Skip to main content

Concatenating BioMed-Transformers to Tackle Long Medical Documents and to Improve the Prediction of Tail-End Labels

  • Conference paper
  • First Online:
Book cover Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

Multi-label learning predicts a subset of labels from a given label set for an unseen instance while considering label correlations. A known challenge with multi-label classification is the long-tailed distribution of labels. Many studies focus on improving the overall predictions of the model and thus do not prioritise tail-end labels. Improving the tail-end label predictions in multi-label classifications of medical text enables the potential to understand patients better and improve care. The knowledge gained by one or more infrequent labels can impact the cause of medical decisions and treatment plans. This research presents a variation of concatenated domain-specific language models, multi-BioMed-Transformers, to achieve two primary goals: first, to improve F1 scores of infrequent labels across multi-label problems, especially with long-tail labels; second, to handle long medical text and multi-sourced electronic health records (EHRs), a challenging task for standard transformers designed to work on short input sequences. A vital contribution of this research is new state-of-the-art (SOTA) results obtained using TransformerXL for predicting medical codes. A variety of experiments are performed on the Medical Information Mart for Intensive Care (MIMIC-III) database. Results show that concatenated BioMed-Transformers outperform standard transformers in terms of overall micro and macro F1 scores and individual F1 scores of tail-end labels, while incurring lower training times than existing transformer-based solutions for long input sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/vithyayogarajan/Medical-Domain-Specific-Language-Models/tree/main/Concatenated-Language-Models-Multi-label.

References

  1. Amin-Nejad, A., Ive, J., Velupillai, S.: Exploring transformer text generation for medical dataset augmentation. In: LREC, pp. 4699–4708 (2020)

    Google Scholar 

  2. Aubert, C.E., et al.: Patterns of multimorbidity associated with 30-day readmission: a multinational study. BMC Publ. Health 19(1), 738 (2019)

    Article  Google Scholar 

  3. Beltagy, I., Peters, M., Cohan, A.: LongFormer: the long-document transformer. arXiv preprint arXiv:2004.05150 (2020)

  4. Chalkidis, I., Fergadiotis, M., Kotitsas, S., Malakasiotis, P., Aletras, N., Androutsopoulos, I.: An empirical study on large-scale multi-label text classification including few and zero-shot labels. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 7503–7515 (2020)

    Google Scholar 

  5. Cox, D.R.: The regression analysis of binary sequences. J. Roy. Stat. Soc. Ser. B (Methodol.) 20(2), 215–232 (1958)

    MathSciNet  MATH  Google Scholar 

  6. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: ACL (2019)

    Google Scholar 

  7. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google Scholar 

  8. Flegel, K.: What we need to learn about multimorbidity. CMAJ 190(34) (2018)

    Google Scholar 

  9. Gao, S., et al.: Limitations of transformers on clinical text classification. IEEE J. Biomed. Health Inform. 1–12 (2021). https://doi.org/10.1109/JBHI.2021.3062322

  10. Gu, Y., et al.: Domain-specific language model pretraining for biomedical natural language processing. arXiv preprint arXiv:2007.15779 (2020)

  11. Gururangan, S., et al.: Don’t stop pretraining: adapt language models to domains and tasks. In: Proceedings of ACL (2020)

    Google Scholar 

  12. Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)

    Article  Google Scholar 

  13. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP, pp. 1746–1751. Association for Computational Linguistics (2014)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  15. Kurata, G., Xiang, B., Zhou, B.: Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence. In: Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 521–526 (2016)

    Google Scholar 

  16. Liu, Y., Cheng, H., Klopfer, R., Schaaf, T., Gormley, M.R.: Effective convolutional attention network for multi-label clinical document classification. EMNLP 2021 (2021)

    Google Scholar 

  17. Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  18. Moons, E., Khanna, A., Akkasi, A., Moens, M.F.: A comparison of deep learning methods for ICD coding of clinical records. Appl. Sci. 10(15), 5262 (2020)

    Article  Google Scholar 

  19. Mullenbach, J., Wiegreffe, S., Duke, J., Sun, J., Eisenstein, J.: Explainable prediction of medical codes from clinical text. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1. ACL, New Orleans (2018)

    Google Scholar 

  20. Si, Y., Roberts, K.: Hierarchical transformer networks for longitudinal clinical document classification. arXiv preprint arXiv:2104.08444 (2021)

  21. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-09823-4_34

    Chapter  Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–6008 (2017)

    Google Scholar 

  23. Yogarajan, V., Gouk, H., Smith, T., Mayo, M., Pfahringer, B.: Comparing high dimensional word embeddings trained on medical text to bag-of-words for predicting medical codes. In: Nguyen, N.T., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds.) ACIIDS 2020. LNCS (LNAI), vol. 12033, pp. 97–108. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41964-6_9

    Chapter  Google Scholar 

  24. Yogarajan, V., Montiel, J., Smith, T., Pfahringer, B.: Transformers for multi-label classification of medical text: an empirical comparison. In: Tucker, A., Henriques Abreu, P., Cardoso, J., Pereira Rodrigues, P., Riaño, D. (eds.) AIME 2021. LNCS (LNAI), vol. 12721, pp. 114–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77211-6_12

    Chapter  Google Scholar 

  25. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26(8), 1819–1837 (2013)

    Article  Google Scholar 

  26. Zhang, W., Yan, J., Wang, X., Zha, H.: Deep extreme multi-label learning. In: ACM on International Conference on Multimedia Retrieval, pp. 100–107 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vithya Yogarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yogarajan, V., Pfahringer, B., Smith, T., Montiel, J. (2022). Concatenating BioMed-Transformers to Tackle Long Medical Documents and to Improve the Prediction of Tail-End Labels. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13530. Springer, Cham. https://doi.org/10.1007/978-3-031-15931-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15931-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15930-5

  • Online ISBN: 978-3-031-15931-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics