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Abstract. In medical image processing, the most important information
is often located on small parts of the image. Patch-based approaches aim
at using only the most relevant parts of the image. Finding ways to auto-
matically select the patches is a challenge. In this paper, we investigate
two criteria to choose patches: entropy and a spectral similarity crite-
rion. We perform experiments at different levels of patch size. We train
a Convolutional Neural Network on the subsets of patches and analyze
the training time. We find that, in addition to requiring less preprocess-
ing time, the classifiers trained on the datasets of patches selected based
on entropy converge faster than on those selected based on the spectral
similarity criterion and, furthermore, lead to higher accuracy. Moreover,
patches of high entropy lead to faster convergence and better accuracy
than patches of low entropy.
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Patch-based classification; ResNet

1 Introduction

With the development of better machine learning methods driven by deep
learning, there have been many successful applications of neural networks
in medical image processing, such as biomedical image segmentation or
cancer diagnosis [1]. This is the case in cancer diagnosis and prognosis,
with applications in breast cancer [22], lung cancer [14] and skin cancer
[2].
Medical images can be widely different depending on their source, such as
CT (Computed Tomography) scans, MRI (Magnetic Resonance Imaging)
images, dermoscopy, etc. While classification is usually performed on the
whole images, medical images can have extremely high resolution, e.g.
gigapixels for skin tissue images, which makes it more time efficient to
train on subsets or patches of images. Additionally, it can enhance a
classifier performance in some settings. For example, in [11], the authors
argue that cancer subtypes are distinguished at the image patch scale.
Patch-based classification is also used in [18] for breast histology. More
applications of patch-based applications are introduced in [17] and [25].
A judicious choice of patches reduces the importance of noise and focuses
on the most important parts of the image. Two approaches of selecting
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the patches used for classification are to score the patches individually
based on a given metric, or to compare each patch with the other patches
of an image and rank the similarity between the patches. In the first
approach, the patches can be scored using entropy, while the second
approach relies on a similarity measure between images.

On one hand, entropy is used in information theory as a way to quantify
the level of information of an object. Higher entropy means that there is
more information in the object. For instance, a random noise image has
high entropy while a unicolored one has very low entropy. Entropy plays
an important role in data compression where it provides the lower bound
on the storage required to compress an object without loss of informa-
tion [19]. Entropy can also be used for object reconstruction using the
principle of maximum entropy, which aims at selecting the most uniform
probability distribution amongst multiple candidate distributions. It can
be used for image reconstruction where the candidates are the set of
missing pixels [20]. It applies to text data as well [15]. Entropy can also
be used in image texture analysis [26] and texture synthesis. Selecting
patches using entropy was explored in [13].

On the other hand, the Mean Exhaustive Minimum Distance (MEMD)
is a criterion that was introduced in [8] to compare two images by trying
to find the best pairing of pixels from the first and the second image; the
criterion score then indicates how similar the images are. A low score
indicates that the images are similar, and a high score that the image
are different. This can be extended to comparison between a patch and
several patches by averaging the scores.

In this paper we study the training time and the accuracy of these two
criteria for patch-based binary classification. The data we use comes from
the ISIC (International Skin Imaging Collaboration) archive. 5 This con-
sortium was created to improve the fight against skin melanoma can-
cer by improving computer-aided diagnosis. The consortium has held an
annual challenge since 2016 [6]. Starting from 2019, the challenges are
centered around dermoscopic image multi-class classification. The best
team on the 2019 challenge [4], investigated patch-based classification on
the HAM10000 dataset [21], where information from several patches is
combined via an attention-based mechanism.

The paper is divided as follows. In Section 2 we present the dataset and
the preprocessing we perform on the data. We also introduce the entropy
and MEMD criterion that we use in our experiments. In Section 3 we
present the results of our experiments and we conclude the paper in
Section 4.

2 Materials and Methods

In this section we describe the dataset, the criteria of entropy and Mean-
Exhaustive Minimum Distance (MEMD) we use, and the network archi-
tecture that is trained on the data.

5 The data is publicly available at https://www.isic-archive.com

https://www.isic-archive.com


2.1 Dataset description and preprocessing

The ISIC archive database comprises skin lesion images associated with
a label indicating the status of the lesion. The image resolution is ar-
bitrary. The archive provides an API to retrieve the images and their
metadata, as well as the mask of the region of interest when an expert
has created one. The total number of patches created is presented in
Table 1. We perform binary classification on patches of the images. Our
target variable is a categorical variable with two possible values: benign,
or malignant.
The preprocessing steps are:

1. We download images from the ISIC archive, as well as the masks
that are annotations from experts and indicate the lesion location.

2. All the malignant images with a mask are selected. The same number
of benign images is sampled out of all the benign images.

3. The region of interest is divided in square patches of width 32, 64,
128 and 256. The region of interest is defined by the downloaded
masks.

4. The entropy of each patch is computed, and we use these values to
extract a subset of patches. This is explained in section 2.2.

5. For each image, we compute a spectral measure of similarity between
a patch and all the other patches of the image; we use this measure
to extract a subset of patches. The details are in section 2.3.

6. Finally, a classifier is trained on all the datasets we have created in
the two previous steps.

Table 1. Number of patches for each patch size

Patch size Number of patches

32× 32 4, 889, 969
64× 64 1, 173, 052

128× 128 270, 821
256× 256 58, 253

We divide the images in three groups: 90% of the images are in the train
set, with 20% of the train set reserved for validation; the remaining 10%
constitutes the test set.

2.2 Entropy

We use the Shannon entropy [19]. It is defined by the formula

H =

M∑
k=1

pk log(pk) (1)



where we sum across all the pixel intensities, i.e. from 0 to M = 255.
pk is the probability a pixel in the image is at intensity k. The entropy
ranges from 0 to log2(255) ≈ 8. Because there is no consensus on how
to compute the entropy for multi channel images, we convert our RGB
images to grayscale. The conversion process is defined in the ITU-R
Recommendation BT.601-2.
Using the entropy, we extract two datasets for each patch size:
– a low dataset, whose patches are all the patches that rank below the

15-th and the 30-th quantile of entropy with respect to the other
patches of the same image.

– a high dataset, with entropy above the 85-th · and the 70-th quantile.

2.3 Mean Exhaustive Minimum Distance (MEMD)
criterion

The first methods of similarity measure usually consisted in computing
certain features on a given image, such as the Haralick features [7], and
then comparing the features obtained for different images. More recent
techniques dealing with the structural similarity in textures have been
proposed in [27] and [16]. Handling color or hyperspectral images is often
done using histograms [24], but histograms require a large amount of data
to get good estimates of the spectral distribution. A new criterion to
evaluate the similarity of two images was proposed in [8]. This approach
does not require histograms and generalizes to any number of channels.
Following the notation from [9], let A and B be two images, which can
have multiple channels. Let M = min(#A,#B), with #A and #B the
number of pixels in A and B. Let 〈A〉 be the set of pairs of coordinates for
the pixels of A, and U the unprocessed pairs of coordinates of pixels of B.
Let ρ be the distance induced by a vector metric. Ai,j denotes the pixel
of A at coordinates (i, j); the channels dimension is implied. Similarly,
Bk,l is the pixel of B at coordinates (k, l). The MEMD criterion ζ is
defined by Equation 2.

ζ(A,B) =
1

M

∑
(i,j)∈〈A〉

min
(k,l)∈U

{ρ(Ai,j , Bk,l)} (2)

The lower the score is, the more similar images A and B are. Inversely,
the higher the score, the higher the difference between the two images.
The score can take values between 0 and 255. A score of 0 happens when
we compare one image to itself; a score of 255 happens when we compare
a white image with a black one.
To improve the computation time, [9] suggested that the pixels of both
the images be sorted with respect to the chosen norm. Finding the min-
imum distance between the pixels of the two images then comes down
to choosing the closest unprocessed neighbour in the sorted array. In the
special case where A and B are of the same size, we can simply match
the first element of the sorted pixels of A with the first of element of the
sorted pixels of B, and so on.
We compute the MEMD score of each patch with respect to all the other
patches of the same image, and we average the scores. Figure 1 shows



the distribution of the MEMD score at varying patch sizes. We observe
two peaks. The peak on the left corresponds to the patches that are
representative of the overall image, and the peak on the right corresponds
to the patches that are more unique. The reason why we only have two
peaks is that the images of the lesion all share similar elements: a little
bit of skin, the lesion, and some noise such as hair, a ruler, etc. The
distinction between the lesion and the skin is quite drastic, meaning
that few patches are going to be equally similar to skin and lesion. The
variation in scores is in part due to the different number of patches per
image. The more patches an image has, the less extreme the MEMD score
of the patches will be. The patches with a score of 0 are from images that
have only one patch. This happens for big patch sizes where the region
of interest is too small to get more patches.

