Skip to main content

Effective ML-Block and Weighted IoU Loss for Object Detection

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13532))

Included in the following conference series:

  • 1914 Accesses

Abstract

In computer vision tasks, better performance of the transformer model is due to self-attention mechanism and learning of global information. However, it also largely increases parameters and calculations. In this paper, we propose the following problems. (1) How to build a lighter module that integrates CNN and Transformer? We propose the ML-block module in this paper. Especially, for one thing, reducing the number of channels after the convolution module; for another, spatial attention is introduced after the ML-block input layer to reduce the loss caused by information fusion. (2) Small object detection problem in one-stage object detector. We propose weighted IoU loss in this paper. According to the object size, it adaptively weighs the IoU loss to improve the performance of the detector. We adopt YOLOX-s as the baseline through sufficient experiments on PASCAL VOC data sets and COCOmini data sets to demonstrate the effectiveness of our methods, and AP increases by 1.1\(\%\) and 3.3\(\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  2. Chen, Y., et al.: Dynamic scale training for object detection. arXiv preprint arXiv:2004.12432 (2020)

  3. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430 (2021)

  4. Ghiasi, G., Lin, T.Y., Pang, R., Le, Q.V.: NAS-FPN: learning scalable feature pyramid architecture for object detection. In: CVPR (2019)

    Google Scholar 

  5. Glenn-Jocher, R., et al.: yolov5 (2021). https://github.com/ultralytics/yolov5

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  7. Li, Y., Yao, T., Pan, Y., Mei, T.: Contextual transformer networks for visual recognition. arXiv preprint arXiv:2107.12292 (2021)

  8. Lim, J.S., Astrid, M., Yoon, H.J., Lee, S.I.: Small object detection using context and attention. In: 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 181–186. IEEE (2021)

    Google Scholar 

  9. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR (2018)

    Google Scholar 

  13. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  14. Mehta, S., Rastegari, M.: Mobilevit: Light-weight, general-purpose, and mobile-friendly vision transformer. arXiv preprint arXiv:2110.02178 (2021)

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  16. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR (2017)

    Google Scholar 

  17. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  19. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)

    Google Scholar 

  20. Samet, N., Hicsonmez, S., Akbas, E.: HoughNet: integrating near and long-range evidence for bottom-up object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 406–423. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_25

    Chapter  Google Scholar 

  21. Tang, Y., Gu, B., Jiang, B.: Research on feature enhancement for small object detection. In: Journal of Physics: Conference Series, vol. 2006, p. 012036. IOP Publishing (2021)

    Google Scholar 

  22. Wang, Q., Zhang, H., Hong, X., Zhou, Q.: Small object detection based on modified FSSD and model compression. arXiv preprint arXiv:2108.10503 (2021)

  23. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  24. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.: Unitbox: an advanced object detection network. In: Proceedings of the 24th ACM international conference on Multimedia, pp. 516–520 (2016)

    Google Scholar 

  25. Zhang, H., Hong, X., Zhu, L.: Detecting small objects in thermal images using single-shot detector. Autom. Control Comput. Sci. 55(2), 202–211 (2021)

    Article  Google Scholar 

  26. Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IOU loss: faster and better learning for bounding box regression. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12993–13000 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongtao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, Z., Xiao, X., Zhao, S., Jiang, L., Li, Z. (2022). Effective ML-Block and Weighted IoU Loss for Object Detection. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13532. Springer, Cham. https://doi.org/10.1007/978-3-031-15937-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15937-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15936-7

  • Online ISBN: 978-3-031-15937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics