Skip to main content

D-TRACE: Deep Triply-Aligned Clustering

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13529))

Included in the following conference series:

Abstract

Deep clustering has recently emerged as a promising direction in clustering analysis, which aims to leverage the representation learning power of deep neural networks to enhance the clustering of highly-complex data. However, most of the existing deep clustering algorithms tend to utilize a single layer (typically the last fully-connected layer) of representation to build the clustering, yet cannot well exploit the rich and diverse information hidden in multiple layers. In view of this, this paper proposes a deep triply-aligned clustering (D-TRACE) approach, which is able to jointly explore three types of representations from multiple layers in the neural network. Specifically, we incorporate the contrastive learning into the first-stage network training, where three modules (i.e., the backbone network, the instance contrastive head, and the cluster contrastive head) are simultaneously optimized. By fusing the three types of representations from the three modules, we further propose the concept of the triply-aligned representation, based on which a unified neural network with a reconstruction loss and a Kullback-Leibler (KL) divergence based clustering loss is trained and thus the final clustering can be achieved in an unsupervised manner. Experiments on multiple image datasets demonstrate the superiority of our D-TRACE approach over the state-of-the-art deep clustering approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: Advances in Neural Information Processing Systems, vol. 19 (2006)

    Google Scholar 

  2. Cai, D., He, X., Wang, X., Bao, H., Han, J.: Locality preserving nonnegative matrix factorization. In: Proceedings of International Joint Conference on Artificial Intelligence (2009)

    Google Scholar 

  3. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of European Conference on Computer Vision, pp. 132–149 (2018)

    Google Scholar 

  4. Chang, J., Guo, Y., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep discriminative clustering analysis. arXiv preprint arXiv:1905.01681 (2019)

  5. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: Proceedings of IEEE International Conference on Computer Vision, pp. 5879–5887 (2017)

    Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: Proceedings of International Conference on Machine Learning, pp. 1597–1607 (2020)

    Google Scholar 

  7. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)

    Google Scholar 

  8. Dang, Z., Deng, C., Yang, X., Wei, K., Huang, H.: Nearest neighbor matching for deep clustering. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13693–13702 (2021)

    Google Scholar 

  9. Dizaji, K.G., Herandi, A., Deng, C., Cai, W., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: Proceedings of IEEE International Conference on Computer Vision, pp. 5736–5745 (2017)

    Google Scholar 

  10. Guo, X., Gao, L., Liu, X., Yin, J.: Improved deep embedded clustering with local structure preservation. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 1753–1759 (2017)

    Google Scholar 

  11. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Huang, D., Wang, C., Peng, H., Lai, J., Kwoh, C.: Enhanced ensemble clustering via fast propagation of cluster-wise similarities. IEEE Trans. Syst. Man Cybern. Syst. 51(1), 508–520 (2021)

    Article  Google Scholar 

  14. Huang, D., Wang, C.D., Wu, J.S., Lai, J.H., Kwoh, C.K.: Ultra-scalable spectral clustering and ensemble clustering. IEEE Trans. Knowl. Data Eng. 32(6), 1212–1226 (2020)

    Article  Google Scholar 

  15. Huang, D., Wang, C.D., Lai, J.H., Kwoh, C.K.: Toward multidiversified ensemble clustering of high-dimensional data: from subspaces to metrics and beyond. IEEE Trans. Cybern. (2021, in press)

    Google Scholar 

  16. Huang, J., Gong, S., Zhu, X.: Deep semantic clustering by partition confidence maximisation. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8849–8858 (2020)

    Google Scholar 

  17. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  18. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 9865–9874 (2019)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  21. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  22. Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J.T., Peng, X.: Contrastive clustering. In: Proceedings of AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  23. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  24. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  25. Nigam, K., Ghani, R.: Analyzing the effectiveness and applicability of co-training. In: Proceedings of International Conference on Information and Knowledge Management, pp. 86–93 (2000)

    Google Scholar 

  26. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  27. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool, L.: Scan: learning to classify images without labels. In: Proceedings of European Conference on Computer Vision, pp. 268–285 (2020)

    Google Scholar 

  28. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12) (2010)

    Google Scholar 

  29. Wu, J., et al.: Deep comprehensive correlation mining for image clustering. In: Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 8150–8159 (2019)

    Google Scholar 

  30. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: Proceedings of International Conference on Machine Learning, pp. 478–487 (2016)

    Google Scholar 

  31. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2016)

    Google Scholar 

  32. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 2528–2535 (2010)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Program of Guangzhou, China (202201010314), the NSFC (61976097 & 61876193), and the Natural Science Foundation of Guangdong Province (2021A1515012203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, DH., Huang, D., Cheng, H., Wang, CD. (2022). D-TRACE: Deep Triply-Aligned Clustering. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13529. Springer, Cham. https://doi.org/10.1007/978-3-031-15919-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15919-0_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15918-3

  • Online ISBN: 978-3-031-15919-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics