Skip to main content

Reject Options for Incremental Regression Scenarios

  • Conference paper
  • First Online:
  • 1859 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13532))

Abstract

Machine learning with a reject option is the empowerment of an algorithm to abstain from prediction when the outcome is likely to be inaccurate. Although the topic has been investigated in the literature already some time ago, it has not lost any of its relevance as machine learning models are increasingly delivered to the market. At present, most work on reject strategies addresses classification tasks. Moreover, the majority of approaches deals with classical batch learning scenarios. In this publication, in contrast, we study the important problem of reject options for incremental online regression tasks. We propose different strategies to model this problem and evaluate different approaches, both in a theoretical and a real world setting from the domain of human motion prediction; from the methods which we evaluate, a clear winner emerges as regards accuracy and efficiency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Asif, A.: Generalized neural framework for learning with rejection. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020). https://doi.org/10.1109/IJCNN48605.2020.9206612

  2. Bartlett, P.L., Wegkamp, M.H.: Classification with a reject option using a hinge loss. J. Mach. Learn. Res. 9, 1823–1840 (2008). https://dl.acm.org/citation.cfm?id=1442792

  3. Chow, C.: On optimum error and reject trade-off. IEEE Trans. Inf. Theory 16, 41–46 (1970)

    Article  Google Scholar 

  4. Denis, C., Hebiri, M., Zaoui, A.: Regression with reject option and application to KNN (2021)

    Google Scholar 

  5. Duffing, G., Emde, F.: Erzwungene schwingungen bei veränderlicher eigenfrequenz und ihre technische bedeutung

    Google Scholar 

  6. Fischer, L., Hammer, B., Wersing, H.: Optimal local rejection for classifiers. Neurocomputing 214, 445–457 (2016). https://doi.org/10.1016/j.neucom.2016.06.038

    Article  Google Scholar 

  7. Geifman, Y., El-Yaniv, R.: SelectiveNet: a deep neural network with an integrated reject option (2019)

    Google Scholar 

  8. Hendrickx, K., Perini, L., der Plas, D.V., Meert, W., Davis, J.: Machine learning with a reject option: a survey. CoRR abs/2107.11277 (2021). https://arxiv.org/abs/2107.11277

  9. Herbei, R., Wegkamp, M.H.: Classification with reject option. Can. J. Stat./La Revue Canadienne de Statistique 34(4), 709–721 (2006). https://www.jstor.org/stable/20445230

  10. Hinder, F., Artelt, A., Hammer, B.: Towards non-parametric drift detection via dynamic adapting window independence drift detection (DAWIDD). In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp. 4249–4259. PMLR (2020). https://proceedings.mlr.press/v119/hinder20a.html

  11. Jakob, J., Hasenjäger, M., Hammer, B.: On the suitability of incremental learning for regression tasks in exoskeleton control. In: IEEE Symposium on Computational Intelligence in Data Mining (CIDM). IEEE, December 2021

    Google Scholar 

  12. Jiang, W., Zhao, Y., Wang, Z.: Risk-controlled selective prediction for regression deep neural network models. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020). https://doi.org/10.1109/IJCNN48605.2020.9207676

  13. Kriegel, H., Kröger, P., Schubert, E., Zimek, A.: Loop: local outlier probabilities (2009)

    Google Scholar 

  14. Lorenz, E.: Deterministic nonperiodic flow. Journal of the atmospheric sciences 20, 130–41.1. Prog. Phys. Geogr. Earth Environ. 32(4), 475–480 (2008). https://doi.org/10.1177/0309133308091948

  15. Losing, V., Hasenjaeger, M.: NEWBEE: a multi-modal gait database of natural everyday-walk in an urban environment. Sci. Data (2022, submitted)

    Google Scholar 

  16. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: a review and comparison of state of the art algorithms. Neurocomputing 275, 1261–1274 (2018). https://doi.org/10.1016/j.neucom.2017.06.084

    Article  Google Scholar 

  17. Losing, V., Yoshikawa, T., Hasenjäger, M., Hammer, B., Wersing, H.: Personalized online learning of whole-body motion classes using multiple inertial measurement units. In: International Conference on Robotics and Automation, ICRA 2019, Montreal, QC, Canada, 20–24 May 2019, pp. 9530–9536. IEEE (2019). https://doi.org/10.1109/ICRA.2019.8794251

  18. Montiel, J., et al.: River: machine learning for streaming data in python. J. Mach. Learn. Res. 22(110), 1–8 (2021). https://jmlr.org/papers/v22/20-1380.html

  19. Nadeem, M.S.A., Zucker, J.D., Hanczar, B.: Accuracy-rejection curves (ARCS) for comparing classification methods with a reject option. In: Machine Learning in Systems Biology, pp. 65–81. PMLR (2009)

    Google Scholar 

  20. Nusse, H., Yorke, J.: Dynamics: Numerical Explorations. Springer, New York (1997)

    MATH  Google Scholar 

  21. Page, E.S.: Continuous inspection schemes. Biometrika 41(1–2), 100–115 (1954). https://doi.org/10.1093/biomet/41.1-2.100

    Article  MathSciNet  MATH  Google Scholar 

  22. Rössler, O.: An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976). https://doi.org/10.1016/0375-9601(76)90101-8. https://www.sciencedirect.com/science/article/pii/0375960176901018

  23. Tijjani, I., Kumar, S., Boukheddimi, M.: A survey on design and control of lower extremity exoskeletons for bipedal walking. Appl. Sci. 12(5) (2022). https://doi.org/10.3390/app12052395. https://www.mdpi.com/2076-3417/12/5/2395

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Jakob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jakob, J., Hasenjäger, M., Hammer, B. (2022). Reject Options for Incremental Regression Scenarios. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13532. Springer, Cham. https://doi.org/10.1007/978-3-031-15937-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15937-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15936-7

  • Online ISBN: 978-3-031-15937-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics