
Efficient Search of Multiple Neural Architectures
with Different Complexities via Importance

Sampling

Yuhei Noda1[0000−0001−9646−2506], Shota Saito1,2[0000−0002−9863−6765], and
Shinichi Shirakawa1[0000−0002−4659−6108]

1 Yokohama National University, Kanagawa, Japan
nodayuhei@gmail.com, saito-shota-bt@ynu.jp,

shirakawa-shinichi-bg@ynu.ac.jp
2 SkillUp AI Co., Ltd., Tokyo, Japan

s_saito@skillupai.com

Abstract. Neural architecture search (NAS) aims to automate archi-
tecture design processes and improve the performance of deep neural
networks. Platform-aware NAS methods consider both performance and
complexity and can find well-performing architectures with low computa-
tional resources. Although ordinary NAS methods result in tremendous
computational costs owing to the repetition of model training, one-shot
NAS, which trains the weights of a supernetwork containing all candi-
date architectures only once during the search process, has been reported
to result in a lower search cost. This study focuses on the architecture
complexity-aware one-shot NAS that optimizes the objective function
composed of the weighted sum of two metrics, such as the predictive
performance and number of parameters. In existing methods, the archi-
tecture search process must be run multiple times with different coeffi-
cients of the weighted sum to obtain multiple architectures with differ-
ent complexities. This study aims at reducing the search cost associated
with finding multiple architectures. The proposed method uses multiple
distributions to generate architectures with different complexities and
updates each distribution using the samples obtained from multiple dis-
tributions based on importance sampling. The proposed method allows
us to obtain multiple architectures with different complexities in a single
architecture search, resulting in reducing the search cost. The proposed
method is applied to the architecture search of convolutional neural net-
works on the CIAFR-10 and ImageNet datasets. Consequently, compared
with baseline methods, the proposed method finds multiple architectures
with varying complexities while requiring less computational effort.

Keywords: Neural Architecture Search · Convolutional Neural Network
· Importance Sampling · Natural Gradient

1 Introduction

Architecture design is a key factor in accelerating the performance of deep neural
networks (DNNs); however, the associated process is arduous for practitioners.

ar
X

iv
:2

20
7.

10
33

4v
1

 [
cs

.N
E

]
 2

1
Ju

l 2
02

2

2 Y. Noda et al.

Neural architecture search (NAS), aimed at automating the design of DNN ar-
chitectures, has been actively studied in recent years [7]. Popular methods often
optimize architectures using evolutionary algorithms [16,21] or reinforcement
learning [27]. These early NAS methods optimize the architecture in hyperpa-
rameter optimization frameworks, which requires a significant amount of time for
architecture search due to the repetition of model training. One-shot NAS, e.g.,
[12,15,20], is a promising approach for reducing the computational cost of NAS.
One-Shot NAS simultaneously optimizes the weight and architecture parameters
considering an extensive network (supernetwork) that includes many candidate
architectures as its subnetworks. Because the weight parameters are shared be-
tween subnetworks, one-shot NAS optimizes the weights in the supernetwork
only once during the search process, thus significantly reducing the search cost.

DNNs are often implemented in devices with limited computational resources,
such as embedded and mobile devices. In such cases, NAS methods are required
to find an architecture with good prediction performance and low computation
and memory usage. Therefore, NAS methods have been developed for optimizing
the prediction performance and architecture complexity, such as FLOPs, latency,
and the number of weight parameters. The method proposed in [24] includes a
term related to the latency in the objective function and successfully finds a
highly accurate architecture while suppressing latency. This study focuses on
the one-shot NAS method proposed in [17], which introduces a regularization
of the architecture complexity. This method uses binary variables to represent
the architecture and a multivariate Bernoulli distribution as the law of binary
variables. The architecture search is performed by updating the parameters of
the Bernoulli distribution to minimize the weighted sum of the predictive loss
and the regularization term related to the complexity of the architecture. Al-
though this approach reduces the number of connections in a densely connected
convolutional neural network (CNN), the architecture search space is limited
because it must represent the architecture using binary variables. This implies
that directly employing the state-of-the-art architecture search space represented
by categorical variables [15,28] is not straightforward. Additionally, obtaining
multiple architectures with different complexities requires repeated architecture
searches with different regularization coefficients in the objective function, which,
in turn, increases computational cost.

This study extends the method proposed in [17] to overcome the limitation
described above. We adopt categorical distributions as the architecture distribu-
tion and propose a regularization term for the architecture complexity. We also
derive the analytical natural gradient of the proposed regularization term. There-
after, we propose an efficient search method to simultaneously obtain multiple
architectures with different complexities in a single architecture search using im-
portance sampling. The proposed method is then evaluated by applying it to the
architecture search of CNNs on the CIFAR-10 [11] and ImageNet [6] datasets.
The experimental results indicate that the proposed method can obtain multi-
ple architectures with different complexities in a single search, and its prediction
performance is comparable with that demonstrated by baseline methods.

Efficient Search of Multiple Neural Architectures with Different Complexities 3

2 Probabilistic Model-Based One-Shot NAS with
Complexity Regularization

This section details the one-shot NAS framework using the architecture com-
plexity regularization proposed in [17]. We denote the DNN parameterized by
architecture parameters M and weights W as φ(M,W) and assume that φ is
differentiable with respect to (w.r.t.) W but non-differentiable w.r.t. M . The
architecture parameters M determine the types of connections and operations
in DNN. The architecture defined by M corresponds to a subnetwork in the su-
pernetwork and shares weights in the operations between different architectures.

Let us consider the optimization of W and M to minimize both the loss, for
instance, the cross-entropy loss, and the regularization metric w.r.t. the complex-
ity of the architecture. We denote the loss for the dataset D and the regulariza-
tion term as L(M,W,D) andR(M), respectively. In [17], the weighted sum of the
two terms, F(M,W) = L(M,W,D)+ εR(M), has been adopted as the objective
function, where ε represents the regularization coefficient that balances the two
terms. However, because the architecture parameters M are non-differentiable
and often discrete, we cannot optimize M by a gradient method. To relax the
problem, we introduce the parametric probability distribution of M and denote
it as Pθ(M), where θ denotes the distribution parameters. Instead of directly op-
timizing F(M,W), we optimize θ by minimizing the expected loss of F(M,W)
under Pθ(M) as G(θ,W) = EPθ [L(M,W,D)] + εEPθ [R(M)].

As the objective function G(θ,W) is differentiable w.r.t. both W and θ, we
can optimize it by a gradient method. We update the distribution parameters θ
to the natural gradient direction [2], which is the steepest direction when consid-
ering the Kullback–Leibler divergence as the pseudo-distance in the distribution
parameter space, and it is given by the product of the inverse of the Fisher in-
formation matrix (FIM) and Euclidean gradient. We use the vanilla gradient to
optimize W as usual DNN training. The gradients w.r.t. W and θ are given by

∇WG(θ,W) = EPθ [∇WL(M,W,D)] (1)

∇̃θG(θ,W) = EPθ
[
L(M,W,D)∇̃θ lnPθ(M)

]
+ ε∇̃θEPθ [R(M)] , (2)

where ∇̃θ = F (θ)−1∇θ represents the natural gradient operator. Here, F (θ)
indicates the FIM of Pθ(M). Optimizing θ using (2) with ε = 0 operates in a
manner similar to information geometric optimization [14], which is a unified
framework for probabilistic model-based evolutionary algorithms. In most cases,
it is difficult to compute the gradients (1) and (2). Therefore, the gradients
(1) and (2) are approximated using Monte Carlo methods with λ architecture
parameters M1,M2, . . . ,Mλ sampled from Pθ(M) as follows:

∇WG(θ,W) ≈ 1

λ

λ∑
i=1

∇WL(Mi,W,D) (3)

∇̃θG(θ,W) ≈ 1

λ

λ∑
i=1

L(Mi,W,D)∇̃θ ln pθ(Mi) + ε∇̃θEPθ [R(M)] . (4)

4 Y. Noda et al.

Because the scale of the loss affects the magnitude of the natural gradient,
we transform L(Mi,W,D) into the quantile-based utility value under Pθ(M), as
done in [14]. The probability of sampling a solution with a loss value less than
or equal to L(Mi,W,D) is estimated as q̄6θ (Mi) = λ−1

∑λ
k=1 I{L(Mk,W,D) 6

L(Mi,W,D)}, where I{·} denotes the indicator function. We use the utility func-
tion of ŝi = w(q̄6θ (Mi)), instead of L(Mi,W,D), to update the distribution pa-
rameters θ.3 Specifically, we use the following function for w.

w(x) =


−2 (x 6 0.25)

0 (0.25 < x 6 0.75)

2 (0.75 < x)

Consequently, the update rule for θ at the t-th iteration is given by

θ(t+1) = θ(t) − η

(
1

λ

λ∑
i=1

ŝi∇̃θ ln pθ(Mi) + ε∇̃θEPθ [R(M)]

)
, (5)

where η represents the learning rate for θ. We note that the weights W can be
updated using any stochastic gradient descent (SGD) method with (3).

3 Proposed Method

In [17], the binary vector has been adopted as the architecture parameter. How-
ever, state-of-the-art architecture search spaces, such as [12,15], are defined using
categorical variables. In addition, repeating the architecture search is required
to obtain multiple architectures with different complexities. We first introduce
the categorical distribution as Pθ(M) in the framework considered in [17]. Subse-
quently, we propose simultaneously optimizing multiple categorical distributions,
each corresponding to a different regularization coefficient, to obtain multiple
architectures with varying complexities in a single search. Each categorical dis-
tribution is updated by exploiting samples from other distributions to realize an
efficient search process.

3.1 Introducing Categorical Distributions

The DNN architecture is represented by the following D dimensional categor-
ical variables: h = (h1, . . . , hD). The d-th categorical variable hd possesses Kd

candidate categories and determines operations or connections in the DNN.
For instance, one can determine the kernel size of a convolution layer. We
denote categorical variables by one-hot vectors as M = (m1, . . . ,mD), where
md = (md,1, . . . ,md,Kd)T ∈ {0, 1}Kd . When hd is the k-th category, md,k = 1,

3 This utility definition does not assume the possibility of sampling architectures with
the same loss value. Although it could happen in our case, we use this utility defini-
tion for simplicity. A rigorous definition can be found in [14,19].

Efficient Search of Multiple Neural Architectures with Different Complexities 5

and other elements of md are zero. We consider the categorical distribution as
the distribution of the architecture parameters, which is described as Pθ(M) =∏D
d=1

∏Kd
k=1 (θd,k)

md,k , where θd,k ∈ [0, 1] is the probability of being md,k = 1.
We choose the number of weight parameters as the complexity metric for

the regularization term R(M) to penalize the complicated architecture. Let us
denote the number of weight parameters in the operation corresponding to md,k

as cd,k; then, we define the regularization term as R(M) =
∑D
d=1

∑Kd
k=1 cd,kmd,k.

The expected value of R(M) under Pθ(M) is described as

EPθ [R(M)] =

D∑
d=1

Kd∑
k=1

cd,kθd,k . (6)

It should be noted that the distribution parameter of the last category can be
given by θd,Kd = 1 −

∑Kd−1
k=1 θd,k owing to

∑Kd
k=1 θd,k = 1; consequently, we

can introduce the notation of the distribution parameter vector without the last
category’s parameter as θ̄d = (θd,1, θd,2, . . . , θd,Kd−1)T.

Next, we derive the natural gradient of EPθ [R(M)]. The vanilla gradient of
EPθ [R(M)] w.r.t the d-th distribution parameters θ̄d is given by∇θ̄dEPθ [R(M)] =
c̄d − cd,Kd1, where c̄d = (cd,1, cd,2, . . . , cd,Kd−1)T, and 1 represents the all-
ones vector. The FIM is a block diagonal matrix because our categorical vari-
ables are independent. The inverse of the d-th block in the FIM is given by
F (θ̄d)

−1 = diag(θ̄d)− θ̄dθ̄T
d . Then, we can obtain the natural gradient of (6) as

∇̃θ̄dEPθ [R(M)] = c̄d� θ̄d−
(
c̄Td θ̄d + cd,Kd(1− θ̄T

d 1)
)
θ̄d = (c̄d −Qd1)� θ̄d, where

� indicates the element-wise product and Qd =
∑Kd
k=1 cd,kθd,k. According to [1],

the natural gradient of the log-likelihood is given by ∇̃θ̄d lnPθ(M) = m̄d − θ̄d,
where m̄d = (md,1, . . . ,md,Kd−1)T. We then obtain the update rule of θ̄d as

θ̄
(t+1)
d = θ̄

(t)
d − η

(
1

λ

λ∑
i=1

ŝi(m̄
(i)
d − θ̄

(t)
d) + ε (c̄d −Qd1)� θ̄(t)

d

)
, (7)

where m̄(i)
d indicates the d-th one-hot vector without the last element of the i-th

sample. Additionally, θ(t+1)
d,Kd

= 1−
∑Kd−1
k=1 θ

(t+1)
d,k is given by

θ
(t+1)
d,Kd

= θ
(t)
d,Kd

− η

(
1

λ

λ∑
i=1

ŝi

(
m

(i)
d,Kd

− θ(t)
d,Kd

)
+ ε (cd,Kd −Qd) θ

(t)
d,Kd

)
. (8)

According to (7) and (8), we can replace θ̄d in (7) with θd = (θd,1, θd,2, . . . , θd,Kd)T

and update the distribution parameter θd using the replaced update rule.

3.2 Searching Multiple Architectures via Importance Sampling

In existing methods [3,17], a search for the architecture must be performed mul-
tiple times by altering the regularization coefficient to obtain multiple archi-
tectures with different complexities. Herein, we propose a method for finding

6 Y. Noda et al.

Algorithm 1 Architecture Search Procedure of the Proposed Method
Require: Dataset D = {DW ,Dθ}
1: Initialize W and θ(1), θ(2), . . . , θ(N)

2: for t = 1, . . . , TW do
3: Sample mini-batch D̃W from DW
4: Sample λ architectures from uniform distribution and update W using (3)
5: end for
6: for t = 1, . . . , Tθ do
7: Sample mini-batch D̃θ from Dθ
8: Sample λ architectures from Pθ(M) and update θ(n) for n = 1, . . . , N by (10)
9: end for

multiple architectures within a single search, thereby reducing the search cost.
The idea is to jointly update the multiple distributions corresponding to different
complexities by exploiting the samples drawn from other distributions via impor-
tance sampling. Let us consider N distribution parameters, θ = (θ(1), . . . , θ(N)),
corresponding to different regularization coefficients ε1, . . . , εN . The objective
function of each distribution is defined by G(θ(n),W) = EP

θ(n)
[L(M,W,D)] +

εnEP
θ(n)

[R(M)]. We sample λ architecture parameters from the mixture distri-
bution Pθ(M) = N−1

∑N
n=1 Pθ(n)(M) at each iteration and update each distri-

bution using the samples obtained from the mixture. Based on the importance
sampling technique used in [18,19], the probability q̄6

θ(n)(Mi) is estimated by

q̄6
θ(n)(Mi) =

1

λ

λ∑
k=1

r
(n)
k I {L (Mk,W,D) 6 L (Mi,W,D)} , (9)

where r(n)
k =

P
θ(n) (Mk)

Pθ(Mk) indicates the likelihood ratio. Then, the utility of ŝ(n)
i =

w(q̄6
θ(n)(Mi)) is used to update θ(n). Similarly, the natural gradient can be ap-

proximated via importance sampling, and we obtain the update rule of θ(n)
d as

θ
(n)
d ← θ

(n)
d − η

(
1

λ

λ∑
i=1

ŝ
(n)
i r

(n)
i

(
m

(i)
d − θ

(n)
d

)
+ εn (cd −Qd1)� θ(n)

d

)
. (10)

Here, we ignore the notation of the time step t for simplicity.

3.3 Overall Algorithm

The architecture search procedure followed by the proposed method is presented
in Algorithm 1. The dataset D is divided into DW and Dθ, and the resulting
datasets are used to update the weights and distribution parameters, respec-
tively. Although the method in [17] jointly optimizes the weights W and dis-
tribution parameters θ, the proposed method separates the optimization of W
and θ. That is, we first optimize W under a uniform distribution and then opti-
mize θ using the trained weights W . A separate (two-stage) optimization of the

Efficient Search of Multiple Neural Architectures with Different Complexities 7

weight and architecture parameters has been conducted in recent NAS-related
studies [4,8,10], and the approach has demonstrated promising performance.

In the optimization phase of W , λ architecture parameters M1, . . . ,Mλ are
sampled from a discrete uniform distribution, and the weight parameters of
W are updated using (3). This update of W is repeated TW times. Then, in
the optimization phase of θ, λ architecture parameters M1, . . . ,Mλ are sam-
pled from the mixture distribution Pθ(M), and the distribution parameters
θ = (θ(1), . . . , θ(N)) for different regularization coefficients ε1, . . . , εN are up-
dated using (10). Following the architecture search, we determine the final ar-
chitectures by M∗

(n) = argmaxM Pθ(n)(M) for n = 1, . . . , N and obtain multiple
architectures with different complexities. Then, we retrain the weights of the
final architecture M∗

(n) from scratch using the dataset D.

4 Experiment and Results

This section evaluates the proposed method on image classification tasks. Our
algorithms were run using NVIDIA Tesla V100 GPUs (32 GB memory).

4.1 CIFAR-10

Experimental Settings The CIFAR-10 [11] dataset contains 50,000 training
and 10,000 test images, and each image is labeled using one class out of 10. We
adopt the cell-based CNN architecture search space used in [1,15] and follow
the experimental setting in [1]. In the architecture search phase, we stack six
normal and two reduction cells and set the number of channels in the first cell
to 16. The architectures of the normal and reduction cells are searched by NAS
algorithms. The training data D are divided into DW and Dθ, which are then
used to update the weights and distribution parameters, respectively. Both mini-
batch sizes |D̃W | and |D̃θ| are set to 64. We set the sample size of the architecture
λ to 2. The weights and distribution parameters are both updated for 200 epochs,
respectively, i.e., TW = Tθ = 200. For updating the weightsW , we use SGD with
a momentum of 0.9 and set the weight decay to 3×10−4. According to the cosine
schedule [13], the learning rate gradually decreases from 0.025 to 0. For updating
the distribution parameters θ, we set the learning rate to ηθ = (

∑D
d=1Kd)

−1 =
1/180 and the regularization coefficient εn to {0.0, 0.1, 0.3, 0.5}. In the retraining
phase, we set the number of normal cells to 10 and the number of channels in
the first cell to 50. The other retraining settings are the same as [1].

We compare the proposed method with two baseline one-shot NAS meth-
ods. The first method, presented in Algorithm 2 and termed Method 1 (Si-
multaneous), is a straightforward extension of the method considered in [17].
This algorithm simultaneously updates the weights and distribution parameters
and performs the architecture search several times with different regularization
coefficients ε to obtain multiple architectures. The second method, presented
in Algorithm 3 and termed Method 2 (Separate), separates the weight opti-
mization and architecture search, similar to the proposed method, but performs

8 Y. Noda et al.

Algorithm 2 Method 1 (Simultane-
ous)
Require: Dataset D = {DW ,Dθ}
1: Initialize θ(1), θ(2), . . . , θ(N)

2: for n = 1, . . . , N do
3: Initialize W
4: for t = 1, . . . , T do
5: Sample mini-batch D̃W from DW

6: Sample λ architectures from
Pθ(n)(M) and updateW using (3)

7: Sample mini-batch D̃θ from Dθ
8: Sample λ architectures from

Pθ(n)(M) and update θ(n) by (7)
9: end for
10: end for

Algorithm 3 Method 2 (Separate)
Require: Dataset D = {DW ,Dθ}
1: Initialize W and θ(1), θ(2), . . . , θ(N)

2: for t = 1, . . . , TW do
3: Sample mini-batch D̃W from DW
4: Sample λ architectures from uni-

form distribution and update W us-
ing (3)

5: end for
6: for n = 1, . . . , N do
7: for t = 1, . . . , Tθ do
8: Sample mini-batch D̃θ from Dθ
9: Sample λ architectures from

Pθ(n)(M) and update θ(n) by (7)
10: end for
11: end for

the architecture search several times with different ε. The second method is
advantageous compared to Method 1 (Simultaneous) because it performs the
weight optimization only once; however, it is still inefficient compared to the pro-
posed method because it requires multiple runs during the architecture search
phase. The experiment uses the same number of epochs to optimize the weights
and distribution parameters in a single search as in the proposed method, i.e.,
T = TW = Tθ = 200 in Algorithms 2 and 3. Moreover, we perform the random
search as the simplest baseline, which randomly samples architectures from the
search space and retrains them. We sample architectures with weight parameters
of 2.5M (million), 3.0M, 4.0M, and 5.0M. We reported the median values among
three independent trials for all algorithms.

Results and Discussions Figure 1 and Table 1 show the test error of the ob-
tained architectures and search cost, respectively. The proposed method achieves
better accuracies than those obtained by Method 1 (Simultaneous). In Method
1, the weight and distribution parameters are updated simultaneously. As the
convergence speed of the operations in the cells differs, the distribution param-
eters converge to select the architecture that minimizes the loss early, resulting
in a search failure. This difficulty associated with one-shot NAS during simulta-
neous optimization of weights and architectures has been pointed out in [26,5].
In comparison with Method 1, the proposed method selects well-performed ar-
chitectures because all operations are equally selected and trained during the
weight training stage. Table 1 shows that the proposed method obtains four ar-
chitectures in approximately one-fifth of the search time required by Method 1.

Efficient Search of Multiple Neural Architectures with Different Complexities 9

1 2 3 4 5 6 7

Number of Parameters [M]

2.5

3.0

3.5

4.0

4.5

5.0

5.5

T
es

t
E

rr
or

[%
]

Method 1 (simultaneous)

Method 2 (separate)

Proposed Method

RANDOM

Fig. 1. Relationship between the number of param-
eters and test error in CIFAR-10.

Table 1. Search cost to obtain
4 architectures in CIFAR-10.
The search cost excludes the
architecture retraining cost.

Method Search Cost
[GPU hours]

Method 1 16.4(Simultaneous)
Method 2 5.2(Separate)
Proposed 3.4Method

While Method 1 requires as many searches as the number of architectures to be
obtained, the proposed method obtains multiple architectures in a single search.

Comparing the proposed method with Method 2 (Separate), the proposed
method obtains multiple architectures with different parameters without caus-
ing a degradation of the prediction accuracy. Both methods require a single
optimization of the weights, but the proposed method updates multiple distri-
bution parameters using the architecture samples from the mixture distribution.
Therefore, the proposed method does not need to repeat the architecture search.
Consequently, the proposed method reduces the search cost compared to Method
2. Finally, the architectures obtained by the proposed method exhibit better pre-
diction accuracies than those obtained via a random search, suggesting that the
architecture search is effective.

4.2 ImageNet

Experimental Settings ImageNet [6] is a large-scale image classification dataset
consisting of 1,000 classes containing approximately 1.28 million training im-
ages and 50,000 validation images. We use the CNN architecture search space
proposed in ProxylessNAS [3] and evaluate the performance of the obtained
architectures using the validation data. For the training data, we follow the
pre-processing and data augmentation methods in [10].

During the search phase, we update the distribution parameters θ with 50,000
randomly selected images from the training data D and update the weights
W with the remaining training data. We update the weights and distribution
parameters for 60 epochs. We set the mini-batch sizes |D̃W | and |D̃θ| to 350 and
the number of samples λ to 8. For updating the weights W , we use SGD with a
momentum of 0.9 and set the weight decay to 5× 10−5. According to the cosine
schedule [13], the initial learning rate decreases from 0.068 to 0. For updating the
distribution parameters, we set the learning rate and regularization coefficient
to ηθ = (

∑D
d Kd)

−1 = 1/141 and εn ∈ {0.0, 0.5, 1.0}, respectively.

10 Y. Noda et al.

Table 2. Result of ImageNet. N represents the number of architectures to be searched.
The values of the existing methods are referred from the literature.

Method Params [M] Top-1 Accuracy [%] Search Cost [GPU hours]

MnasNet-A2 [23] 4.8 75.6 40,000N
ProxylessNAS [3] 4.4 75.3 200N
GreedyNAS-C [25] 4.7 76.2 168+24N
SGNAS-C [10] 4.7 76.2 285
Proposed method (ε = 1.0) 4.3 75.8 164

MnasNet-A3 [23] 5.2 76.7 40,000N
GreedyNAS-B [25] 5.2 76.8 168+24N
SGNAS-B [10] 5.5 76.8 285
Proposed method (ε = 0.5) 5.4 76.8 164

