
Adaptive Online Domain Incremental Continual
Learning

Nuwan Gunasekara1, Heitor Gomes1, Albert Bifet1, and Bernhard Pfahringer1

AI Institute, University of Waikato, Hamilton, New Zealand

Abstract. Continual Learning (CL) problems pose significant challenges
for Neural Network (NN)s. Online Domain Incremental Continual Learn-
ing (ODI-CL) refers to situations where the data distribution may change
from one task to another. These changes can severely affect the learned
model, focusing too much on previous data and failing to properly learn
and represent new concepts. Conversely, if a model constantly forgets
previously learned knowledge, it may be deemed too unstable and un-
suitable. This work proposes Online Domain Incremental Pool (ODIP),
a novel method to cope with catastrophic forgetting. ODIP also employs
automatic concept drift detection and does not require task ids during
training. ODIP maintains a pool of learners, freezing and storing the
best one after training on each task. An additional Task Predictor (TP)
is trained to select the most appropriate NN from the frozen pool for pre-
diction. We compare ODIP against regularization methods and observe
that it yields competitive predictive performance.

Keywords: Continual Learning · Online Domain Incremental Continual
Learning

1 Introduction

Though modern Neural Network (NN)s have shown great success in image clas-
sification and natural language processing, they assume training data to be
Independent and Identically Distributed (iid). Due to this assumption, once
confronted with a distribution shift in the input data, the model may undergo
costly retraining to preserve old knowledge while adjusting to the new distribu-
tion. Without retraining, an NN receiving non-iid data forgets its past knowl-
edge when confronted with a distribution shift. This phenomenon is identified
as “catastrophic forgetting” in literature [20,6,9,17].

Continual Learning (CL) currently attempts to minimize this catastrophic
forgetting in NNs via replay and regularization methods [17]. Though current re-
play methods outperform regularization methods in terms of performance, they
may not be suitable for situations with memory and privacy constraints on the
replay buffer[17,2]. Even though offline CL methods have been proposed, cur-
rent research mainly focuses on online methods to solve catastrophic forgetting.
This allows one to develop continually learning agents which are adaptive. But
resilient to catastrophic forgetting.

2 Nuwan Gunasekara, Heitor Gomes, Albert Bifet, and Bernhard Pfahringer

Online Domain Incremental Continual Learning (ODI-CL) focuses on CL
models, which learn from one input distribution to another with minimum catas-
trophic forgetting. Here the class distribution remains the same. There are many
practical applications of this scenario in the modern IoT world. For example,
one could use an ODI-CL approach to avoid costly retraining of an X-ray image
classification model after a distribution shift in the incoming data due to some
hardware changes in the X-ray machine[22]. The same scenario could be valid for
many NN models that rely on hardware sensor inputs. Also, on certain ODI-CL
settings, replay approaches may be less preferred due to constraints on having a
replay buffer.

Considering the practical importance of non-replay ODI-CL, this work pro-
poses an ODI-CL method that alleviates catastrophic forgetting in NNs. But
superior to regularization methods. Here a tiny pool of small Convolutional Neu-
ral Network (CNN)s are trained online. Once confronted with concept drift, it
freezes the best CNN for a given concept, considering the estimated loss of all
CNNs. Task Predictor (TP) is trained to pick the best CNN from the frozen
pool for prediction. This approach is further extended to automatically detect
concept drifts in incoming data using a Task Detection (TD) instead of relying
on an external task id signal. Experiment results reveal that both the proposed
methods: with and without automatic TD, surpass the performance of current
popular regularization methods.

The main contributions of this paper are the following:

1. Online Domain Incremental Pool (ODIP): we introduce a novel method to
alleviate catastrophic forgetting for Online Domain Incremental Continual
Learning without using instance replay. Here, a small pool of tiny CNNs is
trained, and the best one is frozen at the end of each task. Task Predictor is
trained to predict the best frozen CNN for evaluation for a given instance.
The experiment results reveal thatODIP yields superior accuracy than regu-
larization baselines. Furthermore, an in-depth investigation is done to better
understand the effectiveness of different TPs on three ODI-CL datasets.

2. Instead of relying on an external task id signal during prediction, ODIP uses
an automatic Task Detection mechanism to detect tasks in the incoming
data. This allows ODIP to select the most appropriate frozen network to
produce predictions for each instance. ADaptive sliding WINdow (ADWIN)
is used to detect drifts in CNN’s loss to determine a new task. To the
best of our knowledge, this automatic Task Detection for Online Domain
Incremental Continual Learning has not been proposed before.

The rest of the paper is organized as follows. The following section presents
the current developments in Online Domain Incremental Continual Learning,
including some practical use cases. The next section presents the proposed On-
line Domain Incremental Pool for ODI-CL. The experiments section explains
the experimental setup where the proposed method is compared against popular
ODI-CL methods on three datasets. It also provides insights into the effec-
tiveness of different Task Predictors. The final section provides conclusions and
directions for future research.

Adaptive Online Domain Incremental Continual Learning 3

2 Related work

The literature has thoroughly documented that an NN receiving non-iid data
forgets past knowledge when confronted with a concept shift [20,6,9,17]. Contin-
ual Learning (CL) attempts to continually learn with minimal forgetting of past
concepts [9,17]. In Online Domain Incremental Continual Learning (ODI-CL),
this learning happens online, and the data stream comprises different concepts
(distributions) with the same label distribution [17].

To avoid catastrophic forgetting in NNs, CL algorithms use two popular
approaches: regularization and replay. Regularization algorithms like Elastic
Weight Consolidation (EWC) [9] and Learning without Forgetting (LwF) [13]
adjust the weights of the network in such a way that it minimizes the overwriting
of the weights for the old concept. Elastic Weight Consolidation (EWC) uses a
quadratic penalty to regularize updating the network parameters related to the
past concept. It uses the diagonal of the Fisher Information Matrix to approx-
imate the importance of the parameters [9]. EWC has some shortcomings: 1)
Fisher Information Matrix needs to be stored for each task, 2) requires an extra
pass over each task’s data at the end of the training [17]. Though different ver-
sions of EWC address these concerns [21,4,14], [4] seems to be the one suitable
for online CL by keeping a single Fisher Information Matrix calculated by a
moving average. Learning without Forgetting (LwF) uses knowledge distillation
to preserve knowledge from past tasks. Here, the model related to the old task
is kept separate, and a separate model is trained on the current task. When the
LwF receives data for a new task (Xn, Yn), it computes the output (Yo) from
the old model for new data Xn. During training, assuming that Ŷo and Ŷn are
predicted values for Xn from the old model and new model, LwF attempts to
minimize the loss: αLKD(Yo, Ŷo)+LCE(Y n, Ŷn)+R. Here LKD is the distillation
loss for the old model, and α is the hyper-parameter controlling the strength of
old model against the new one. LCE is the cross-entropy loss for the new task. R
is the general regularization term. Due to this strong relation between old and
new tasks, it may perform poorly in situations where there is a huge difference
between old and new tasks distributions [17].

Replay methods present a mix of instances from the old and current concepts
to the Neural Network (NN) based on a given policy while training. This reduces
the forgetting as the training instances from the old concepts avoid complete
overwriting of past concepts’ weights. GDumb [19], Experience Replay (ER)
[5], and Maximally Interfered Retrieval (MIR) [1] are some of the most popular
CL replay methods. Replay Using Memory Indexing (REMIND) [7] takes this
approach to another level by storing the internal representations of the instances
by the initial frozen part of the network and using a randomly selected set of
these internal representations to train the last unfrozen layers of the network.
Here, REMIND can store more instances’ representations using internal low-
dimensional features. In general, these replay approaches are motivated by how
the hippocampus in the brain stores and replays high-level representations of
the memories to the neocortex to learn from them [12].

