For datasets
that were significantly different from one another or from the training set as a
whole, we saw benefit in using within dataset sampling, possibly explained by the
need for more specific or fine-grained features to solve the task at test time. For
cross-dataset evaluation, we observed the opposite, where using free sampling
resulted in the best overall performance. Through our k-shot test time analysis,
we also find evidence of gradient-based methods being able to use additional
shots more effectively, consistently rising in performance, while other methods
stagnate or decline.
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