SCARLET-A [4] 6.7 76.9 240+48N
GreedyNAS-A [25] 6.5 77.1 168+24N
SGNAS-A [10] 6.0 77.1 285
Proposed method (ε = 0.0) 6.5 77.2 164

In the retraining phase, we update the weights for 350 epochs with a mini-
batch size of 768. We use RMSProp and set the weight decay to 1×10−5. In the
first five epochs, the learning rate increases linearly from 0 to 0.192. Thereafter,
the learning rate gradually decreases by multiplying 0.963 every three epochs. We
use the label smoothing technique [22] and introduce the squeeze and excitation
module [9] into the MBConv operations. During inference, the model exponential
moving average (EMA) is applied to calculate the prediction accuracy of the test
data. These retraining settings are based on [10].

Results and Discussions Table 2 shows the results of the proposed method
and the existing NAS methods. The search cost indicates the cost to obtain N
optimized architectures. The proposed method (ε = 1.0) demonstrates a pre-
diction accuracy of 75.8% with 4.4M parameters. This accuracy is worse than
that of the existing methods; however, the number of parameters is lower than
that in the existing methods. The prediction accuracies of the proposed method
(ε = 0.5 and 0.0) are 76.8% and 77.2%, respectively, indicating that these pre-
diction accuracies are equal to or superior to those of existing methods. The
search cost of the proposed method is lower than that of existing NAS methods.
MnasNet and ProxylessNAS require N architecture searches to obtain N archi-
tectures with varying complexities, similar to Method 1 described in Section 4.1.
GreedyNAS and SCARLET-NAS perform the architecture search multiple times
after optimizing the supernet weights, similar to Method 2 described in Section
4.1. Similar to the proposed method, SGNAS can obtain multiple structures
in a single architecture search. However, SGNAS needs to train a DNN as the
structure generator, which is more expensive than the proposed method. Our
method results in a lower search cost compared with that in existing methods

Efficient Search of Multiple Neural Architectures with Different Complexities 11

because it simultaneously updates multiple distributions by sharing the samples
via importance sampling and realizes an efficient architecture search.

5 Conclusion

This paper has proposed a method for one-shot NAS that can efficiently find
multiple architectures with different architecture complexities. We extended the
method proposed in [17] to be able to use categorical variables and have derived
the natural gradient of the regularization term. Subsequently, we have proposed
an efficient method to search multiple architectures via importance sampling.
The experimental results produced using CIFAR-10 and ImageNet show that the
proposed method obtains multiple well-performed architectures with different
complexities by incurring less computational cost than the baseline methods.
Most NAS methods use fixed training hyperparameters, despite their impact
on the performance. A possible future work could be developing a method for
the joint optimization of both the architecture and training parameters, further
improving the NAS performance.

Acknowledgments This work was partially supported by NEDO (JPNP18002),
JSPS KAKENHI Grant Number JP20H04240, and JST PRESTO Grant Num-
ber JPMJPR2133.

References

1. Akimoto, Y., Shirakawa, S., Yoshinari, N., Uchida, K., Saito, S., Nishida, K.: Adap-
tive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search.
In: International Conference on Machine Learning (ICML) (2019)

2. Amari, S.: Natural Gradient Works Efficiently in Learning. Neural Computation
10(2), 251–276 (1998)

3. Cai, H., Zhu, L., Han, S.: ProxylessNAS: Direct Neural Architecture Search on Tar-
get Task and Hardware. In: International Conference on Learning Representations
(ICLR) (2019)

4. Chu, X., Zhang, B., Li, Q., Xu, R., Li, X.: SCARLET-NAS: Bridging the Gap Be-
tween Scalability and Fairness in Neural Architecture Search. In: ICCV Workshops
(2021), https://arxiv.org/abs/1908.06022

5. Chu, X., Zhou, T., Zhang, B., Li, J.: Fair DARTS: Eliminating Unfair Advantages
in Differentiable Architecture Search. In: 16th Europoean Conference on Computer
Vision (ECCV) (2020)

6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-
Scale Hierarchical Image Database. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2009)

7. Elsken, T., Metzen, J.H., Hutter, F.: Neural Architecture Search: A Survey. Journal
of Machine Learning Research 20(55), 1–21 (2019)

8. Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single Path
One-Shot Neural Architecture Search with Uniform Sampling. In: 16th Europoean
Conference on Computer Vision (ECCV) (2020)

https://arxiv.org/abs/1908.06022

12 Y. Noda et al.

9. Hu, J., Shen, L., Sun, G.: Squeeze-and-Excitation Networks. In: IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2018)

10. Huang, S., Chu, W.: Searching by Generating: Flexible and Efficient One-Shot NAS
with Architecture Generator. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2021)

11. Krizhevsky, A.: Learning Multiple Layers of Features From Tiny Images. Tech.
rep., Department of Computer Science, University of Toronto (2009)

12. Liu, H., Simonyan, K., Yang, Y.: DARTS: Differentiable Architecture Search. In:
International Conference on Learning Representations (ICLR) (2019)

13. Loshchilov, I., Hutter, F.: SGDR: Stochastic Gradient Descent with Warm
Restarts. In: International Conference on Learning Representations (ICLR) (2017)

14. Ollivier, Y., Arnold, L., Auger, A., Hansen, N.: Information-Geometric Optimiza-
tion Algorithms: A Unifying Picture via Invariance Principles. Journal of Machine
Learning Research 18(18), 1–65 (2017)

15. Pham, H., Guan, M.Y., Zoph, B., Le, Q.V., Dean, J.: Efficient Neural Architecture
Search via Parameter Sharing. In: International Conference on Machine Learning
(ICML) (2018)

16. Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y.L., Tan, J., Le, Q.V., Ku-
rakin, A.: Large-Scale Evolution of Image Classifiers. In: International Conference
on Machine Learning (ICML) (2017)

17. Saito, S., Shirakawa, S.: Controlling Model Complexity in Probabilistic Model-
Based Dynamic Optimization of Neural Network Structures. In: 28th International
Conference on Artificial Neural Networks (ICANN) (2019)

18. Shirakawa, S., Akimoto, Y., Ouchi, K., Ohara, K.: Sample Reuse in the Covariance
Matrix Adaptation Evolution Strategy Based on Importance Sampling. In: Genetic
and Evolutionary Computation Conference (GECCO) (2015)

19. Shirakawa, S., Akimoto, Y., Ouchi, K., Ohara, K.: Sample Reuse via Impor-
tance Sampling in Information Geometric Optimization. arXiv:1805.12388 (2018),
https://arxiv.org/abs/1805.12388

20. Shirakawa, S., Iwata, Y., Akimoto, Y.: Dynamic Optimization of Neural Network
Structures Using Probabilistic Modeling. In: 32nd AAAI Conference on Artificial
Intelligence (AAAI) (2018)

21. Suganuma, M., Shirakawa, S., Nagao, T.: A Genetic Programming Approach to De-
signing Convolutional Neural Network Architectures. In: Genetic and Evolutionary
Computation Conference (GECCO) (2017)

22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Incep-
tion Architecture for Computer Vision. In: IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2016)

23. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., Le, Q.V.:
MnasNet: Platform-Aware Neural Architecture Search for Mobile. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

24. Wu, B., Dai, X., Zhang, P., Wang, Y., Sun, F., Wu, Y., Tian, Y., Vajda, P., Jia, Y.,
Keutzer, K.: FBNet: Hardware-Aware Efficient ConvNet Design via Differentiable
Neural Architecture Search. In: IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) (2019)

25. You, S., Huang, T., Yang, M., Wang, F., Qian, C., Zhang, C.: GreedyNAS: To-
wards Fast One-Shot NAS with Greedy Supernet. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2020)

26. Zhou, P., Xiong, C., Socher, R., Hoi, S.C.H.: Theory-Inspired Path-Regularized
Differential Network Architecture Search. In: Advances in Neural Information Pro-
cessing Systems (NeurIPS). vol. 33, pp. 8296–8307 (2020)

https://arxiv.org/abs/1805.12388

Efficient Search of Multiple Neural Architectures with Different Complexities 13

27. Zoph, B., Le, Q.V.: Neural Architecture Search with Reinforcement Learning. In:
International Conference on Learning Representations (ICLR) (2017)

28. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning Transferable Architectures
for Scalable Image Recognition. In: IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2018)

	Efficient Search of Multiple Neural Architectures with Different Complexities via Importance Sampling