4 Nuwan Gunasekara, Heitor Gomes, Albert Bifet, and Bernhard Pfahringer

Recent research has focused on using ODI-CL methods to avoid costly re-
training in practical situations where the model is confronted with concept drift.
ODI-CL has been used in X-ray image classification to avoid costly retraining
on distribution shifts due to unforeseen shifts in hardware’s physical properties
[22]. Also, it has been used to mitigate bias in facial expression and action unit
recognition across different demographic groups [8]. Furthermore, ODI-CL was
used to counter retraining on concept drifts for multi-variate sequential data of
critical care patient recordings [2]. The authors highlight some replay methods’
infeasibility due to strong privacy requirements in clinical settings. This concern
is further highlighted in [17] empirical study as well.

Most of the current ODI-CL methods rely on an explicit end-of-task signal
during training. EWC and LwF use this signal to optimize weights, while replay
methods like ER use it to update their replay buffer. However, GDumb does
not rely on this signal for replay buffer updates. Though [17] identifies ODI-CL
as training without the end of the task signal. Practical implementations such as
[8] and [2] use the end of the task signal to employ CL methods such as EWC
and LwF. However, on the other hand, practical implementation in [22] assumes
a gradual distribution shift in the input data distribution where instances from
both the new and old tasks could appear in the stream for a certain period.

Our approach (ODIP) initially assumes the presence of an end-of-task sig-
nal at training and later proposes a method to detect it automatically. When
confronted with concept drift, the proposed method freezes the best NN from a
small pool of little networks, and a predictor is trained to choose the best network
from the frozen pool for a given evaluation instance. As it avoids using a replay
buffer, it is a good candidate for settings with higher privacy requirements.

3 Online Domain Incremental Pool

Train0 Train1 Train2 Train3

Test0 Test1 Test2 Test3Test0 Test1 Test2Test0 Test1Test0

p0

p1

p2

p3

f0

f1

f2

f3

p4

p5

p0

p1

p2

p3

p4

p5

p0

p1

p2

p3

p4

p5

p0

p1

p2

p3

p4

p5

f0

f1

f0 f0

f1

f2

P P P PF F F F

Task detector
• OC with LR
• NB
• HT
• Random

CNN

Use the CNN proposed by
Task Predictor (TP) or
Majority Vote (MV) for prediction

Fig. 1: Proposed Online Domain Incremental Pool (ODIP)

Adaptive Online Domain Incremental Continual Learning 5

The ODI-CL is defined as the training set composed of multiple concepts
of non-iid data, where each concept has a different input distribution with the
same label distribution [17]. The goal of the learning algorithm is to minimize

Algorithm 1 train OC with LR

Input: Task Predictor TP : One Class Classifier with Logistic Regression , z: extracted
features

1: score, in class ← train OC(z)
2: train LR(score, in class)

catastrophic forgetting of the past concepts while performing well on the cur-
rent concept [17,7]. Initially, at training, we assume that the task id that signals
the end of a concept is available to the learning model. However, this infor-
mation is not available to the model during evaluation. Later, the proposed
method(ODIP) is extended to discard this external task id signal.

Algorithm 2 ODIP training algorithm

Input: P : pool of training CNNs, F : pool of frozen CNNs, T : task set, Xt: training
set for task t, TP : Task Predictor

1: Initialize pool F = {}
2: for all task t ∈ T do
3: for all mini-batch bt in training set Xt for task t do
4: z ← features from mini-batch bt for task t
5: for all learner p ∈ P do
6: Compute loss Lp of mini-batch bt and train CNNp

7: Update ADWINp with Lp

8: if task predictor TPp is One Class Classifier with LR then
9: train OC with LR(TPp, z)
10: end if
11: end for
12: if task predictor TP is Naive Bayes or Hoeffding Tree then
13: train TP (z, t)
14: end if
15: end for
16: Append the CNN with lowest loss estimated using ADWIN to F
17: end for

We propose an Online Domain Incremental Pool (ODIP), where P pool of
tiny CNNs are trained for each concept t with a given Task Predictor. The
Task Predictors could be None, Naive Bayes (NB), Hoeffding Tree (HT), and
One Class Classifier (OC) with Logistic Regression (LR). The Task Predictor is
trained for mini-batch bt using extracted features from a static feature extractor.
At the end of each task’s training, CNN with the lowest estimated loss is frozen

6 Nuwan Gunasekara, Heitor Gomes, Albert Bifet, and Bernhard Pfahringer

and added into the frozen pool F . In the special case of OC with LR, the
relevant OC with the LR is also part of the frozen CNN. Algorithm 2, along
with figure 1, further explains this training approach.

