Abstract
Misinformation has become a major concern in recent last years given its spread across our information sources. In the past years, many NLP tasks have been introduced in this area, with some systems reaching good results on English language datasets. Existing AI based approaches for fighting misinformation in literature suggest automatic stance detection as an integral first step to success. Our paper aims at utilizing this progress made for English to transfers that knowledge into other languages, which is a non-trivial task due to the domain gap between English and the target languages. We propose a black-box non-intrusive method that utilizes techniques from Domain Adaptation to reduce the domain gap, without requiring any human expertise in the target language, by leveraging low-quality data in both a supervised and unsupervised manner. This allows us to rapidly achieve similar results for stance detection for the Zulu language, the target language in this work, as are found for English. We also provide a stance detection dataset in the Zulu language. Our experimental results show that by leveraging English datasets and machine translation we can increase performances on both English data along with other languages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allah, F.A., Boulaknadel, S.: Toward computational processing of less resourced languages: primarily experiments for Moroccan Amazigh language. Text Mining. Rijeka: InTech, pp. 197–218 (2012)
Augenstein, I., Rocktäschel, T., Vlachos, A., Bontcheva, K.: Stance detection with bidirectional conditional encoding. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, volume abs/1606.05464 (2016)
Bekkouch, I.E.I., Youssry, Y., Gafarov, R., Khan, A., Khattak, A.M.: Triplet loss network for unsupervised domain adaptation. Algorithms 12(5), 96 (2019)
Besacier, L., Barnard, E., Karpov, A., Schultz, T.: Automatic speech recognition for under-resourced languages: a survey. Speech Commun. 56, 85–100 (2014)
Bourquin, W.: Click-words which xhosa, zulu and sotho have in common. Afr. Stud. 10(2), 59–81 (1951)
Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. CoRR, abs/1903.06864 (2019)
Cope, A.T.: Zulu phonology, tonology and tonal grammar. Ph.D. thesis, University of Durban (1966)
Derczynski, L., Maynard, D., Aswani, N., Bontcheva, K.: Microblog-genre noise and impact on semantic annotation accuracy. In: Proceedings of the 24th ACM Conference on Hypertext and Social Media, pp. 21–30. ACM (2013)
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2018)
Dungs, S., Aker, A., Fuhr, N., Bontcheva, K.: Can rumour stance alone predict veracity? In: Proceedings of the 27th International Conference on Computational Linguistics, pp. 3360–3370 (2018)
Ferraro, J.P., Daumé, H., III., DuVall, S.L., Chapman, W.W., Harkema, H., Haug, P.J.: Improving performance of natural language processing part-of-speech tagging on clinical narratives through domain adaptation. J. Am. Med. Inform. Assoc. 20(5), 931–939 (2013)
Goodfellow, I.: Nips 2016 tutorial: generative adversarial networks. arXiv preprint arXiv:1701.00160 (2016)
Gorrell, G., et al.: Semeval-2019 task 7: rumoureval, determining rumour veracity and support for rumours. In: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 845–854 (2019)
Hercig, T., Krejzl, P., Král, P.: Stance and sentiment in czech. Computación y Sistemas 22(3) (2018)
Howard, J., Ruder, S.: Fine-tuned language models for text classification. CoRR abs/1801.06146 (2018)
Hu, L., Kan, M., Shan, S., Chen, X.: Duplex generative adversarial network for unsupervised domain adaptation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1498–1507, June 2018
Kochkina, E., Liakata, M., Augenstein, I.: Proceedings of the 11th International Workshop on Semantic Evaluation (semeval-2017). In CoRR volume abs/1704.07221 (2017)
Kotu, V., Deshpande, B.: Chapter 2 - data mining process. In: Kotu, V., Deshpande, B. (eds.) Predictive Analytics and Data Mining, pp. 17–36. Morgan Kaufmann, Boston (2015)
Kotu, V., Deshpande, B.: Chapter 2 - data science process. In: Kotu, V., Deshpande, B. (ed.) Data Science, 2nd edn., pp. 19 – 37. Morgan Kaufmann (2019)
Küçük, D.: Stance detection in Turkish tweets. arXiv preprint arXiv:1706.06894 (2017)
Li, D., Yang, Y., Song, Y.-Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. CoRR, abs/1710.03077 (2017)
Lillie, A.E., Middelboe, E.R., Derczynski, L.: Joint rumour stance and veracity prediction. In: Proceedings of the 22nd Nordic Conference on Computional Linguistics (NoDaLiDa), pp. 208–221 (2019)
Mahsut, M., Ogawa, Y., Sugino, K., Inagaki, Y.: Utilizing agglutinative features in Japanese-Uighur machine translation. Proc. MT Summit 8, 217–222 (2001)
Merity, S., Xiong, C., Bradbury, J., Socher, R.: Pointer sentinel mixture models. CoRR, abs/1609.07843 (2016)
Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: Semeval-2016 task 6: detecting stance in tweets. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 31–41 (2016)
Niesler, T., Louw, P., Roux, J.: Phonetic analysis of Afrikaans, English, Xhosa and Zulu using south African speech databases. South. Afr. Linguistics Appl. Language Studi. 23(4), 459–474 (2005)
Nisbet, R., Elder, J., Miner, G.: Chapter 13 - model evaluation and enhancement. In: Nisbet, R., Elder, J., Miner, G. (eds.) Handbook of Statistical Analysis and Data Mining Applications, pp. 285–312. Academic Press, Boston (2009)
Peters, M.E., Ruder, S., Smith, N.A.: To tune or not to tune? adapting pretrained representations to diverse tasks. CoRR, abs/1903.05987 (2019)
Pires, T., Schlinger, E., Garrette, D.: How multilingual is multilingual bert? CoRR, abs/1906.01502 (2019)
Qazvinian, V., Rosengren, E., Radev, D.R., Mei, Q.: Rumor has it: identifying misinformation in microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 1589–1599. Association for Computational Linguistics (2011)
Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. CoRR, abs/1703.06907 (2017)
Weng, L.: Domain randomization for sim2real transfer. lilianweng.github.io/lil-log (2019)
Zhou, S., Lin, J., Tan, L., Liu, X.: Condensed convolution neural network by attention over self-attention for stance detection in twitter. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2019
Acknowledgments
This research was supported by the Independent Danish Research Fund through the Verif-AI project grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dlamini, G., Bekkouch, I.E.I., Khan, A., Derczynski, L. (2023). Bridging the Domain Gap for Stance Detection for the Zulu Language. In: Arai, K. (eds) Intelligent Systems and Applications. IntelliSys 2022. Lecture Notes in Networks and Systems, vol 542. Springer, Cham. https://doi.org/10.1007/978-3-031-16072-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-16072-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-16071-4
Online ISBN: 978-3-031-16072-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)