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Abstract. Medical image segmentation is one of the most fundamental
tasks concerning medical information analysis. Various solutions have
been proposed so far, including many deep learning-based techniques,
such as U-Net, FC-DenseNet, etc. However, high-precision medical im-
age segmentation remains a highly challenging task due to the exis-
tence of inherent magnification and distortion in medical images as well
as the presence of lesions with similar density to normal tissues. In
this paper, we propose TFCNs (Transformers for Fully Convolutional
denseNets) to tackle the problem by introducing ResLinear-Transformer
(RL-Transformer) and Convolutional Linear Attention Block (CLAB)
to FC-DenseNet. TFCNs is not only able to utilize more latent infor-
mation from the CT images for feature extraction, but also can cap-
ture and disseminate semantic features and filter non-semantic features
more effectively through the CLAB module. Our experimental results
show that TFCNs can achieve state-of-the-art performance with dice
scores of 83.72% on the Synapse dataset. In addition, we evaluate the
robustness of TFCNs for lesion area effects on the COVID-19 public
datasets. The Python code will be made publicly available on https:

//github.com/HUANGLIZI/TFCNs.

Keywords: Medical image segmentation · CNN-Transformers · Atten-
tion mechanism

1 Introduction

Medical image segmentation plays a critical role in clinical diagnosis and as-
sisting doctors to evaluate patient’s reactions to treatment. Various algorithms
based on convolutional neural networks (CNNs) [9] have been applied to image
segmentation. And with a U-shaped network design, U-Net [15] has achieved
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great success in various medical imaging applications. Following this technical
route, many algorithms have been developed for medical image and volume seg-
mentation, such as U-Net++ [27]. In order to solve the degradation problem,
He et al. proposed ResNets [5], which aims to simplify very deep networks by
introducing a residual block that sums two input signals. Then a new CNN ar-
chitecture called DenseNets [7] has been developed by the composition of dense
blocks and pooling operations. In FC-DenseNet [23], the up-sampling path was
introduced to restore the input resolution. Recently, inspired by the great success
of Transformers in the field of natural language processing (NLP) [3], researchers
have tried to introduce Transformers into the field of computer vision [10,26].
Vision transformer (ViT) [4] has been proposed to achieve object detection tasks.

Currently, there are two problems: 1). As shown in Fig.1, since the convolu-
tion operation collects information by layer, which leads to too much focus on
local feature information. In the field of medical image segmentation, the lack
of global information often leads to false category of segmentation. Therefore, a
visual transformer was introduced, which can reflect complex spatial transfor-
mations and long-distance feature dependencies, which are regarded as global
representations. Currently, although Chen et al. proposed Transunet [2] to solve
problems such as lack of high-level details. However, we found that the direct
feeding of CNN-style features into the transformer for recoding tends to bring
limited improvement. 2). In U-shape networks, the skip connection between en-
coder and decoder is crucial. However, semantic-independent features tend to
be fed to the decoder with direct transmission, which will interfere with im-
age segmentation. Our main motivation is how to preserve image features more
completely.

Fig. 1. Class activation maps in LeNet5 [9], ViT [4] and TFCNs by using the CAM
method [25]. In which we set a fixed value as the activation intensity threshold.

To tackle the problem 1), we utilize DenseBlocks to facilitate the propagation
of feature information to the transformer part while adding a residual structure
to the MLP to further effectively preserve the global representation information.
To tackle the problem 2), we decide to fuse spatial and channel attention on
the original skip connection to transmit information more efficiently. Our main
contributions are as follows:

1. A new deep neural network framework (TFCNs) is proposed, to the best
of our knowledge, which is the first network to introduce Transformers into
FC-DenseNet and improve the internal structure of Transformers.
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2. A general attention module CLAB (Convolutional Linear Attention Block)
is proposed to improve segmentation performance, which includes two types
of attentions: (a) attention over the spatial extent of image and (b) attention
over the CNN-style feature channels.

2 Related Work

In the field of semantic segmentation, FCNs [13] innovatively proposed a model
structure in the form of encoder-decoder. And to solve the problem of informa-
tion loss in the encoding process, it utilized the form of residual connection to
combine the encoding process. In addition to the semantic segmentation of real
objects, more and more attention has also been paid to medical image segmenta-
tion. Based on FCNs, U-Net [15] was proposed and applied to medical image seg-
mentation. This model makes use of a mutually symmetrical encoding-decoding
design. Another example was FC-DenseNet [8], where they extended the work
in DenseNets [7] by introducing the DenseBlock in the process of upsampling,
which not only alleviated the problem of dimensional explosion in the deep en-
coder but also retained contextual information better. Some Transformer-based
methods have also been proposed for semantic segmentation, object detection,
and instance segmentation, such as SETR, DETR [24,1]. Inspired by the pre-
vious breakthroughs, TransUNet [2] embedded the Transformers in the down-
sampling process to extract the information in the original image. More recently,
a Gated Axial-Attention model was proposed in MedT [17] to extend some exist-
ing attention-based schemes. There are also other variants to the Transformers
such as the Swin Transformer [12], which utilize a sliding window to limit self-
attention calculations to non-overlapping partial windows.

3 Method

3.1 Overall structure of TFCNs

As described in the first section, the conventional U-shaped structured network
lacks global contextual information to perform high-precision medical image seg-
mentation. Given this, we propose TFCNs (Fig.2), which takes FC-DenseNet
[23] as the backbone network, with an RL-Transformer Layer being added to
the encoder to enhance the segmentation capability of the network. In addition,
CLAB (Convolutional Linear Attention Block) in the skip connection part is in-
troduced to enhance the spatial recovery of the focused segmentation region. The
CNN-Transformer hybrid model acts as an encoder and CLAB as the upper and
lower connecting part between DenseBlock and Transition-Down, which helps
to filter non-semantic features. Compared with TransUNet [2], TFCNs not only
replaces the traditional convolutional layers with Dense Blocks, but also changes
the feature encoding method. The details of each part of the structure will be
described in the next two subsections. More specifically, the RL-Transformer
(ResLinear-Transformer) is described in section 3.2, the CLAB (Convolutional
Linear Attention Block) is described in section 3.3.
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Fig. 2. Overview of the proposed TFCNs. RL-Transformer module at the end of en-
coder gives access to a receptive field containing images and CLAB modules are dedi-
cated to filtering non-semantic features by including spatial and channel attention.

3.2 RL-Transformer

Referring to the ViT [4] implementation, we propose the ResLinear-Transformer
(RL-Transformer) and apply it to the encoder of TFCNs. Of particular note is
that the 2D patch xiP is expanded linearly and its projection is mapped to the
D dimension using a trainable linear layer, as shown in Eqn.1. The output of
this projection is called Patch Embedding.

z0 = [xclass;x
1
PE;x2PE; · · · ;xNP E] + Epos (1)

where E is the patch embedding projection which is located before entering
the RL-transform layer and Epos is the position embedding. RL-Transformer
Layer consists of alternating ResMLP blocks and L layers of Multi-Head Self-
Attention (MHSA). The expressions are shown in Eqn.2 and Eqn.3, where LN
denotes Layer Norm.

z′` = MHSA(LN(z`−1)) + z`−1 (2)

z` = ResMLP (LN(z′`)) + z′` (3)

The RL-Transformer encoder consists of alternating multi-headed self-attentive
layers and ResMLP blocks. As shown in Figure 2, our proposed ResMLP consists
of two GELU [6] nonlinear layers, three Linear layers, and three dropout lay-
ers alternating with a residual connection to the source input before the second
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GELU [6] layer. ResMLP can be expressed in Eqn.4 and Eqn.5 shown below:

z′′` = LN(z′`) (4)

y = z′′` + L(αGELU(L(z′′` ))) (5)

where GELU represents the GELU[6] nonlinear layer, L represents the Linear
layer, and α represents the associated weight parameters which is a learned
parameter. Finally, the state of the sequence at the output of the RL-Transformer
encoder is utilized as the image features.

3.3 CLAB (Convolutional Linear Attention Block)

Inspired by TTD (Test-Time Dropout) [20] and TTA (Test-Time Augmentation)
[11], we propose Convolutional Linear Attention Block (CLAB). Nowadays
TTD [20] can utilize dropout layers in the reasoning process and generate mul-
tiple predictions for each data instance. Compared with CUAB [19], we change
the order of extracting channel and spatial attention, as indicated by the experi-
mental results of CBAM [21]. In addition, the normalization operation is utilized
between the two attention operations to accelerate the training convergence pro-
cess. Finally, inspired by the local field of view, the weak influence outside the
local area is directly reduced to zero influence by using the linear layer.

As shown in Fig.2, the global average pooling layer with the linear layer is
added between the two convolutional layers. In CLAB, we first use 1 × 1 con-
volutional layers, where each convolutional layer has K kernels to generate the
sequence X ′i = RH×W×K , i ∈ {1, . . . , N}. Then a global average pooling opera-
tion is performed on X ′i in channel dimensions to obtain X ′′i , and a normalization

operation is performed on X ′′i to homogenize the data to obtain X̂ ′′i = X′
i−µB√
σ2
B+ε

to accelerate the convergence and accuracy improvement of the training pro-
cess, where µB denotes the mean of a batch, σB denotes the standard deviation
of the batch, and ε is a minimal positive value to ensure that the denomina-
tor is not zero. All X̂ ′′i = RH×W , i ∈ {1, . . . , N}, are concatenated to form
Xm = RH×W×N , which is then input sequentially into a submodule consisting
of a global average pooling layer (with respect to dimensionality), a linear layer
and a convolutional layer with sigmoid. The result is then multiplied with the
source input to obtain the final output feature Y . We later perform ablation
analysis for CLAB as well, and the experimental results show that CLAB has a
significant effect on the model segmentation performance improvement.

4 Experimental Results and Discussion

4.1 Implementation Details

For all experiments, we perform a simple data augmentation, i.e., by performing
random rotation or flipping operations. The optimizer chosen is the SGD opti-
mizer, with a momentum of 0.9 and a weight decay of 1e-4. The learning rate



6 Zihan Li et al.

selected for the experiment for our method is 0.005 and is set to 0.001 for other
models. The learning rate is made to decay after 30,000 iterations. The batch
size is set to 3 for Segtran [24], and 12 for all other models. The epoch is set to
150 on all datasets.

For Patch Size,it is worth noticing from Table 1 that the performance of the
model is optimal when the patch size is set to 16. When the patch size is set to
8, the included area is too small, so some relatively large organs such as liver
or kidney will be divided into many different patches for encoding, which splits
some important information. This makes it difficult for the decoder to perform
well, thereby reducing the performance of the model. When the patch size is set
to 32, because the coding area is relatively large, it contains many interfering
information that makes the model to misjudge. Although the CLAB module
functions as a filter, the remaining redundant information is still greater than
when the patch size is 16, so it also affects the judgments of the model.

Table 1. Ablation study on different patch sizes in transformer( Dice score% and
Hausdorff distance in mm and Jaccard score%).

Patch Size Dice↑ Hd95↓ Jaccard↑
8 78.79 38.11 65.95
16 83.72 17.26 72.78
32 80.00 24.41 67.84

Moreover, in our experiment, the combination of the Dice coefficient and
cross-entropy is taken as the loss function for all methods. And the weight of
these two components is 0.5.

4.2 Comparison with other SOTA methods

We conduct our experiments on Synapse‡ dataset and COVID-19§ dataset. The
experimental results are analyzed by taking the Dice coefficient, Hausdorff dis-
tance, and Jaccard coefficient as evaluation factors. All the State-of-the-art meth-
ods are implemented using original paper without any deviations.
Synapse Dataset

As shown in Table 2, these methods including Transformers, i.e. TransUNet
[2], Segtran [24], and our TFCNs achieves better performance when compare
with other methods. Especially, our method has a slight lead in terms of Dice
coefficient and Jaccard coefficient when compared to TransUNet [2] and Segtran
[24]. We believe this improvement is brought by the Dense Block we add, which
is able to enhance the transmission of semantic information in the main pipeline.

From Table 2, it can be observed that our method achieves more accurate
results than other approaches on some organs that are difficult to be segment,

‡ https://www.synapse.org/#!Synapse:syn3193805/wiki/217789
§ https://aistudio.baidu.com/aistudio/datasetdetail/34221
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Table 2. Performance comparison between our method and other state-of-the-art
methods on Synapse dataset (Dice score% and Hausdorff distance in mm and Jac-
card score%, and Dice score % for each organ). Avg means average result of all testing
cases and the Dice coefficient% on each organ.

Method Dice(avg)↑ Hd95(avg)↓ Jaccard(avg)↑ Aorta↑ Gallbladder↑ Kidney(L)↑ Kidney(R)↑ Liver↑ Pancreas↑ Spleen↑ Stomach↑
U-Net [15] 81.81 26.81 71.21 86.99 67.31 88.64 82.81 94.15 60.99 90.50 83.10

Fc-DenseNet [23] 81.62 21.83 70.62 86.68 66.31 88.14 82.07 95.26 61.73 92.11 80.68
AttU-Net [14] 81.05 29.09 70.71 89.63 67.05 88.46 77.08 94.52 56.89 92.13 82.69
Res-UNet [22] 78.33 58.66 66.61 86.16 59.63 86.55 83.93 94.49 48.94 86.96 79.96
U-Net++ [27] 81.60 28.31 70.48 88.15 67.29 86.31 83.62 94.00 61.71 89.51 82.18
DDANet [16] 79.60 21.29 67.87 83.74 64.93 88.93 83.83 94.99 51.99 90.68 77.69
TransUNet [2] 82.33 19.88 71.18 88.50 62.96 91.23 90.03 94.90 59.90 90.53 80.59
Segtran [24] 83.02 14.73 72.68 87.10 62.88 92.66 89.94 95.47 61.76 91.47 83.40

TFCNs 83.72 17.26 72.78 89.69 67.75 90.11 88.30 94.74 64.08 92.22 82.84

such as the Gallbladder and Pancreas. Since these tiny organs occupy a relatively
small proportion in the original image, other approaches are easy to wrap other
interfering information when extracting features from the areas containing these
tiny organs. Conversely, through the utilization of the designed CLAB module,
our model is able to pay more attention to these tiny organs themselves instead
of those irrelevant areas. Meanwhile, for other organs, the results achieved by
our method are also in the top 5.

(b)Ground Truth (c)U-Net++ (d)Segtran (f)TFCNs(e)TransUNet

Aorta Gallbladder Kidney(L) Kidney(R) Liver Pancreas Spleen Stomach

(a)Raw Image

Fig. 3. Qualitative results on Synapse Dataset. All columns respectively represent: (a)
Raw Image; (b) Ground Truth; (c) U-Net++ [27]; (d) Segtran [24]; (e) TransUNet [2];
(f) TFCNs. Top row describes corresponding color of each organ in raw image.

Analysis of segmentation for COVID-19 infected areas

The performance of our model at the fine-grained feature is explored using
the second dataset, i.e. the COVID-19 dataset. Since lesion features normally
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are more refined and scattered than organs which cover a large proportion of the
image. Table 3 indicates that the capability of our method on the fine-grained
target also reaches the SOTA level.

Table 3. Performance comparison between our method and other state-of-the-art
methods on Covid-19 dataset (Dice score% and Hausdorff distance in mm and Jac-
card score%). Avg means result average of all testing cases.

Method Dice(Avg)↑ Hd95(Avg)↓ Jaccard(Avg)↑
Segtran [24] 75.35 41.18 60.35

Res-UNet [22] 73.53 47.54 59.86
DDANet [16] 75.52 39.36 60.52

U-Net [15] 73.96 45.19 59.99
FC-DenseNet [23] 71.13 54.72 55.52

AttU-net [14] 74.70 48.36 60.26
TransUNet [2] 72.19 52.51 57.22

TFCNs 75.55 37.32 60.74

Combining with the results visualized in Fig.4, it can be seen that DDANet
[16], which is very close to our method in Dice coefficient and Jaccard coefficient,
is very prone to under-segment, indicating that its segmented strategy may be
choosing to ignore the pixels that are hard to distinguish. This strategy avoids the
decrease inaccuracy caused by erroneous prediction, but it can easily cause false-
negative that should be as least as possible in the diagnosis. TransUNet [2] shows
the over-segmentation in all rows. This may be the result of excessive utilization
of contextual information in the local area which is suitable for continuous and
regular objects such as organs, but these pieces of information are still too coarse
for the lesion features. However, we solve this problem by adding the CLAB
module.

(a)Raw Image (b)Ground Truth (f)TFCNs(d)TransUNet (e)DDANet(c)FC-DenseNet

Fig. 4. Qualitative results on COVID-19 dataset. All columns respectively represent:
(a) Raw Image; (b) Ground Truth; (c) FC-DenseNet [23]; (d) TransUNet [2]; (e)
DDANet [16]; (f) TFCNs. Infected area in lung are labeled in yellow.
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4.3 Interpretability Analysis

Interpretability analysis is conducted on the COVID-19 dataset using Class Ac-
tivation Mapping (CAM) [25] to explore what causes the model to make the
decision on every pixel and which area of feature map the model pays the most
attention to when it segments the infected area. As shown in Fig.5, TFCNs
focuses its attention on the lung area and pay least attention in the area sur-
rounding the lung which means our model can act as an expert that focuses on
the lung area at the beginning, and then pays more and more attention to the
infected area gradually (in Fig.5, the lung area is light red, and the infected area
is dark red) when it predicts.

As for TransUNet [2], although it can also focus its attention on the infected
area when predicting, it disperses other attention to the entire image instead
of gathering it to the lungs. This reflects the importance of our CLAB module
because it relocates the attention of the model to the key area.

Moreover, even though DDANet [16] achieves good results, it ignores most
areas in the image except the infected area, indicating that it does not have the
concept of lungs and only makes some mechanical predictions based on ground
truth which will make it very difficult to predict at the edge of the infected area,
resulting in a large number of false-negatives.

Fig. 5. Heat map for interpretability analysis of different approaches on COVID-19
dataset. All columns respectively represents: (a) Raw Image; (b) Ground Truth; (c)
TransUNet [2]; (d) DDANet [16]; (e) TFCNs. The colormap in right presents the degree
of attention which increases from bottom to top. Infected area in lung are labeled using
yellow in ground truth.
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4.4 Ablation Studies

Effectness of ResMLP
It can be seen from Table 4 that the Dice coefficient increases by 1.87% after

using ResMLP. In addition, the Hausdorff distance drops by 8.38mm, indicat-
ing that ResMLP makes the semantic features in the Transformers propagate
more complete, thereby increasing the contextual information extracted by the
encoder, which promotes the performance of the overall structure.

Table 4. Ablation study on verifying the effectness of ResMLP (Dice score% and
Hausdorff distance in mm and Jaccard score%).

Dice↑ Hd95↓ Jaccard↑
ResMLP 83.72 17.26 72.78

MLP 81.85 25.64 70.57

Type of Attention Block
As shown in Table 5, the performance of the model is greatly improved after

using the attention blocks (no matter what type it is), which means these atten-
tion blocks play a critical role in removing irrelevant and redundant information
at skip connections. Moreover, it can be seen that after using the CLAB mod-
ule we designed, the performance of the model is continuously improved, which
demonstrates that our CLAB module can accurately locate the area containing
more effective information in the feature map.

Table 5. Ablation study on different types of attention block in skip connection (Dice
score% and Hausdorff distance in mm and Jaccard score%).

Type of Attention Block Dice↑ Hd95↓ Jaccard↑
None 80.16 28.40 68.53

CUAB[19] 81.83 25.68 70.72
CLAB 83.72 17.26 72.78

5 Conclusion

To improve the performance of medical image segmentation, in this paper, we
propose TFCNs based on Transformer [18] and FC-DenseNet [23]. And the in-
ternal structure of Transformers is modified by introducing residual connections
to form RL-Transformer. This change can help enhance the receptive field and
improve the coding ability of the model. In addition, a common module—CLAB,
which is mainly composed of global average pooling and linear mapping, is de-
signed in the network to filter out non-semantic features. Experimental results
show that TFCNs which is the best among the baselines achieves a score of
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83.72% on the Dice coefficient and a score of 72.78% on the Jaccard coefficient
in terms of the Synapse dataset. The experiments are also conducted on the
COVID-19 public dataset, and results show that TFCNs also has the state-of-
the-art performance.
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