Algorithm 3 Predict OC with LR

Input: Task Predictor TP : One Class Classifier with Logistic Regression, z: extracted
features.

1: score, in class ← predict OC(z)
Output: predict LR(score)

In ODIP, there are two vote aggregation methods for prediction: Weighted
Voting (WV) or votes from the best CNN (CNNbest). For Weighted Voting, the
probabilities of the Task Predictor are used as weights. In the CNNbest case, it is
either selected randomly from the F pool or the one predicted by Task Predictor.
Algorithm 4 further explains this. Recently proposed ODI-CL algorithms rely

Algorithm 4 ODIP prediction algorithm

Input: xt: instance of task t, F : pool of frozen CNNs, TP : Task Predictor, useWeight-
edVoting

1: z ← features from instance xt of task t
2: if useWeightedVoting then
3: if TP is Majority Vote then
4: votes ← 1/|F |

∑|F |
f=1 Predict(f, xt)

5: else if TP is One Class Classifier with LR then
6: votes ← 1/|F |

∑|F |
f=1 Predict OC with LR(TPf , z)× Predict(f, xt)

7: else
8: votes ← 1/|F |

∑|F |
f=1 Predict(TP, z)× Predict(f, xt)

9: end if
10: else
11: if TP is Random then
12: Select CNNselected randomly from pool F
13: else if TP One Class Classifier with LR then
14: CNNselected ← argmaxf∈F Predict OC with LR(TPf , z)
15: else
16: CNNselected ← argmaxf∈F Predict(TPf , z)
17: end if
18: votes ← predict(CNNselected, xt)
19: end if
Output: votes

on an explicit end of the task signal (task id) to identify the start of a new task.
ODIP is also relying on these explicit task ids to distinguish different tasks.
This reliance on an explicit task id may preclude one from employing current

Adaptive Online Domain Incremental Continual Learning 7

ODI-CL algorithms in real-life settings where it may be challenging to identify
such a signal explicitly.

Algorithm 5 ODIP training algorithm with Auto Task Detection

Input: P : pool of training CNNs, F : pool of frozen CNNs, T : task set, Xt: training
set for task t, TP : Task Predictor

1: Initialize pool F = {}
2: Initialize taskId = 0
3: for all task t ∈ T do
4: for all mini-batch bt in training set Xt for task t do
5: taskEnd← false
6: z ← features from mini-batch bt for task t
7: for all learner p ∈ P do
8: Compute the loss Lp of mini-batch bt and train CNNp

9: Update ADWINp with Lp

10: if ADWINp detects change then
11: taskEnd← true
12: end if
13: if task predictor TPp is One Class Classifier with LR then
14: train OC with LR(TPp, z)
15: end if
16: end for
17: if task predictor TP is Naive Bayes or Hoeffding Tree then
18: train TP (z, taskId)
19: end if
20: if taskEnd then
21: taskId← taskId+ 1
22: Append the CNN with lowest loss estimated using ADWIN to F
23: end if
24: end for
25: end for

ODIP is extended to identify concept drifts in the incoming stream auto-
matically. ADaptive sliding WINdow (ADWIN) [3] is used as a task detector.
ADWIN has nice properties where it uses exponential histograms for memory
efficiency and discards the buffer related to the previous concept once confronted
with a drift. Every CNN in P pool has its ADWIN. They are updated with each
CNN’s loss after training. Once updated, a new task is identified if any ADWIN
detects a drift in the loss. Here a drift in the loss is assumed to be related to the
drift in the input stream. Algorithm 5 explains this training with automatic Task
Detection in detail. In the experiments, the effectiveness of ODIP was compared
against popular regularization baselines.