(a) 32× 32 patches (b) 64× 64 patches

(c) 128× 128 patches (d) 256× 256 patches

Fig. 1. Distribution of MEMD score for different patch sizes

Similarly to what was done in Section2.2, we create datasets using the
same quantiles for the MEMD score.
In the rest of the paper, we use the max norm for ρ, i.e. ρ : x 7→
‖x‖∞ = maxi|xi|, where xi are the coordinates of x. The distance in-



duced by the max norm is (x, y) 7→ ‖x− y‖∞. Because the sorting of
the pixels is done based on the norm of a single pixel, and the min is
computed using the distance between two pixels, the optimization via
sorting is not compatible with pixels with multiple channels. Indeed, let
p1 = [135, 18, 89], p2 = [130, 16, 86] and p3 = [12, 134, 1]. If we sort the
pixels by the max norm, we get P = [p2, p3, p1]. Selecting the closest
matching pixel using the proposed method in [9] would make us pair p2
with p3, which leads to ζ(p2, p3) = 118. But p2 and p1 are clearly a better
match, with ζ(p2, p1) = 5. To alleviate the complications imposed by the
multiple channels, we convert the images to grayscale before computing
the MEMD score. Since the grayscale image has only one channel, the
optimization via sorting works.

The computation of the average MEMD of all the patches of an image
has O(m2) with respect to m, the number of patches in the image. There
is a trade-off between space and time complexity, where vectorizing part
of the process using higher order tensors allows for faster computation
but requires more space.

2.4 Network Architecture

For the choice of classifier, we follow [23] and [3] who found that ResNet50
achieved the best results for the same task and dataset. ResNet50 [10]
is a 50-layer convolutional neural network (CNN) that was proposed to
alleviate the problem of vanishing and exploding gradients [5] by intro-
ducing the notion of residual units.

With enough computing resources, ResNets can have as many layers as
we want, e.g. 101 or 152 layers. We use the 50-layer version, which we
adapt to binary classification by removing the last layer and replacing
it with a max pooling layer followed by a Dense layer and a sigmoid
activation.

We use the Adam optimizer [12]. We set the learning rate to 0.001 and
we use a binary cross-entropy loss for training.

We train the model for 10 epochs, each epoch representing a full pass
through the train set.To mitigate overfitting, the training stops if the
validation loss does not decrease after 3 consecutive epochs.

Additionally, we investigate combining predictions from several patches
of an image to classify the image. We train a Resnet for 10 epochs and
choose the weights that result in the best validation loss. To classify an
image from the test set, we individually classify its patches and aggregate
the results. Let Pi be the set of patches from an image Ii, |Pi| the number
of patches selected from the image, f be the classifier that maps a patch
to 0 for a benign patch and 1 for a malignant one. The prediction ŷ is
given by the Equation 3.

ŷi =

{
0 if

(
1

|P|
∑

p∈Pi
f(p)

)
< 0.5

1 otherwise
(3)



3 Experimental Results

The experiments were performed with an Nvidia Titan XP GPU. The
code is written in Python and Tensorflow. The Pillow library was used
for computing the entropy.
To make our results robust against the random initialization of the model
parameters, we train 10 instances of a ResNet50 per dataset. Results of
the experiments with the entropy datasets are presented in Table 2, and
those performed on the MEMD datasets are presented in Table 3. The
low entropy dataset contains the 15% patches with the lowest entropy,
and the high entropy dataset contains the 15% patches with the high-
est entropy. Correspondingly, the low MEMD dataset contains the 15%
patches with the lowest MEMD score, and the high MEMD dataset con-
tains the 15% patches with the highest MEMD score. Additional results
for datasets with intermediate entropy are presented in [13].

Table 2. Quantiles of training time for datasets of different entropy and patch size

Quantile of training time (in seconds)
patch size entropy 30 50 (median) 70

32 high 1350.7 2013.2 2781.4
32 low 1534.9 2906.7 3078.5

64 high 291.0 382.9 441.9
64 low 290.6 338.3 414.2

128 high 155.0 204.6 220.0
128 low 204.8 255.0 255.4

256 high 142.4 152.2 189.7
256 low 189.6 226.4 226.5

Regarding the entropy datasets, we observe a tendency of faster conver-
gence for datasets with higher entropy compared to datasets with lower
entropy. Lower entropy means that the distribution of pixel intensity
concentrates on fewer pixels than it does for higher entropy. This con-
centration makes for smoother textures, which might be harder for the
classifier to learn. Higher entropy datasets have more salient features
that more discernible and thus more easily learnable by the network.
As for the MEMD datasets, the dataset composed of patches with higher
score tends to converge faster than the dataset with lower score. This
might be explainable by the fact that a low MEMD score means a high
similarity of the patch with the rest of the image, while a high score in-
dicates a distinctive spectral texture compared with the other patches of
the same image. Thus, the higher score patches capture the more unique
features of the lesion, while the lower score patches are more represen-
tative of the overall texture of the lesion. The high representativeness of



