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Suárez[0000−0003−4534−0909]

Universidad Autónoma de Madrid, Escuela Politécnica Superior, Dpto. de Ingenieŕıa
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Abstract. This paper presents a model to train an ensemble of SVMs
that achieves better generalization performance at a lower computational
training cost than a single SVM. The idea of the proposed model is,
instead of training a single SVM on the whole dataset, to train a di-
verse set of simpler SVMs. Specifically, the proposed algorithm creates
B subensembles of T SVMs using a different set of hyper-parameters in
each subensemble. Then, in order to gain more diversity, the T SVMs of
each of the subsensembles are trained on a different 1/T disjoint fraction
of the training set. The paper presents an extensive analysis of the com-
putational training complexity of the algorithm. The experiments show
that for any given computational budget, the presented method obtains
a better generalization performance than a single SVM.
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1 Introduction

Support Vector Machines (SVM) are among the most accurate machine learning
methods for classification problems [1, 5]. In spite of their excellent performance,
they are costly to train. A cost that can be higher than quadratic with respect
to the number of training instances [3]. Furthermore, the generalization capacity
of an SVM is very sensitive to the actual values of its hyperparameters [4].
These are typically determined by a computationally expensive cross-validation
search. For these reasons, the practical application of SVM’s in large problems
is limited. Ensembles of classifiers are a way to improve the performance of
SVMs [12, 8, 7, 10]. Several strategies focus only in generating diverse SVMs for
improving the accuracy of the model (for instance by using different kernels
[12]). Other strategies are boosting-based optimization ensembles [8, 7]. Other
works focus both in diversification and optimization [10]. However, the accuracy
improvements are in general small as SVM are very stable classifiers [8].

In this work we present a novel architecture to build SVM ensembles with a
low computational training complexity that can achieve similar or better accu-
racies than a single SVM trained on the complete dataset. In particular, given a
limited training time budget, the proposed ensembles can have higher accuracy
than a single SVM. In order to achieve this, a combination of two techniques is
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used: Hyperparameter diversification and structured subsampling. These strate-
gies serve to introduce the variability among the base SVMs that is needed to
build an effective ensemble. Subsampling, in particular, not only fulfills this pur-
pose of diversification, but also reduces the computational complexity of the
training process. In addition, a detailed analysis of the computational cost of
the proposed method is carried out.

2 Structured subbagging for SVM Ensembles

In order to achieve hyperparameter diversification, the proposed ensemble is
composed of B subensembles of SVMs. The SVMs within each subensemble use
an RBF kernel and are built using the same combination of hyperparameters
(C, γ). However, each one of them is trained using a different random subset
of size tp · Ntrain, where tp is a hyperparameter of the ensemble that stands
for train proportion. Hence, we need to generate B pairs of hyper-parameters
{(Cb, γb)}Bb=1 , {(Cb, γb); b = 1, . . . , B}, one for each subensemble. Each of these
pairs (Cb, γb) is obtained by performing an exhaustive grid search with 2-fold
cross-validation over an independent partition Db, sampled from the training
set, Dtrain. These partitions Db have 2 ·N · tp instances. In this way, during the
grid search each SVM is trained on a sample of size N · tp, the same number
of instances on which each base SVM will be trained later. Having set the size
of the partitions for searching for the hyper-parameters, Db, we distinguish two
possible scenarios: If tp ·B ≤ 1/2 then it is possible to extract from the training
set Dtrain, B disjoint subsets with 2 ·N ·tp instances each. If we have tp ·B > 1/2
then it is not possible to make such partitions. In this case we take B subsets of
2 ·N · tp instances drawn from Dtrain uniformly at random without replacement.

Once the hyper-parameter pairs, {(Cb, γb)}Bb=1 , have been selected,B subensem-
bles of SVMs are trained as follows: For each pair (Cb, γb) of hyper-parameters,
the training set is randomly divided into T = 1/tp disjoint subsets, {Dt}Tt=1, that

is, Dtrain =
⋃T

t=1Dt. Then, one SVM with hyper-parameters (Cb, γb) is trained
on each subset Dt for t = 1, . . . , T . After iterating over the B hyper-parameter
subsets and the T = 1/tp subsets, a total of B · T SVMs will form the final
ensemble. The complete pseudocode for this training procedure is detailed in
Algorithm 1.

Note that in the ensemble method proposed in this work, the base models
are trained on datasets that are extracted with a certain structure. Specifically,
instead of using random sampling as in standard bagging or similar methods, the
original dataset is partitioned into disjoint sets (see line 8 Alg. 1). By training
each base learners on one of these disjoint subsets of the original training set,
we expect to maximize the diversity of the base classifiers, and thus improve the
benefits of aggregation. Furthermore, this method guarantees that all the sam-
ples available for training are used, which should limit the loss of information
in the bootstap process and lead to an improved predictive performance. This
is presented in the section on experiments. In order to validate these expected
effects, an experiment is carried out to compare the differences of accuracy be-
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Algorithm 1: SVM Ensemble training.

Input: Dtrain = {(xi, yi)}Ntrain
i=1 % Training set

B % Number of subensembles
tp % Train proportion
grid % Hyperparameter grid

Output: E % Ensemble

1 if tp ·B ≤ 1/2 then
2 {Db}Bb=1 ← Extract from Dtrain B disjoint subsets of size 2 · tp ·Ntrain.
3 else
4 {Db}Bb=1 ← Extract from Dtrain B subsets of size 2 · tp ·Ntrain drawn

uniformly at random.

5 T = 1/tp
6 foreach b← 1 to B do
7 (Cb, γb)← GridSearch(Db, folds = 2, grid)

8 {Dt}Tt=1 ← Split Dtrain into T disjoint subsets of size tp ·Ntrain

9 foreach t← 1 to T do
10 % Train SVM with hyperparameters (Cb, γb) and data Dt

11 cb,t ← SVM(Dt, (Cb, γb))

12 E(·) = argmax
y∈Y

∑B,T
b=1,t=1 1[cb,t(·) = y]

13 return E

tween ensembles built with the structured sampling strategy introduced in this
work and standard subbagging.

The characteristics of ensemble learning algorithm depends on two hyperpa-
rameters B and tp, whose role we now review

– The ensemble consists in B subensembles. Each of these subensembles is
composed of SVMs that are built using the same hyperparameters (C, γ).
Therefore the SVMs within the same subensemble only differ in the data
they are trained on. Exploratory experiments show that B = 10 is a good
choice for most cases.

– The tp (train proportion) hyperparameter determines both the fraction of
training samples that are used to build each base SVM of the ensemble
and the number of SVMs to be combined in each subensemble. By design,
each of the T = 1/tp individual SVMs within a subensemble is built on a
disjoint partition of the training set with tp ·Ntrain instances. In this way, all
training instances are used once for building each subensemble. In addition,
since the datasets are disjoint, the diversity of SVMs should increase, an
effect that is expected to improve the benefits of aggregation. Lower values
of tp correspond to larger ensembles of SVMs trained on fewer instances.
Higher values of tp correspond to smaller ensembles, with SVMs trained on
larger samples. In the limit case, tp = 1, only one SVM is trained using the
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whole dataset, which is equivalent to training a single SVM. The higher limit
for possible values of T (low tp) is determined by the number of instances of
the training set Ntrain. In this way, tp provides a way to balance between the
strength of the individual classifiers and the size of the ensemble. Generally,
tp ∈ (0, 0.25] is a range of values that provide good performance.

Notice that the values of these hyperparameters jointly determine the size of
the complete ensemble: With B subensembles each of size 1/tp we get a total
ensemble size of B/tp.

3 Training complexity of the proposed model

The training complexity of the proposed model can be expressed as a function
of four factors: Ntrain, GSize, B and tp, where Ntrain is number of samples of
the training set, (B, tp) are the hyper-parameters of the model described in the
previous section and GSize is the size of the grid over which the hyperparame-
ters (C, γ) are selected. In what follows, we assume that the cost of training an
SVM on a dataset with N instances is ≈ O(N2), even though there is empirical
evidence that it can be higher than quadratic [3]. Breaking down the training
algorithm in its phases we get: Hyperparameters selection and base SVMs train-
ing.

The hyperparameters selection consists in an exhaustive 2-fold cross-validation
search performed over the grid with folds of size tp ·Ntrain. This process is re-
peated B times. Ignoring the evaluation cost of the SVMs in the grid search, we
get the following complexity for this phase

B · 2 ·GSize · O(tp2 ·N2
train) . (1)

In the base SVMs training phase, the ensemble is formed by B/tp SVMs
trained on tp ·Ntrain samples. The resulting cost is

B · 1

tp
· O(tp2 ·N2

train) . (2)

Adding up these costs we get an estimate of the overall complexity of the model

Cost = B · O(tp2 ·N2
train)(2 ·GSize+

1

tp
). (3)

In most situations, we will have 2·GSize > 1/tp. This implies that the search
of hyperparameters phase is more demanding than training the base learners.
The opposite can also happen for low values of tp, which may be adequate for very
large datasets. This could also happen if the hyperparameter space is explored
with alternative techniques such as Bayesian optimization [11], randomization
or partial optimization [10] that lower the cost of exploring the hyperparameter
grid. Considering that T = 1/tp, the final expression for the training complexity
is

Cost = O(B · tp2 ·N2
train · (2GSize+ T )) . (4)
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We can read this complexity as number of subensembles (B) times the training
complexity of training a single SVM (tp2 ·N2

train) times the number of trained
SVMs (2GSize+ T ) in each subensemble.

To put this results in perspective, we now detail the computational cost for
training a single SVM on the whole training dataset for which a grid search
is performed to tune its hyperparameters. We will assume an exhaustive grid
search of K-fold cross-validation. As before, in this estimation we will ignore the
evaluation cost of the SVMs during the grid search process.

The grid search involves the creation of (GSize · K) SVMs, each of them
trained on a fraction (K − 1)/K of the data. Hence, the total cost of this phase
is:

GSize ·K · O
((K − 1

K

)2
N2

train

)
, (5)

and the cost of training the final SVM on the selected combination of hyperpa-
rameters is

O
(
N2

train

)
. (6)

In this case, it is clear that the hyperparameter tuning phase is the dominant
term in the overall cost. Therefore we can write the estimation for the training
cost of the single SVM as

SVM Cost = O
(
GSize · (K − 1)2

K
·N2

train

)
. (7)

From the expressions (4) and (7) we observe that the training complexity
for both models scale quadratically with the number of instances on the train
set. If we suppose that GSize > T (as is often the case), the ratio between the
complexity of the proposed ensemble and a single SVM is

O
(K ·B · tp2

(K − 1)2

)
. (8)

This indicates that even though their training complexity have an equivalent
asymptotic growth, the ensemble training cost can be adjusted using hyperpa-
rameter B and tp to achieve significant speedups. In section 4, we present the
results of an empirical evaluation to validate the complexity estimations pre-
sented in this section.

4 Experimental evaluation

We now present the results of the experiments carried out to assess the general-
ization accuracy of the proposed ensemble as well as its complexity estimations.
The comparison was carried out in six relatively large datasets for a single SVM:
three synthetic datasets and three real datasets. The synthetic datasets [2] used
are: Twonorm, Threenorm and Ringnorm. The real datasets (Magic04, Bank
Marketing [9] and Adult) are taken form the UCI repository [6]. We did not con-
sidered larger datasets because training a single SVMs on datasets with more
instances was unfeasible.
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Fig. 1. Average accuracy (left column) and standard deviation (right) for structured
sampling and subbagging models

Some basic preprocessing has been applied to the data as part of the training
pipeline. Both Adult and Bank datasets have some categorical attributes. These
attributes were transformed into numerical features using one-hot encoding. In
the 6 problems all features were standardized to 0 mean and 1 standard devi-
ation. All time measurements have been taken from single-threaded executions
on an Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz with 8 GB RAM. All the
hyperparameter searches for the SVMs were done using the grid C = 2q, γ = 2p

with q = −5,−3, . . . , 15; p = −15,−13, . . . , 3 following [10].