8 Nuwan Gunasekara, Heitor Gomes, Albert Bifet, and Bernhard Pfahringer

Table 1: Datasets

Dataset Number of tasks Number of Classes Channels, H, W

CORe50 11 10 3, 32, 32
RotatedCIFAR10 4 10 3, 32, 32
RotatedMNIST 4 10 1, 28, 28

4 Experiments

The experiments attempt to understand the effectiveness of ODIP against pop-
ular regularization baselines. They also attempt to identify the effectiveness of
Task Predictors. Lastly, they attempt to determine the effectiveness of ODIP
with automatic Task Detection against regularization baselines.

Different versions of ODIP were compared against regularization baselines:
LwF and EWC. The replay methods were not considered in the baselines as the
setting avoids using a replay buffer. The baselines use CNNs with 4.3 times the
parameters (144234) than in ODIP experiments (33450). For ODIP, ResNet-18
was used as the static feature extractor and flattened last layer features were
used to train the TPs. Five types of TPs were used in the experiments: random,
Majority Vote (MV), NB, HT1, and OC2 with LR. Also, two types of vote
aggregation methods were considered in the experiments: WV and the use of
votes fromCNNbest. Furthermore, two variants of automatic Task Predictor were
considered in the experiments: α) include the best training CNN for prediction
when the frozen pool is empty, β) include the best training CNN for prediction
when the frozen pool is empty OR when the predicted network is related to the
current concept. P pool size forODIP was set to 6CNNs. In the experiments, we
also considered a hypothetical scenario ofODIP, where the task id is available at
evaluation, and it is used to determine the correct frozen CNN. This is presented
as the ”Tid known” in the results. This allows one to determine the hypothetical
upper bound of ODIP.

Three datasets were used in the experiments: CORe50 [15], RotatedCIFAR10,
and RotatedMNIST. With RotatedCIFAR10 and RotatedMNIST, 90°rotations
(0°, 90°, 180°, -90°) of the original images from CIFAR10 [10] and MNIST [11]
were considered separate tasks. Altogether there were four tasks in those two
datasets. With CORe50, 11 distinct sessions (8 indoor and 3 outdoor) of the
same object were considered separate tasks: tasks 0-2,4-8 indoor, tasks 3,9, and
10 outdoor. Here 10 object categories were considered as the class labels. In the
above datasets, all classes were presented in all the tasks. Such rearranging was
done to the original datasets to adhere to the ODI-CL definition described in
[17].

All experiments were run using Avalanche [16] Continual Learning platform.
Average accuracy and forgetting defined in [17] are used in the evaluation. All

1 Use skmultiflow[18] online versions of NB and HT
2 Online One-Class SVM. ODIP source code available at github.

https://scikit-learn.org/stable/modules/sgd.html#sgd-online-one-class-svm
https://github.com/nuwangunasekara/ODIP

Adaptive Online Domain Incremental Continual Learning 9

(a) Naive Bayes (b) Hoeffding Tree (c) OC with LR

Fig. 2: Effectiveness of Task Predictors. ROC curves for predicted task id and
AUC scores for all the Task Predictors

Table 2: Average accuracy after training on the last task

dataset Baselines ODIP

EWC LwF Tid known Random MV HTWV OCWV NBWV NBNoWV NBTDα NBTDβ

CORe50 0.41 0.41 0.69 0.42 0.53 0.63 0.56 0.66 0.61 0.44 0.47
RotatedCIFAR10 0.44 0.48 0.48 0.38 0.45 0.44 0.46 0.43 0.40 0.40 0.42
RotatedMNIST 0.51 0.72 0.97 0.48 0.66 0.53 0.65 0.79 0.78 0.79 0.79

Avg 0.45 0.54 0.72 0.42 0.55 0.53 0.56 0.63 0.60 0.54 0.56

experiments were run three times, and relevant averages and standard deviations
were considered in the evaluation. The standard deviations were omitted from
this manuscript due to space constraints.