Table 3. Quantiles of training time for datasets of varying MEMD score and patch
size

Quantile of training time (in seconds)
patch size memd score 30 50 (median) 70

32 high 3150.4 3254.8 3258.9
low 3256.4 3260.0 3260.9

64 high 465.3 495.1 527.0
low 564.4 691.9 986.3

128 high 241.5 281.9 387.9
low 256.6 357.7 373.1

256 high 189.7 245.2 264.4
low 215.4 226.7 275.2

a patch might extend to patches of low score from another image, while
the unique features are probably different between images. Therefore, the
dataset with high score is richer in more unique patches, which provide
more information than the similar patches contained in the lower score
dataset. This, in turn, makes the network training converge faster for the
dataset with higher score patches.

These interpretations are borne out by the results of the experiments
presented in Table 4. For the 128 × 128 patches, the accuracy does not
improve when we select more patches: it stagnates around 50%. This
indicates that this patch size is too small to properly discriminate the
lesions. The problem is not about the number of patches but about the
fact that small patches do not contain enough information to determine
the status of the lesion. We believe that this situation holds also for even
smaller patches, e.g. 32×32 or 64×64 patches. Conversely, for the case of
256× 256 patches, we remark that using too few patches results in very
low accuracy (around 25%); however, the accuracy increases considerably
when we select more patches (30% of 15%), achieving 71% accuracy for
patches of high entropy. This accuracy is similar to the 74% accuracy
obtained by the authors of [3] when training on the whole region of
interest with a ResNet50.

The lower accuracy for the low MEMD and low entropy datasets, com-
pared with the high MEMD and entropy datasets, suggests that it is not
sufficient to select more patches to reach a higher level of accuracy; it is
also important to select appropriate patches.

Figure 3 and Figure 4 illustrate the role of MEMD and entropy in patch
selection. The patch on the left of Figure 3 is one of the patches with the
lowest MEMD score for the image, while the patch on the right has one
of the highest scores. Due to the fact that the masks cannot perfectly
capture the lesion, there will always be some part of the skin that will
be present in the mask. Since the skin has more uniform texture than
the lesion, it is likely that patches of skin will have the lowest score.



Table 4. Test accuracy (in percentage) for the different datasets. For a given patch
size, the test images are the same for each method.

Dataset low MEMD high MEMD low entropy high entropy

128× 128, 15% patches 46.7 50.5 46.2 52.7
128× 128, 30% patches 43.9 51.6 39.6 52.7

256× 256, 15% patches 27.2 26.3 25.1 32.0
256× 256, 30% patches 45.5 57.2 52.7 71.0

(a) Malignant lesion (b) Mask of the lesion

Fig. 2. A malignant image and its mask

Similarly, the patches with low entropy will have more uniform features,
while the patches with higher entropy will have more salient ones, as in
Figure 4.

The datasets extracted using the entropy converge faster than the datasets
extracted with the MEMD criterion. We hypothesize that a likely ex-
planation is that patches extracted with the entropy share similar dis-
tributions of pixels, albeit sometimes shifted. The entropy quantifies the
distribution of pixel intensity: the higher the entropy, the closer the pixel
distribution will be to the uniform distribution. Thus, the patches from
entropy extracted datasets are similar across the images, and this simi-
larity is learnable by the network. On the other hand, datasets extracted
using the MEMD criterion do not provide any quantifiable information
about the pixel distribution. Their score is only indicative of how rep-
resentative the patch is with respect to the image. The network might
thus be confronted with a wider variety of patches which lead to a longer
training time.

4 Conclusion

We examined the role of entropy and the MEMD criteria on both CNN
training time and classification efficiency for patch-based melanoma de-
tection. The preprocessing is longer with the MEMD criterion because



(a) Patch with low MEMD score (b) Patch with high MEMD score

Fig. 3. Two different MEMD patches

we have to compare patches two by two, whereas entropy requires a sin-
gle computation per patch. We found that higher entropy leads to faster
convergence than lower entropy; similarly, a higher MEMD score, which
indicates that the patch does not resemble other patches from the same
image, also leads to faster convergence. In terms of accuracy, the models
trained on the higher entropy dataset or the higher MEMD are more per-
formant than the models trained on the lower entropy or lower MEMD
datasets. We also found that creating patch datasets using an absolute
measure of information, such as entropy, makes the network train faster
than when the datasets were created using a similarity measure. We also
observed that patch size plays a significant role in the classifier accuracy,
with small patches leading to poor results, regardless of the percentage
of patches used.
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