4.1 Comparison of structured and non-structured sampling

In this first experiment, the way the data is sampled in the proposed method is
analyzed. The proposed method samples the data with a structure by creating
random disjoint sets in order to generate the base SVMs (line 8, Alg 1). In this
experiment we compare this proposal with standard random sampling without
replacement. That is, the same algorithm as the one shown in Alg 1 is used but
substituting line 8 by the generation of random samples without replacement
of size tp ·Ntrain (subbagging). For this test the ensembles were evaluated with



SVM Ensembles on a Budget 7

102 103

Train size

100

101

102
Fi

t t
im

e 
(s

)

Twonorm
Ensemble
SVM

102 103

Train size

100

101

102

103

Fi
t t

im
e 

(s
)

Magic04
Ensemble
SVM

Fig. 2. Average training time. Both axis are in log scale. The red dashed line is a linear
fit to the log-log data.

different values for the hyperparameter tp: [0.01, 0.02, 0.025, 0.05, 0.1, 0.2]. The
hyperparameter B remained fixed for both models at B = 10. The mean and
standard deviations reported are the average over 20 independent executions.

Figure 1 shows the results for a representation of the analyzed datasets.
Similar results are obtained in the other datasets. The plots on the left column
of Figure 1 display the average accuracy of the models with respect to tp with
the standard deviation shown as a shaded region around the mean values. The
values of the standard deviation are also represented on the plots shown on the
right column.

These results show that the average accuracy achieved using the proposed
method with structured sampling is more accurate than subbagging for most
values of tp, although the differences are in general small. More importantly, the
structured model produces results that are more stable than regular subbagging.
This can be seen from the standard deviation plots where the standard deviation
for subbagging is generally higher that the one of the structured model. This
difference is more noticeable in general for low values of tp. In the following
experiments, we will use only the proposed structured type of sampling.

4.2 Training complexity

In these experiments, we study the training time complexity for the proposed
ensemble and for the single SVM as a function of the size of the training set
Ntrain and as a function of hyperparameter tp. These tests have been carried
out for two datasets: Magic04 and Twonorm. The reported results are averages
over 10 independent executions.

In the first analysis, we study the impact of Ntrain. For the proposed en-
semble, we have fixed B = 10 and tp = 0.2. For the SVM, we used 10-fold
cross-validation in the grid search, i.e. K = 10. Both models use the same grid
with GSize = 110 as defined above. The models have been evaluated for the
following training sizes Ntrain= 100, 200, 400, 800, 1600, 3200. The limitations
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Fig. 3. Average training time of the SVM ensemble. The red dashed line indicates a
linear fit to the log-log of the data.

of our workstation prevented us from using higher values of Ntrain as the cost for
training a single SVM became too high. Nonetheless, the selected values provide
enough data to identify the asymptotic growth of both algorithms.

The results of this experiment are presented in Figure 2 using a logarithmic
scale in both axis. The plots show the execution training time in seconds with re-
spect to Ntrain for the proposed ensemble (blue solid line) and for the single SVM
trained on the whole dataset (orange solid line). Both training times include the
hyperparameter search as previously described. The red dashed lines represents
a linear fit to the data excluding the first 3 points in order to capture the asymp-
totic behavior of the sequences. The slope of these lines are 1.60, 1.88 for the
ensemble and the SVM respectively in Twonorm and 1.86, 2.16 in Magic04. All
four slopes show values close to 2, which indicates that the complexity of both
models with respect to the training size is approximately quadratic as predicted
in previous sections. It is also worth noting that there is a substantial difference
between the training times in both problems. The training cost in the Magic04
dataset for training the single SVM and the SVM ensemble is, respectively, 3.7
and 1.9 times higher that their cost in Twonorm. This shows that training time
for both models is very problem dependent.

In a second experiment we analyze the training time of the proposed ensemble
as a function of hyperparameter tp. The parameter B and the training set size
Ntrain are fixed with values B = 10, Ntrain = 10000. The ensemble is evaluated
at 8 evenly spaced values of tp between 0.005 and 0.2.

The results of this experiment are presented Figure 3 with a solid blue line.
In addition, the plots show with a dashed red line the linear fit to the log-log
data excluding the first 3 points in order to capture the asymptotic tendency of
the curve. The slopes of these lines are 1.88 in Twonorm and 2.08 in Magic04.
These results show the quadratic growth of the training time with respect to
tp, which confirms the cost estimation we obtained in the previous section with
respect to tp (see Eq. 4).
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4.3 Accuracy

In this set of experiments the relation between training time and generalization
accuracy of the models is analyzed in detail. Each experiment realization involves
the following steps: (i) For each of the non-synthetic problems, Ntrain = 10000
training instances are selected at random and the rest of the data is used as
test set. For the synthetic datasets, two sets of 10000 instances are sampled
randomly as training and testing sets; (ii) With the available training data, a set
of ensembles of SVMs and a set of single SVMs are trained such that they require
different training computational budgets. For a single SVM the most natural way
of adjusting to these constraints is to reduce the number of instances used for
training. In this way, the SVM uses only a fraction of the available training set.
Specifically, for the Single SVM model the training subset evaluated sizes, Ntrain,
are: [200, 500, 1000, 2000, 3500, 5000, 10000] for all problems except for Adult, for
which the last value (10000) was not evaluated due to computational limitations
of our workstation. For the ensemble, the parameters B and tp can be reduced to
adjust to the constraints while using all the available data. In these tests we only
modify tp and leave B fixed at a value that generally yields good results B = 10.
For the ensemble model the evaluated tp values are: [0.01, 0.025, 0.05, 0.1, 0.2,
0.25]; (iii) Finally all trained models were evaluated in the same left out test
set. The scores presented are the result of averaging 20 independent executions.
The training time measurements are the result of averaging 4 executions. The
reason for this difference in the number of repetitions is twofold: Firstly, time
measurements are more stable and therefore increasing the number of repetitions
does not improve the precision of the measurement. Secondly, measuring the
training times is delicate as they must be taken in a controlled environment with
a single thread executions. All time measurements are done in a single thread
process in order to attain a clear over all estimation of the total computational
resources needed.

Figure 4 represents the average generalization accuracy obtained by each
model (vertical axis) with respect to the corresponding training time required to
train the models (horizontal axis) represented in logarithmic scale. The standard
deviation of the accuracy is represented by a shaded region around the mean.
The numerical figures for these plots are also presented in Table 1 for the different
values of tp and training size for the ensemble (left part of the table) and single
SVM respectively (right part).

The main observation that we extract from these plots is that for a fixed
training time budget, the ensemble consistently outperforms the single SVM.
The differences between their accuracies is specially significant for the cases
with limited time budgets (< 100s). Comparing maximum scores, regardless
of the training time, we observe that the ensemble has the highest score in 3
datasets: Adult, Twonorm and Ringnorm, while the SVM has the highest score
in the other 3. However, the highest scores of the SVM are always achieved
for Ntrain = 10000, which involve very large training times (all above 10000s).
Comparing the training times in these datasets of the highest scores achieved by
each model, we observe that the SVM training time is 7.6, 36.8 and 6.6 higher
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Dataset SVM Ensemble Single SVM

tp Score Time (s) Ntrain Score Time (s)

Magic04 0.010 82.82±0.63 6.40±0.20 200 80.65±1.51 4.80±0.37
0.025 84.72±0.31 22.54±1.28 500 83.27±0.76 25.81±2.44
0.050 85.34±0.31 77.34±0.47 1000 84.60±0.34 102.87±1.18
0.100 85.80±0.29 306.35±3.05 2000 85.41±0.27 437.49±57.67
0.200 86.10±0.38 1462.35±118.66 3500 85.88±0.21 1445.34±53.12
0.250 86.30±0.23 1991.58±13.51 5000 86.14±0.20 3145.13±129.61

10000 86.58±0.21 15127.35±514.01

Bank 0.010 88.33±0.05 7.13±0.03 200 88.03±0.90 5.68±0.11
0.025 89.29±0.40 26.84±0.20 500 88.86±0.53 28.44±1.08
0.050 89.89±0.20 92.52±0.33 1000 89.29±0.41 102.69±1.55
0.100 89.93±0.18 341.74±1.84 2000 89.65±0.25 392.08±7.23
0.200 89.83±0.27 1304.53±9.86 3500 89.72±0.24 1190.67±19.23
0.250 89.90±0.22 2023.25±30.18 5000 89.76±0.17 2503.75±70.17