Table 2 contains the average accuracy of each method after training on the
last task. As one can see from the table, ODIP NBWV produces the best results.
ODIP Random and EWC seem to yield poor results. In general, all methods
with Weighted Voting produced good results compared to the two baselines.
However, weights from a good Task Predictor seem to boost the performance
significantly. Also, ODIP NBTDβ , which has automatic Task Detection, yields
better results than regularization baselines. It is also on-par or better than the
other ODIP methods, which use task ids, except for NB. Considering the hy-
pothetical ”Tid known” scenario, it is evident that just selecting the correct

10 Nuwan Gunasekara, Heitor Gomes, Albert Bifet, and Bernhard Pfahringer

Table 3: Average forgetting after training on the last task

dataset Baselines ODIP

EWC LwF Tid known Random MV HTWV OCWV NBWV NBNoWV NBTDα NBTDβ

CORe50 0.10 0.07 0.00 0.01 -0.02 0.02 -0.03 0.01 0.00 0.00 0.20
RotatedCIFAR10 0.10 0.00 0.00 0.01 -0.03 0.05 -0.03 -0.01 0.00 -0.03 -0.01
RotatedMNIST 0.63 0.24 0.00 0.20 0.16 0.59 0.12 0.12 0.12 0.12 0.12

Avg 0.28 0.11 0.00 0.07 0.04 0.22 0.02 0.04 0.04 0.03 0.10

Fig. 3: Effectiveness of Naive Bayes as a TP. ROC curves and AUC scores for
predicted task id for each task.

frozen CNN is sufficient to outperform current baselines by a considerable mar-
gin. This is further evident in table 3, with ”Tid known” having a zero average
forgetting across all datasets after training on the last task. Note here that a
smaller average forgetting is better.

Adaptive Online Domain Incremental Continual Learning 11

To further understand the effectiveness of the Task Predictors, the predicted
task id was compared against the true task id in non-auto-TD mode against all
datasets. This comparison was made for all evaluation instances after training
on the last task. Figure 2 shows the ROC curves for predicted task id and the
relevant AUC scores for each TP on each dataset. According to the figure, it is
clear that NB is a better Task Predictor for all datasets. This further strengthens
the overall strongNB results in table 2. Figure 3 further explains the effectiveness
of NB as a Task Predictor when predicting each task in a given dataset. From
the per-task ROC curves and AUC scores, it is clear that NB performs similarly
on all the tasks for a given dataset. Nevertheless, it does perform slightly better
on certain tasks. This is evident in CORe50, with NB performing slightly better
for tasks 3,4,5,9, and 10. This suggests, in general, that NB is a good Task
Predictor.

5 Conclusion

The proposed ODIP produces competitive results for ODI-CL in comparison to
regularization-based approaches. The extended version can detect tasks in ODI-
CL automatically. ODIP with and without automatic Task Detection produces
competitive results compared to current popular regularization baselines: LwF
and EWC. This makes ODIP as a good replacement for regularization methods
in the ODI-CL setting. It could be further improved to have a fixed frozen pool
size. Then information from the Task Predictor could be used to identify the
CNN to train and then replace when the frozen pool is full.

References

1. Aljundi, R., Caccia, L., Belilovsky, E., Caccia, M., Lin, M., Charlin, L., Tuytelaars,
T.: Online continual learning with maximally interfered retrieval. arXiv preprint
arXiv:1908.04742 (2019)

2. Armstrong, J., Clifton, D.: Continual learning of longitudinal health records. arXiv
preprint arXiv:2112.11944 (2021)

3. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of the 2007 SIAM international conference on data mining. pp.
443–448. SIAM (2007)

4. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.: Riemannian walk for in-
cremental learning: Understanding forgetting and intransigence. In: Proceedings of
the European Conference on Computer Vision (ECCV). pp. 532–547 (2018)

5. Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T., Dokania, P.K., Torr,
P.H., Ranzato, M.: On tiny episodic memories in continual learning. arXiv preprint
arXiv:1902.10486 (2019)

6. French, R.M.: Catastrophic forgetting in connectionist networks. Trends in cogni-
tive sciences 3(4), 128–135 (1999)

7. Hayes, T.L., Kafle, K., Shrestha, R., Acharya, M., Kanan, C.: Remind your neural
network to prevent catastrophic forgetting. In: European Conference on Computer
Vision. pp. 466–483. Springer (2020)

12 Nuwan Gunasekara, Heitor Gomes, Albert Bifet, and Bernhard Pfahringer

8. Kara, O., Churamani, N., Gunes, H.: Towards fair affective robotics: Continual
learning for mitigating bias in facial expression and action unit recognition. arXiv
preprint arXiv:2103.09233 (2021)

9. Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu,
A.A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al.: Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences 114(13), 3521–3526 (2017)

10. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images (2009)

11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

12. Lewis, P.A., Durrant, S.J.: Overlapping memory replay during sleep builds cogni-
tive schemata. Trends in cognitive sciences 15(8), 343–351 (2011)

13. Li, Z., Hoiem, D.: Learning without forgetting. IEEE transactions on pattern anal-
ysis and machine intelligence 40(12), 2935–2947 (2017)

14. Liu, X., Masana, M., Herranz, L., Van de Weijer, J., Lopez, A.M., Bagdanov, A.D.:
Rotate your networks: Better weight consolidation and less catastrophic forgetting.
In: International Conference on Pattern Recognition (ICPR). IEEE (2018)

15. Lomonaco, V., Maltoni, D.: Core50: a new dataset and benchmark for continuous
object recognition. In: Conference on Robot Learning. pp. 17–26. PMLR (2017)

16. Lomonaco, V., Pellegrini, L., Cossu, A., Carta, A., Graffieti, G., Hayes, T.L., Lange,
M.D., Masana, M., Pomponi, J., van de Ven, G., Mundt, M., She, Q., Cooper,
K., Forest, J., Belouadah, E., Calderara, S., Parisi, G.I., Cuzzolin, F., Tolias, A.,
Scardapane, S., Antiga, L., Amhad, S., Popescu, A., Kanan, C., van de Weijer,
J., Tuytelaars, T., Bacciu, D., Maltoni, D.: Avalanche: an end-to-end library for
continual learning. In: Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition. 2nd Continual Learning in Computer Vision Workshop (2021)

17. Mai, Z., Li, R., Jeong, J., Quispe, D., Kim, H., Sanner, S.: Online continual
learning in image classification: An empirical survey. Neurocomputing 469, 28–
51 (2022). https://doi.org/https://doi.org/10.1016/j.neucom.2021.10.021, https:
//www.sciencedirect.com/science/article/pii/S0925231221014995

18. Montiel, J., Read, J., Bifet, A., Abdessalem, T.: Scikit-multiflow: A multi-output
streaming framework. Journal of Machine Learning Research 19(72), 1–5 (2018),
http://jmlr.org/papers/v19/18-251.html

19. Prabhu, A., Torr, P.H., Dokania, P.K.: Gdumb: A simple approach that questions
our progress in continual learning. In: European conference on computer vision.
pp. 524–540. Springer (2020)

20. Ratcliff, R.: Connectionist models of recognition memory: constraints imposed by
learning and forgetting functions. Psychological review 97(2), 285 (1990)

21. Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y.W., Pas-
canu, R., Hadsell, R.: Progress & compress: A scalable framework for continual
learning. In: International Conference on Machine Learning. pp. 4528–4537. PMLR
(2018)

22. Srivastava, S., Yaqub, M., Nandakumar, K., Ge, Z., Mahapatra, D.: Continual
domain incremental learning for chest x-ray classification in low-resource clini-
cal settings. In: Albarqouni, S., Cardoso, M.J., Dou, Q., Kamnitsas, K., Khanal,
B., Rekik, I., Rieke, N., Sheet, D., Tsaftaris, S., Xu, D., Xu, Z. (eds.) Domain
Adaptation and Representation Transfer, and Affordable Healthcare and AI for
Resource Diverse Global Health. pp. 226–238. Springer International Publishing,
Cham (2021)

https://doi.org/https://doi.org/10.1016/j.neucom.2021.10.021
https://www.sciencedirect.com/science/article/pii/S0925231221014995
https://www.sciencedirect.com/science/article/pii/S0925231221014995
http://jmlr.org/papers/v19/18-251.html

	Adaptive odi-cl