10000 90.02±0.11 12543.61±64.57

Adult 0.010 81.35±1.22 12.51±0.10 200 80.05±1.36 10.50±0.10
0.025 83.64±0.35 54.97±0.25 500 82.41±0.58 58.12±1.46
0.050 84.35±0.28 199.76±0.58 1000 83.62±0.38 227.98±8.40
0.100 84.80±0.27 774.11±6.40 2000 84.08±0.34 967.83±34.18
0.200 84.95±0.26 3285.41±36.97 3500 84.47±0.16 3654.76±137.48
0.250 85.07±0.29 5428.58±45.47 5000 84.69±0.15 9027.30±833.47

10000 - -

Twonorm 0.010 97.79±0.08 5.69±0.02 200 97.31±0.43 3.71±0.04
0.025 97.79±0.08 16.91±0.07 500 97.52±0.15 15.73±0.08
0.050 97.80±0.08 52.51±0.12 1000 97.53±0.12 55.07±0.82
0.100 97.79±0.07 185.27±0.31 2000 97.60±0.09 204.13±1.66
0.200 97.80±0.10 667.53±4.54 3500 97.62±0.06 575.05±10.08
0.250 97.80±0.08 1008.01±7.60 5000 97.62±0.05 1156.25±10.82

10000 97.75±0.11 4819.12±37.73

Threenorm 0.010 86.87±0.22 6.47±0.04 200 85.10±1.14 4.92±0.06
0.025 87.13±0.14 22.15±0.07 500 86.41±0.66 22.90±0.78
0.050 87.59±0.21 73.63±0.97 1000 87.29±0.44 107.42±7.76
0.100 88.14±0.22 287.44±3.79 2000 87.66±0.43 403.86±34.77
0.200 88.57±0.14 1142.24±19.12 3500 88.32±0.20 1159.19±17.81
0.250 88.58±0.16 1806.76±16.54 5000 88.46±0.22 2456.30±48.17

10000 88.78±0.18 11923.65±273.75

Ringnorm 0.010 98.47±0.14 6.60±0.03 200 98.24±0.15 5.81±0.07
0.025 98.54±0.12 20.44±0.06 500 98.30±0.25 21.06±2.08
0.050 98.53±0.12 63.19±0.27 1000 98.28±0.30 69.25±0.59
0.100 98.52±0.15 223.34±2.53 2000 98.46±0.15 251.93±0.49
0.200 98.51±0.11 808.90±3.21 3500 98.49±0.12 733.09±8.12
0.250 98.51±0.12 1238.11±3.64 5000 98.49±0.16 1459.79±8.94

10000 98.51±0.09 6163.33±75.59
Table 1. Average scores and training times of Ensemble and Single SVM.
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Fig. 4. Accuracy comparison between Structured Subbagging and single SVM. The
vertical axis represents the score, the horizontal axis represents the training time in
logarithmic scale. The shaded region represents the standard deviation of the scores.

that the time for the best accuracy of the ensemble for Magic04, Bank and
Threenorm respectively (see Table 1). In any case, the difference between the
best accuracies of each method in the different datasets are rather small (except
maybe in Adult in which we could not run the Ntrain = 10000 for the single
SVM) with a clear advantage of the proposed ensemble in terms of training
speed.

Another interesting observation that can be made from Figure 4 is that in four
out of the six problems the accuracy of the ensemble improves when the value of
tp increases. In the other two datasets, Twonorm and Ringnorm, the ensemble
achieves a similar accuracy for all values of tp. This tendency to achieve better
accuracies for higher values of tp indicates that the accuracy of the ensemble
benefits from training the base models on larger training sets despite of the fact
that less base models are combined. Note that, in this experiment, ensembles for
all values of tp have converged before reaching the given number for combined
combined models. Hence, the differences in accuracy are not caused by lack of
convergence of the models.
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5 Conclusions

In this paper a novel ensemble of SVMs is presented. The proposed model creates
a diverse set of simple SVMs using disjoint subsets of the training set and using
different hyper-parameters. We show that the proposed method is more efficient
to train computationally than a single SVM trained on the complete dataset.
In addition the computational cost can be tuned using two hyper-parameters of
the model: the number of subensembles and the fraction of training instances to
use for each SVM of the ensemble. We carried out an extensive analysis of the
model with respect to these hyper-parameters that showed the generalization
accuracy of the model for any given computational budget is better than that
of a single SVM.
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